Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Xiaoling on 2025/04/27 16:45
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -14,38 +14,33 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 25 26 -((( 27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 33 34 -((( 35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 42 -((( 43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 44 44 ))) 45 45 ))) 46 46 47 47 48 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 49 49 50 50 51 51 ... ... @@ -52,43 +52,45 @@ 52 52 == 1.2 Features == 53 53 54 54 * LoRaWAN 1.0.3 Class A 55 -* Ultra -low power consumption56 -* Lasertechnologyfor distancedetection57 -* OperatingRange - 0.1m~~12m①58 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)59 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 60 60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 61 61 * AT Commands to change parameters 62 62 * Uplink on periodically 63 63 * Downlink to change configure 64 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 65 65 60 +== 1.3 Specification == 66 66 67 -== 1.3 ProbeSpecification ==62 +=== 1.3.1 Rated environmental conditions === 68 68 69 -* Storage temperature :-20℃~~75℃ 70 -* Operating temperature - -20℃~~60℃ 71 -* Operating Range - 0.1m~~12m① 72 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution - 5mm 74 -* Ambient light immunity - 70klux 75 -* Enclosure rating - IP65 76 -* Light source - LED 77 -* Central wavelength - 850nm 78 -* FOV - 3.6° 79 -* Material of enclosure - ABS+PC 80 -* Wire length - 25cm 64 +[[image:image-20220610154839-1.png]] 81 81 66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 82 82 83 - == 1.4ProbeDimension==68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 84 84 85 85 86 -[[image:1654827224480-952.png]] 87 87 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 88 88 74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]] 75 + 76 + 77 + 78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]] 79 + 80 +(% style="display:none" %) (%%) 81 + 82 + 89 89 == 1.5 Applications == 90 90 91 91 * Horizontal distance measurement 86 +* Liquid level measurement 92 92 * Parking management system 93 93 * Object proximity and presence detection 94 94 * Intelligent trash can management system ... ... @@ -95,24 +95,25 @@ 95 95 * Robot obstacle avoidance 96 96 * Automatic control 97 97 * Sewer 93 +* Bottom water level monitoring 98 98 99 99 100 100 == 1.6 Pin mapping and power on == 101 101 102 102 103 -[[image:16548 27332142-133.png]]99 +[[image:1654847583902-256.png]] 104 104 105 105 106 -= 2. Configure L LDS12to connect to LoRaWAN network =102 += 2. Configure LDDS75 to connect to LoRaWAN network = 107 107 108 108 == 2.1 How it works == 109 109 110 110 ((( 111 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.107 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 114 ((( 115 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.111 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 116 116 ))) 117 117 118 118 ... ... @@ -123,7 +123,7 @@ 123 123 ))) 124 124 125 125 ((( 126 -[[image:16548 27857527-556.png]]122 +[[image:1654848616367-242.png]] 127 127 ))) 128 128 129 129 ((( ... ... @@ -131,57 +131,57 @@ 131 131 ))) 132 132 133 133 ((( 134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 135 135 ))) 136 136 137 137 ((( 138 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:134 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 139 139 ))) 140 140 141 141 [[image:image-20220607170145-1.jpeg]] 142 142 143 143 140 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 144 144 145 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:142 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 146 146 144 +**Add APP EUI in the application** 147 147 148 - **Register the device**146 +[[image:image-20220610161353-4.png]] 149 149 148 +[[image:image-20220610161353-5.png]] 150 150 151 -[[image: 1654592600093-601.png]]150 +[[image:image-20220610161353-6.png]] 152 152 153 153 153 +[[image:image-20220610161353-7.png]] 154 154 155 -**Add APP EUI and DEV EUI** 156 156 157 - [[image:1654592619856-881.png]]156 +You can also choose to create the device manually. 158 158 158 + [[image:image-20220610161538-8.png]] 159 159 160 160 161 -**Add APP EUI in the application** 162 162 163 - [[image:1654592632656-512.png]]162 +**Add APP KEY and DEV EUI** 164 164 164 +[[image:image-20220610161538-9.png]] 165 165 166 166 167 -**Add APP KEY** 168 168 169 - [[image:1654592653453-934.png]]168 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 170 170 171 171 172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 173 - 174 - 175 175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 176 176 177 -[[image:image-2022060 7170442-2.png]]173 +[[image:image-20220610161724-10.png]] 178 178 179 179 180 180 ((( 181 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.177 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 182 182 ))) 183 183 184 -[[image:16548 33501679-968.png]]180 +[[image:1654849068701-275.png]] 185 185 186 186 187 187 ... ... @@ -188,11 +188,10 @@ 188 188 == 2.3 Uplink Payload == 189 189 190 190 ((( 191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 192 -))) 187 +LDDS75 will uplink payload via LoRaWAN with below payload format: 193 193 194 - (((195 - Uplink payload includesintotal11bytes.189 +Uplink payload includes in total 4 bytes. 190 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 196 196 ))) 197 197 198 198 ((( ... ... @@ -202,15 +202,15 @@ 202 202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 203 203 |=(% style="width: 62.5px;" %)((( 204 204 **Size (bytes)** 205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 207 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 208 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 209 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 210 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 211 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 212 -))) 200 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 201 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 202 +[[Distance>>||anchor="H2.3.3A0Distance"]] 213 213 204 +(unit: mm) 205 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 206 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 207 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 208 + 214 214 [[image:1654833689380-972.png]] 215 215 216 216 ... ... @@ -218,7 +218,7 @@ 218 218 === 2.3.1 Battery Info === 219 219 220 220 221 -Check the battery voltage for L LDS12.216 +Check the battery voltage for LDDS75. 222 222 223 223 Ex1: 0x0B45 = 2885mV 224 224 ... ... @@ -226,49 +226,23 @@ 226 226 227 227 228 228 229 -=== 2.3.2 D S18B20 Temperaturesensor===224 +=== 2.3.2 Distance === 230 230 231 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.226 +Get the distance. Flat object range 280mm - 7500mm. 232 232 228 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is 233 233 234 -** Example**:230 +**0B05(H) = 2821 (D) = 2821 mm.** 235 235 236 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 237 238 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 233 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 234 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 239 239 240 240 237 +=== 2.3.3 Interrupt Pin === 241 241 242 -=== 2.3.3 Distance === 243 - 244 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 245 - 246 - 247 -**Example**: 248 - 249 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 250 - 251 - 252 - 253 -=== 2.3.4 Distance signal strength === 254 - 255 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 256 - 257 - 258 -**Example**: 259 - 260 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 261 - 262 -Customers can judge whether they need to adjust the environment based on the signal strength. 263 - 264 - 265 - 266 -=== 2.3.5 Interrupt Pin === 267 - 268 268 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 269 269 270 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 271 - 272 272 **Example:** 273 273 274 274 0x00: Normal uplink packet. ... ... @@ -276,38 +276,28 @@ 276 276 0x01: Interrupt Uplink Packet. 277 277 278 278 248 +=== 2.3.4 DS18B20 Temperature sensor === 279 279 280 - ===2.3.6LiDARtemp===250 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 281 281 282 - Characterize the internal temperature valueof the sensor.252 +**Example**: 283 283 284 -**Example: ** 285 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 286 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 254 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 287 287 256 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 288 288 258 +Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 289 289 290 -=== 2.3. 7MessageType===260 +=== 2.3.5 Sensor Flag === 291 291 292 -((( 293 -For a normal uplink payload, the message type is always 0x01. 294 -))) 262 +0x01: Detect Ultrasonic Sensor 295 295 296 -((( 297 -Valid Message Type: 298 -))) 264 +0x00: No Ultrasonic Sensor 299 299 300 300 301 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 302 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 303 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 304 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 267 +=== 268 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 305 305 306 - 307 - 308 - 309 -=== 2.3.8 Decode payload in The Things Network === 310 - 311 311 While using TTN network, you can add the payload format to decode the payload. 312 312 313 313 ... ... @@ -318,7 +318,7 @@ 318 318 ))) 319 319 320 320 ((( 321 -LS PH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]280 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 322 322 ))) 323 323 324 324 ... ... @@ -816,7 +816,7 @@ 816 816 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]] 817 817 818 818 819 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>> path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]778 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 820 820 821 821 822 822 ... ... @@ -837,25 +837,37 @@ 837 837 [[image:1654831774373-275.png]] 838 838 839 839 840 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 799 +((( 800 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 801 +))) 841 841 842 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 803 +((( 804 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 805 +))) 843 843 844 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 807 +((( 808 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 809 +))) 845 845 846 846 812 +((( 847 847 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 814 +))) 848 848 849 849 850 850 [[image:1654831797521-720.png]] 851 851 852 852 820 +((( 853 853 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 822 +))) 854 854 855 855 [[image:1654831810009-716.png]] 856 856 857 857 827 +((( 858 858 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 829 +))) 859 859 860 860 861 861 ... ... @@ -871,52 +871,78 @@ 871 871 = 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 872 872 873 873 ((( 845 +((( 874 874 Use can configure LLDS12 via AT Command or LoRaWAN Downlink. 875 875 ))) 848 +))) 876 876 877 877 * ((( 878 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 851 +((( 852 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]]. 879 879 ))) 854 +))) 880 880 * ((( 881 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]] 856 +((( 857 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 882 882 ))) 859 +))) 883 883 884 884 ((( 862 +((( 885 885 864 +))) 886 886 866 +((( 887 887 There are two kinds of commands to configure LLDS12, they are: 888 888 ))) 869 +))) 889 889 890 890 * ((( 872 +((( 891 891 (% style="color:#4f81bd" %)** General Commands**. 892 892 ))) 875 +))) 893 893 894 894 ((( 878 +((( 895 895 These commands are to configure: 896 896 ))) 881 +))) 897 897 898 898 * ((( 884 +((( 899 899 General system settings like: uplink interval. 900 900 ))) 887 +))) 901 901 * ((( 889 +((( 902 902 LoRaWAN protocol & radio related command. 903 903 ))) 892 +))) 904 904 905 905 ((( 906 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 895 +((( 896 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 907 907 ))) 898 +))) 908 908 909 909 ((( 901 +((( 910 910 911 911 ))) 904 +))) 912 912 913 913 * ((( 907 +((( 914 914 (% style="color:#4f81bd" %)** Commands special design for LLDS12** 915 915 ))) 910 +))) 916 916 917 917 ((( 913 +((( 918 918 These commands only valid for LLDS12, as below: 919 919 ))) 916 +))) 920 920 921 921 922 922 ... ... @@ -929,7 +929,6 @@ 929 929 [[image:image-20220607171554-8.png]] 930 930 931 931 932 - 933 933 ((( 934 934 (% style="color:#037691" %)**Downlink Command: 0x01** 935 935 ))) ... ... @@ -947,9 +947,6 @@ 947 947 ))) 948 948 * ((( 949 949 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 950 - 951 - 952 - 953 953 ))) 954 954 955 955 == 4.2 Set Interrupt Mode == ... ... @@ -961,8 +961,6 @@ 961 961 [[image:image-20220610105806-2.png]] 962 962 963 963 964 - 965 - 966 966 ((( 967 967 (% style="color:#037691" %)**Downlink Command: 0x06** 968 968 ))) ... ... @@ -1010,7 +1010,7 @@ 1010 1010 1011 1011 Version 1012 1012 )))|Sensor Type|Reserve|((( 1013 -[[Message Type>>||anchor="H2.3. 6MessageType"]]1004 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1014 1014 Always 0x02 1015 1015 ))) 1016 1016 ... ... @@ -1178,13 +1178,19 @@ 1178 1178 1179 1179 1180 1180 ((( 1181 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below: 1172 +((( 1173 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1182 1182 ))) 1183 1183 1176 +((( 1177 +LLDS12 will output system info once power on as below: 1178 +))) 1179 +))) 1184 1184 1181 + 1185 1185 [[image:1654593712276-618.png]] 1186 1186 1187 -Valid AT Command please check [[Configure Device>>||anchor="H 3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].1184 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1188 1188 1189 1189 1190 1190 = 7. FAQ = ... ... @@ -1191,7 +1191,7 @@ 1191 1191 1192 1192 == 7.1 How to change the LoRa Frequency Bands/Region == 1193 1193 1194 -You can follow the instructions for [[how to upgrade image>>||anchor="H2. 10200BFirmwareChangeLog"]].1191 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1195 1195 When downloading the images, choose the required image file for download. 1196 1196 1197 1197 ... ... @@ -1200,7 +1200,9 @@ 1200 1200 == 8.1 AT Commands input doesn’t work == 1201 1201 1202 1202 1200 +((( 1203 1203 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1202 +))) 1204 1204 1205 1205 1206 1206 == 8.2 Significant error between the output distant value of LiDAR and actual distance ==
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content