Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2024/03/07 08:41
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 19 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -14,38 +14,33 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 25 26 -((( 27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 33 34 -((( 35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 42 -((( 43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 44 44 ))) 45 45 ))) 46 46 47 47 48 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 49 49 50 50 51 51 ... ... @@ -52,44 +52,49 @@ 52 52 == 1.2 Features == 53 53 54 54 * LoRaWAN 1.0.3 Class A 55 -* Ultra -low power consumption56 -* Lasertechnologyfor distancedetection57 -* OperatingRange - 0.1m~~12m①58 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)59 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 60 60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 61 61 * AT Commands to change parameters 62 62 * Uplink on periodically 63 63 * Downlink to change configure 64 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 65 65 66 66 67 67 68 68 69 -== 1.3 ProbeSpecification ==63 +== 1.3 Specification == 70 70 71 -* Storage temperature :-20℃~~75℃ 72 -* Operating temperature - -20℃~~60℃ 73 -* Operating Range - 0.1m~~12m① 74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution - 5mm 76 -* Ambient light immunity - 70klux 77 -* Enclosure rating - IP65 78 -* Light source - LED 79 -* Central wavelength - 850nm 80 -* FOV - 3.6° 81 -* Material of enclosure - ABS+PC 82 -* Wire length - 25cm 65 +=== 1.3.1 Rated environmental conditions === 83 83 84 - == 1.4 ProbeDimension ==67 +[[image:image-20220610154839-1.png]] 85 85 69 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 86 86 87 - [[image:1654827224480-952.png]]71 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 88 88 89 89 74 + 75 +=== 1.3.2 Effective measurement range Reference beam pattern === 76 + 77 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]] 78 + 79 + 80 + 81 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]] 82 + 83 +(% style="display:none" %) (%%) 84 + 85 + 86 + 90 90 == 1.5 Applications == 91 91 92 92 * Horizontal distance measurement 90 +* Liquid level measurement 93 93 * Parking management system 94 94 * Object proximity and presence detection 95 95 * Intelligent trash can management system ... ... @@ -96,23 +96,28 @@ 96 96 * Robot obstacle avoidance 97 97 * Automatic control 98 98 * Sewer 97 +* Bottom water level monitoring 99 99 99 + 100 + 101 + 100 100 == 1.6 Pin mapping and power on == 101 101 102 102 103 -[[image:16548 27332142-133.png]]105 +[[image:1654847583902-256.png]] 104 104 105 105 106 -= 2. Configure LLDS12 to connect to LoRaWAN network = 107 107 109 += 2. Configure LDDS75 to connect to LoRaWAN network = 110 + 108 108 == 2.1 How it works == 109 109 110 110 ((( 111 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.114 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 114 ((( 115 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.118 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 116 116 ))) 117 117 118 118 ... ... @@ -123,7 +123,7 @@ 123 123 ))) 124 124 125 125 ((( 126 -[[image:16548 27857527-556.png]]129 +[[image:1654848616367-242.png]] 127 127 ))) 128 128 129 129 ((( ... ... @@ -131,57 +131,57 @@ 131 131 ))) 132 132 133 133 ((( 134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.137 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 135 135 ))) 136 136 137 137 ((( 138 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:141 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 139 139 ))) 140 140 141 141 [[image:image-20220607170145-1.jpeg]] 142 142 143 143 147 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 144 144 145 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:149 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 146 146 151 +**Add APP EUI in the application** 147 147 148 - **Register the device**153 +[[image:image-20220610161353-4.png]] 149 149 155 +[[image:image-20220610161353-5.png]] 150 150 151 -[[image: 1654592600093-601.png]]157 +[[image:image-20220610161353-6.png]] 152 152 153 153 160 +[[image:image-20220610161353-7.png]] 154 154 155 -**Add APP EUI and DEV EUI** 156 156 157 - [[image:1654592619856-881.png]]163 +You can also choose to create the device manually. 158 158 165 + [[image:image-20220610161538-8.png]] 159 159 160 160 161 -**Add APP EUI in the application** 162 162 163 - [[image:1654592632656-512.png]]169 +**Add APP KEY and DEV EUI** 164 164 171 +[[image:image-20220610161538-9.png]] 165 165 166 166 167 -**Add APP KEY** 168 168 169 - [[image:1654592653453-934.png]]175 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 170 170 171 171 172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 173 - 174 - 175 175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 176 176 177 -[[image:image-2022060 7170442-2.png]]180 +[[image:image-20220610161724-10.png]] 178 178 179 179 180 180 ((( 181 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.184 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 182 182 ))) 183 183 184 -[[image:16548 33501679-968.png]]187 +[[image:1654849068701-275.png]] 185 185 186 186 187 187 ... ... @@ -188,11 +188,10 @@ 188 188 == 2.3 Uplink Payload == 189 189 190 190 ((( 191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 192 -))) 194 +LDDS75 will uplink payload via LoRaWAN with below payload format: 193 193 194 - (((195 - Uplink payload includesintotal11bytes.196 +Uplink payload includes in total 4 bytes. 197 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 196 196 ))) 197 197 198 198 ((( ... ... @@ -202,23 +202,23 @@ 202 202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 203 203 |=(% style="width: 62.5px;" %)((( 204 204 **Size (bytes)** 205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 207 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 208 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 209 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 210 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 211 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 212 -))) 207 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 208 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 209 +[[Distance>>||anchor="H2.3.3A0Distance"]] 213 213 214 -[[image:1654833689380-972.png]] 211 +(unit: mm) 212 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 213 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 214 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 215 215 216 +[[image:1654850511545-399.png]] 216 216 217 217 219 + 218 218 === 2.3.1 Battery Info === 219 219 220 220 221 -Check the battery voltage for L LDS12.223 +Check the battery voltage for LDDS75. 222 222 223 223 Ex1: 0x0B45 = 2885mV 224 224 ... ... @@ -226,49 +226,21 @@ 226 226 227 227 228 228 229 -=== 2.3.2 D S18B20 Temperaturesensor===231 +=== 2.3.2 Distance === 230 230 231 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.233 +Get the distance. Flat object range 280mm - 7500mm. 232 232 235 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 233 233 234 -**Example**: 235 235 236 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 238 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 239 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 237 237 238 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 239 239 242 +=== 2.3.3 Interrupt Pin === 240 240 241 - 242 -=== 2.3.3 Distance === 243 - 244 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 245 - 246 - 247 -**Example**: 248 - 249 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 250 - 251 - 252 - 253 -=== 2.3.4 Distance signal strength === 254 - 255 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 256 - 257 - 258 -**Example**: 259 - 260 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 261 - 262 -Customers can judge whether they need to adjust the environment based on the signal strength. 263 - 264 - 265 - 266 -=== 2.3.5 Interrupt Pin === 267 - 268 268 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 269 269 270 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 271 - 272 272 **Example:** 273 273 274 274 0x00: Normal uplink packet. ... ... @@ -276,53 +276,44 @@ 276 276 0x01: Interrupt Uplink Packet. 277 277 278 278 253 +=== 2.3.4 DS18B20 Temperature sensor === 279 279 280 - ===2.3.6LiDARtemp===255 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 281 281 282 - Characterize the internal temperature valueof the sensor.257 +**Example**: 283 283 284 -**Example: ** 285 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 286 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 259 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 287 287 261 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 288 288 263 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 289 289 290 -=== 2.3.7 Message Type === 291 291 292 -((( 293 -For a normal uplink payload, the message type is always 0x01. 294 -))) 295 295 296 -((( 297 -Valid Message Type: 298 -))) 267 +=== 2.3.5 Sensor Flag === 299 299 269 +0x01: Detect Ultrasonic Sensor 300 300 301 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 302 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 303 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 304 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 271 +0x00: No Ultrasonic Sensor 305 305 306 -=== 2.3.8 Decode payload in The Things Network === 307 307 274 +=== 275 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 276 + 308 308 While using TTN network, you can add the payload format to decode the payload. 309 309 310 310 311 -[[image:16545 92762713-715.png]]280 +[[image:1654850829385-439.png]] 312 312 313 -((( 314 -The payload decoder function for TTN is here: 315 -))) 282 +The payload decoder function for TTN V3 is here: 316 316 317 -((( 318 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 319 -))) 284 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 320 320 321 321 322 322 323 323 == 2.4 Uplink Interval == 324 324 325 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]290 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 326 326 327 327 328 328 ... ... @@ -353,47 +353,25 @@ 353 353 354 354 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 355 355 356 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**321 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 357 357 358 -[[image:16548 32691989-514.png]]323 +[[image:1654851029373-510.png]] 359 359 360 360 361 - [[image:1654592833877-762.png]]326 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 362 362 328 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 363 363 364 -[[image:1654832740634-933.png]] 365 365 366 366 367 - 368 -((( 369 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 370 -))) 371 - 372 -((( 373 - 374 -))) 375 - 376 -[[image:1654833065139-942.png]] 377 - 378 - 379 - 380 -[[image:1654833092678-390.png]] 381 - 382 - 383 - 384 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 385 - 386 -[[image:1654833163048-332.png]] 387 - 388 - 389 - 390 390 == 2.6 Frequency Plans == 391 391 392 392 ((( 393 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.335 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 394 394 ))) 395 395 396 396 339 + 397 397 === 2.6.1 EU863-870 (EU868) === 398 398 399 399 ((( ... ... @@ -457,20 +457,51 @@ 457 457 === 2.6.2 US902-928(US915) === 458 458 459 459 ((( 460 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 461 -))) 403 +Used in USA, Canada and South America. Default use CHE=2 462 462 463 -((( 464 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 465 -))) 405 +(% style="color:blue" %)**Uplink:** 466 466 467 -((( 468 -After Join success, the end node will switch to the correct sub band by: 469 -))) 407 +903.9 - SF7BW125 to SF10BW125 470 470 471 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 472 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 409 +904.1 - SF7BW125 to SF10BW125 473 473 411 +904.3 - SF7BW125 to SF10BW125 412 + 413 +904.5 - SF7BW125 to SF10BW125 414 + 415 +904.7 - SF7BW125 to SF10BW125 416 + 417 +904.9 - SF7BW125 to SF10BW125 418 + 419 +905.1 - SF7BW125 to SF10BW125 420 + 421 +905.3 - SF7BW125 to SF10BW125 422 + 423 + 424 +(% style="color:blue" %)**Downlink:** 425 + 426 +923.3 - SF7BW500 to SF12BW500 427 + 428 +923.9 - SF7BW500 to SF12BW500 429 + 430 +924.5 - SF7BW500 to SF12BW500 431 + 432 +925.1 - SF7BW500 to SF12BW500 433 + 434 +925.7 - SF7BW500 to SF12BW500 435 + 436 +926.3 - SF7BW500 to SF12BW500 437 + 438 +926.9 - SF7BW500 to SF12BW500 439 + 440 +927.5 - SF7BW500 to SF12BW500 441 + 442 +923.3 - SF12BW500(RX2 downlink only) 443 + 444 + 445 + 446 +))) 447 + 474 474 === 2.6.3 CN470-510 (CN470) === 475 475 476 476 ((( ... ... @@ -563,24 +563,51 @@ 563 563 === 2.6.4 AU915-928(AU915) === 564 564 565 565 ((( 566 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 567 -))) 540 +Default use CHE=2 568 568 569 -((( 570 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 571 -))) 542 +(% style="color:blue" %)**Uplink:** 572 572 573 -((( 574 - 575 -))) 544 +916.8 - SF7BW125 to SF12BW125 576 576 577 -((( 578 -After Join success, the end node will switch to the correct sub band by: 579 -))) 546 +917.0 - SF7BW125 to SF12BW125 580 580 581 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 582 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 548 +917.2 - SF7BW125 to SF12BW125 583 583 550 +917.4 - SF7BW125 to SF12BW125 551 + 552 +917.6 - SF7BW125 to SF12BW125 553 + 554 +917.8 - SF7BW125 to SF12BW125 555 + 556 +918.0 - SF7BW125 to SF12BW125 557 + 558 +918.2 - SF7BW125 to SF12BW125 559 + 560 + 561 +(% style="color:blue" %)**Downlink:** 562 + 563 +923.3 - SF7BW500 to SF12BW500 564 + 565 +923.9 - SF7BW500 to SF12BW500 566 + 567 +924.5 - SF7BW500 to SF12BW500 568 + 569 +925.1 - SF7BW500 to SF12BW500 570 + 571 +925.7 - SF7BW500 to SF12BW500 572 + 573 +926.3 - SF7BW500 to SF12BW500 574 + 575 +926.9 - SF7BW500 to SF12BW500 576 + 577 +927.5 - SF7BW500 to SF12BW500 578 + 579 +923.3 - SF12BW500(RX2 downlink only) 580 + 581 + 582 + 583 +))) 584 + 584 584 === 2.6.5 AS920-923 & AS923-925 (AS923) === 585 585 586 586 ((( ... ... @@ -981,12 +981,8 @@ 981 981 ))) 982 982 * ((( 983 983 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 984 - 985 - 986 - 987 987 ))) 988 988 989 - 990 990 == 4.2 Set Interrupt Mode == 991 991 992 992 Feature, Set Interrupt mode for GPIO_EXIT. ... ... @@ -1015,7 +1015,6 @@ 1015 1015 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1016 1016 ))) 1017 1017 1018 - 1019 1019 == 4.3 Get Firmware Version Info == 1020 1020 1021 1021 Feature: use downlink to get firmware version.
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content