<
From version < 113.3 >
edited by Xiaoling
on 2022/06/10 15:04
To version < 138.5 >
edited by Xiaoling
on 2022/06/10 17:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,47 +52,48 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
66 66  
67 67  
62 +== 1.3  Specification ==
68 68  
69 -== 1.3  Probe Specification ==
64 +=== 1.3.1  Rated environmental conditions ===
70 70  
71 -* Storage temperature :-20℃~~75℃
72 -* Operating temperature - -20℃~~60℃
73 -* Operating Range - 0.1m~~12m①
74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution - 5mm
76 -* Ambient light immunity - 70klux
77 -* Enclosure rating - IP65
78 -* Light source - LED
79 -* Central wavelength - 850nm
80 -* FOV - 3.6°
81 -* Material of enclosure - ABS+PC
82 -* Wire length - 25cm
66 +[[image:image-20220610154839-1.png]]
83 83  
68 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
84 84  
70 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
85 85  
86 86  
87 -== 1.4  Probe Dimension ==
88 88  
74 +=== 1.3.2  Effective measurement range Reference beam pattern ===
89 89  
90 -[[image:1654827224480-952.png]]
76 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
91 91  
92 92  
79 +
80 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
81 +
82 +(% style="display:none" %) (%%)
83 +
84 +
85 +
93 93  == 1.5 ​ Applications ==
94 94  
95 95  * Horizontal distance measurement
89 +* Liquid level measurement
96 96  * Parking management system
97 97  * Object proximity and presence detection
98 98  * Intelligent trash can management system
... ... @@ -99,26 +99,31 @@
99 99  * Robot obstacle avoidance
100 100  * Automatic control
101 101  * Sewer
96 +* Bottom water level monitoring
102 102  
98 +
99 +
103 103  == 1.6  Pin mapping and power on ==
104 104  
105 105  
106 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
107 107  
108 108  
109 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
110 110  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
111 111  == 2.1  How it works ==
112 112  
113 113  (((
114 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
115 115  )))
116 116  
117 117  (((
118 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
119 119  )))
120 120  
121 121  
120 +
122 122  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
123 123  
124 124  (((
... ... @@ -126,7 +126,7 @@
126 126  )))
127 127  
128 128  (((
129 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
130 130  )))
131 131  
132 132  (((
... ... @@ -134,57 +134,57 @@
134 134  )))
135 135  
136 136  (((
137 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
138 138  )))
139 139  
140 140  (((
141 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
142 142  )))
143 143  
144 144  [[image:image-20220607170145-1.jpeg]]
145 145  
146 146  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
147 147  
148 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
149 149  
150 +**Add APP EUI in the application**
150 150  
151 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
152 152  
154 +[[image:image-20220610161353-5.png]]
153 153  
154 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
155 155  
156 156  
159 +[[image:image-20220610161353-7.png]]
157 157  
158 -**Add APP EUI and DEV EUI**
159 159  
160 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
161 161  
164 + [[image:image-20220610161538-8.png]]
162 162  
163 163  
164 -**Add APP EUI in the application**
165 165  
166 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
167 167  
170 +[[image:image-20220610161538-9.png]]
168 168  
169 169  
170 -**Add APP KEY**
171 171  
172 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
173 173  
174 174  
175 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
176 -
177 -
178 178  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179 179  
180 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
181 181  
182 182  
183 183  (((
184 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 185  )))
186 186  
187 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
188 188  
189 189  
190 190  
... ... @@ -191,11 +191,10 @@
191 191  == 2.3  ​Uplink Payload ==
192 192  
193 193  (((
194 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
195 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
196 196  
197 -(((
198 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
199 199  )))
200 200  
201 201  (((
... ... @@ -205,23 +205,23 @@
205 205  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 206  |=(% style="width: 62.5px;" %)(((
207 207  **Size (bytes)**
208 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
210 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
211 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
213 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
214 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
215 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
216 216  
217 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
218 218  
215 +[[image:1654850511545-399.png]]
219 219  
220 220  
218 +
221 221  === 2.3.1  Battery Info ===
222 222  
223 223  
224 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
225 225  
226 226  Ex1: 0x0B45 = 2885mV
227 227  
... ... @@ -229,49 +229,20 @@
229 229  
230 230  
231 231  
232 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
233 233  
234 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
235 235  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
236 236  
237 -**Example**:
238 238  
239 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
240 240  
241 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
242 242  
243 -
244 -
245 -=== 2.3.3  Distance ===
246 -
247 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
248 -
249 -
250 -**Example**:
251 -
252 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
253 -
254 -
255 -
256 -=== 2.3.4  Distance signal strength ===
257 -
258 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
259 -
260 -
261 -**Example**:
262 -
263 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
264 -
265 -Customers can judge whether they need to adjust the environment based on the signal strength.
266 -
267 -
268 -
269 -=== 2.3.5  Interrupt Pin ===
270 -
271 271  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
272 272  
273 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
274 -
275 275  **Example:**
276 276  
277 277  0x00: Normal uplink packet.
... ... @@ -279,53 +279,44 @@
279 279  0x01: Interrupt Uplink Packet.
280 280  
281 281  
251 +=== 2.3.4  DS18B20 Temperature sensor ===
282 282  
283 -=== 2.3. LiDAR temp ===
253 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
284 284  
285 -Characterize the internal temperature value of the sensor.
255 +**Example**:
286 286  
287 -**Example: **
288 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
289 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
257 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
290 290  
259 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
291 291  
261 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
292 292  
293 -=== 2.3.7  Message Type ===
294 294  
295 -(((
296 -For a normal uplink payload, the message type is always 0x01.
297 -)))
298 298  
299 -(((
300 -Valid Message Type:
301 -)))
265 +=== 2.3.5  Sensor Flag ===
302 302  
267 +0x01: Detect Ultrasonic Sensor
303 303  
304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
305 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
306 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
307 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
269 +0x00: No Ultrasonic Sensor
308 308  
309 -=== 2.3.8  Decode payload in The Things Network ===
310 310  
272 +===
273 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
274 +
311 311  While using TTN network, you can add the payload format to decode the payload.
312 312  
313 313  
314 -[[image:1654592762713-715.png]]
278 +[[image:1654850829385-439.png]]
315 315  
316 -(((
317 -The payload decoder function for TTN is here:
318 -)))
280 +The payload decoder function for TTN V3 is here:
319 319  
320 -(((
321 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
322 -)))
282 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
323 323  
324 324  
325 325  
326 326  == 2.4  Uplink Interval ==
327 327  
328 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
288 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
329 329  
330 330  
331 331  
... ... @@ -356,47 +356,25 @@
356 356  
357 357  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
358 358  
359 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
319 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
360 360  
361 -[[image:1654832691989-514.png]]
321 +[[image:1654851029373-510.png]]
362 362  
363 363  
364 -[[image:1654592833877-762.png]]
324 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
365 365  
326 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
366 366  
367 -[[image:1654832740634-933.png]]
368 368  
369 369  
370 -
371 -(((
372 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
373 -)))
374 -
375 -(((
376 -
377 -)))
378 -
379 -[[image:1654833065139-942.png]]
380 -
381 -
382 -
383 -[[image:1654833092678-390.png]]
384 -
385 -
386 -
387 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
388 -
389 -[[image:1654833163048-332.png]]
390 -
391 -
392 -
393 393  == 2.6  Frequency Plans ==
394 394  
395 395  (((
396 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
333 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
397 397  )))
398 398  
399 399  
337 +
400 400  === 2.6.1  EU863-870 (EU868) ===
401 401  
402 402  (((
... ... @@ -460,20 +460,51 @@
460 460  === 2.6.2  US902-928(US915) ===
461 461  
462 462  (((
463 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
464 -)))
401 +Used in USA, Canada and South America. Default use CHE=2
465 465  
466 -(((
467 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
468 -)))
403 +(% style="color:blue" %)**Uplink:**
469 469  
470 -(((
471 -After Join success, the end node will switch to the correct sub band by:
472 -)))
405 +903.9 - SF7BW125 to SF10BW125
473 473  
474 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
475 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
407 +904.1 - SF7BW125 to SF10BW125
476 476  
409 +904.3 - SF7BW125 to SF10BW125
410 +
411 +904.5 - SF7BW125 to SF10BW125
412 +
413 +904.7 - SF7BW125 to SF10BW125
414 +
415 +904.9 - SF7BW125 to SF10BW125
416 +
417 +905.1 - SF7BW125 to SF10BW125
418 +
419 +905.3 - SF7BW125 to SF10BW125
420 +
421 +
422 +(% style="color:blue" %)**Downlink:**
423 +
424 +923.3 - SF7BW500 to SF12BW500
425 +
426 +923.9 - SF7BW500 to SF12BW500
427 +
428 +924.5 - SF7BW500 to SF12BW500
429 +
430 +925.1 - SF7BW500 to SF12BW500
431 +
432 +925.7 - SF7BW500 to SF12BW500
433 +
434 +926.3 - SF7BW500 to SF12BW500
435 +
436 +926.9 - SF7BW500 to SF12BW500
437 +
438 +927.5 - SF7BW500 to SF12BW500
439 +
440 +923.3 - SF12BW500(RX2 downlink only)
441 +
442 +
443 +
444 +)))
445 +
477 477  === 2.6.3  CN470-510 (CN470) ===
478 478  
479 479  (((
... ... @@ -566,24 +566,51 @@
566 566  === 2.6.4  AU915-928(AU915) ===
567 567  
568 568  (((
569 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
570 -)))
538 +Default use CHE=2
571 571  
572 -(((
573 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
574 -)))
540 +(% style="color:blue" %)**Uplink:**
575 575  
576 -(((
577 -
578 -)))
542 +916.8 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -After Join success, the end node will switch to the correct sub band by:
582 -)))
544 +917.0 - SF7BW125 to SF12BW125
583 583  
584 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
585 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
586 586  
548 +917.4 - SF7BW125 to SF12BW125
549 +
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
587 587  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 588  
589 589  (((
... ... @@ -984,12 +984,8 @@
984 984  )))
985 985  * (((
986 986  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
987 -
988 -
989 -
990 990  )))
991 991  
992 -
993 993  == 4.2  Set Interrupt Mode ==
994 994  
995 995  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -1018,7 +1018,6 @@
1018 1018  Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1019 1019  )))
1020 1020  
1021 -
1022 1022  == 4.3  Get Firmware Version Info ==
1023 1023  
1024 1024  Feature: use downlink to get firmware version.
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0