Last modified by Xiaoling on 2025/04/27 16:45

From version 109.7
edited by Xiaoling
on 2022/06/10 13:54
Change comment: There is no comment for this version
To version 133.5
edited by Xiaoling
on 2022/06/10 16:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,7 +1,6 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 7  
... ... @@ -10,28 +10,36 @@
10 10  
11 11  
12 12  
12 +
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
20 +(((
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
21 21  
22 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27 27  
28 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  
30 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
33 33  
34 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
35 35  
36 36  
37 37  
... ... @@ -38,42 +38,45 @@
38 38  == ​1.2  Features ==
39 39  
40 40  * LoRaWAN 1.0.3 Class A
41 -* Ultra-low power consumption
42 -* Laser technology for distance detection
43 -* Operating Range - 0.1m~~12m
44 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * AT Commands to change parameters
48 48  * Uplink on periodically
49 49  * Downlink to change configure
50 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
51 51  
52 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
53 53  
54 -* Storage temperature :-20℃~~75℃
55 -* Operating temperature - -20℃~~60℃
56 -* Operating Range - 0.1m~~12m①
57 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 -* Distance resolution - 5mm
59 -* Ambient light immunity - 70klux
60 -* Enclosure rating - IP65
61 -* Light source - LED
62 -* Central wavelength - 850nm
63 -* FOV - 3.6°
64 -* Material of enclosure - ABS+PC
65 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
66 66  
67 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
68 68  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 69  
70 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 71  
72 72  
73 73  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75 +
76 +
77 +
78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79 +
80 +(% style="display:none" %) (%%)
81 +
82 +
74 74  == 1.5 ​ Applications ==
75 75  
76 76  * Horizontal distance measurement
86 +* Liquid level measurement
77 77  * Parking management system
78 78  * Object proximity and presence detection
79 79  * Intelligent trash can management system
... ... @@ -80,25 +80,25 @@
80 80  * Robot obstacle avoidance
81 81  * Automatic control
82 82  * Sewer
93 +* Bottom water level monitoring
83 83  
95 +
84 84  == 1.6  Pin mapping and power on ==
85 85  
86 86  
87 -[[image:1654827332142-133.png]]
99 +[[image:1654847583902-256.png]]
88 88  
89 89  
102 += 2.  Configure LDDS75 to connect to LoRaWAN network =
90 90  
91 -
92 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
93 -
94 94  == 2.1  How it works ==
95 95  
96 96  (((
97 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
107 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
98 98  )))
99 99  
100 100  (((
101 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
111 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
102 102  )))
103 103  
104 104  
... ... @@ -109,7 +109,7 @@
109 109  )))
110 110  
111 111  (((
112 -[[image:1654827857527-556.png]]
122 +[[image:1654848616367-242.png]]
113 113  )))
114 114  
115 115  (((
... ... @@ -117,57 +117,57 @@
117 117  )))
118 118  
119 119  (((
120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
121 121  )))
122 122  
123 123  (((
124 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
134 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
125 125  )))
126 126  
127 127  [[image:image-20220607170145-1.jpeg]]
128 128  
129 129  
140 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
130 130  
131 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
132 132  
144 +**Add APP EUI in the application**
133 133  
134 -**Register the device**
146 +[[image:image-20220610161353-4.png]]
135 135  
148 +[[image:image-20220610161353-5.png]]
136 136  
137 -[[image:1654592600093-601.png]]
150 +[[image:image-20220610161353-6.png]]
138 138  
139 139  
153 +[[image:image-20220610161353-7.png]]
140 140  
141 -**Add APP EUI and DEV EUI**
142 142  
143 -[[image:1654592619856-881.png]]
156 +You can also choose to create the device manually.
144 144  
158 + [[image:image-20220610161538-8.png]]
145 145  
146 146  
147 -**Add APP EUI in the application**
148 148  
149 -[[image:1654592632656-512.png]]
162 +**Add APP KEY and DEV EUI**
150 150  
164 +[[image:image-20220610161538-9.png]]
151 151  
152 152  
153 -**Add APP KEY**
154 154  
155 -[[image:1654592653453-934.png]]
168 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
156 156  
157 157  
158 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
159 -
160 -
161 161  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
162 162  
163 -[[image:image-20220607170442-2.png]]
173 +[[image:image-20220610161724-10.png]]
164 164  
165 165  
166 166  (((
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  )))
169 169  
170 -[[image:1654833501679-968.png]]
180 +[[image:1654849068701-275.png]]
171 171  
172 172  
173 173  
... ... @@ -174,11 +174,10 @@
174 174  == 2.3  ​Uplink Payload ==
175 175  
176 176  (((
177 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
178 -)))
187 +LDDS75 will uplink payload via LoRaWAN with below payload format:
179 179  
180 -(((
181 -Uplink payload includes in total 11 bytes.
189 +Uplink payload includes in total 4 bytes.
190 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
182 182  )))
183 183  
184 184  (((
... ... @@ -188,16 +188,14 @@
188 188  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
189 189  |=(% style="width: 62.5px;" %)(((
190 190  **Size (bytes)**
191 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
192 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
193 -[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
200 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
201 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
202 +[[Distance>>||anchor="H2.3.3A0Distance"]]
194 194  
195 -[[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
196 -)))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
197 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
198 -)))|[[LiDAR temp>>||anchor="H"]]|(((
199 -[[Message Type>>||anchor="H2.3.6MessageType"]]
200 -)))
204 +(unit: mm)
205 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
207 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
201 201  
202 202  [[image:1654833689380-972.png]]
203 203  
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1  Battery Info ===
207 207  
208 208  
209 -Check the battery voltage for LLDS12.
216 +Check the battery voltage for LDDS75.
210 210  
211 211  Ex1: 0x0B45 = 2885mV
212 212  
... ... @@ -214,49 +214,23 @@
214 214  
215 215  
216 216  
217 -=== 2.3.2  DS18B20 Temperature sensor ===
224 +=== 2.3.2  Distance ===
218 218  
219 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
226 +Get the distance. Flat object range 280mm - 7500mm.
220 220  
228 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is
221 221  
222 -**Example**:
230 +**0B05(H) = 2821 (D) = 2821 mm.**
223 223  
224 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
225 225  
226 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
233 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
234 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
227 227  
228 228  
237 +=== 2.3.3  Interrupt Pin ===
229 229  
230 -=== 2.3.3  Distance ===
239 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
231 231  
232 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
233 -
234 -
235 -**Example**:
236 -
237 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
238 -
239 -
240 -
241 -=== 2.3.4  Distance signal strength ===
242 -
243 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
244 -
245 -
246 -**Example**:
247 -
248 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
249 -
250 -Customers can judge whether they need to adjust the environment based on the signal strength.
251 -
252 -
253 -
254 -=== 2.3.5  Interrupt Pin ===
255 -
256 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
257 -
258 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
259 -
260 260  **Example:**
261 261  
262 262  0x00: Normal uplink packet.
... ... @@ -264,35 +264,28 @@
264 264  0x01: Interrupt Uplink Packet.
265 265  
266 266  
248 +=== 2.3.4  DS18B20 Temperature sensor ===
267 267  
268 -=== 2.3. LiDAR temp ===
250 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
269 269  
270 -Characterize the internal temperature value of the sensor.
252 +**Example**:
271 271  
272 -**Example: **
273 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
274 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
254 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
275 275  
256 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
276 276  
258 +Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
277 277  
278 -=== 2.3.7  Message Type ===
260 +=== 2.3.5  Sensor Flag ===
279 279  
280 -(((
281 -For a normal uplink payload, the message type is always 0x01.
282 -)))
262 +0x01: Detect Ultrasonic Sensor
283 283  
284 -(((
285 -Valid Message Type:
286 -)))
264 +0x00: No Ultrasonic Sensor
287 287  
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
290 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
291 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
292 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
267 +===
268 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
293 293  
294 -=== 2.3.8  Decode payload in The Things Network ===
295 -
296 296  While using TTN network, you can add the payload format to decode the payload.
297 297  
298 298  
... ... @@ -303,7 +303,7 @@
303 303  )))
304 304  
305 305  (((
306 -LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
280 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
307 307  )))
308 308  
309 309  
... ... @@ -459,7 +459,7 @@
459 459  * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
460 460  * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
461 461  
462 -=== 2.6.3 CN470-510 (CN470) ===
436 +=== 2.6.3  CN470-510 (CN470) ===
463 463  
464 464  (((
465 465  Used in China, Default use CHE=1
... ... @@ -548,7 +548,7 @@
548 548  
549 549  
550 550  
551 -=== 2.6.4 AU915-928(AU915) ===
525 +=== 2.6.4  AU915-928(AU915) ===
552 552  
553 553  (((
554 554  Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
... ... @@ -569,7 +569,7 @@
569 569  * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 570  * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
571 571  
572 -=== 2.6.5 AS920-923 & AS923-925 (AS923) ===
546 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
573 573  
574 574  (((
575 575  (% style="color:blue" %)**Default Uplink channel:**
... ... @@ -678,7 +678,7 @@
678 678  
679 679  
680 680  
681 -=== 2.6.6 KR920-923 (KR920) ===
655 +=== 2.6.6  KR920-923 (KR920) ===
682 682  
683 683  (((
684 684  (% style="color:blue" %)**Default channel:**
... ... @@ -751,7 +751,7 @@
751 751  
752 752  
753 753  
754 -=== 2.6.7 IN865-867 (IN865) ===
728 +=== 2.6.7  IN865-867 (IN865) ===
755 755  
756 756  (((
757 757  (% style="color:blue" %)**Uplink:**
... ... @@ -801,7 +801,7 @@
801 801  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
802 802  
803 803  
804 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
778 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
805 805  
806 806  
807 807  
... ... @@ -822,25 +822,37 @@
822 822  [[image:1654831774373-275.png]]
823 823  
824 824  
825 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
799 +(((
800 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
801 +)))
826 826  
827 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
803 +(((
804 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
805 +)))
828 828  
829 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
807 +(((
808 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
809 +)))
830 830  
831 831  
812 +(((
832 832  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
814 +)))
833 833  
834 834  
835 835  [[image:1654831797521-720.png]]
836 836  
837 837  
820 +(((
838 838  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
822 +)))
839 839  
840 840  [[image:1654831810009-716.png]]
841 841  
842 842  
827 +(((
843 843  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
829 +)))
844 844  
845 845  
846 846  
... ... @@ -856,52 +856,78 @@
856 856  = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
857 857  
858 858  (((
845 +(((
859 859  Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
860 860  )))
848 +)))
861 861  
862 862  * (((
863 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
851 +(((
852 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
864 864  )))
854 +)))
865 865  * (((
866 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
856 +(((
857 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
867 867  )))
859 +)))
868 868  
869 869  (((
862 +(((
870 870  
864 +)))
871 871  
866 +(((
872 872  There are two kinds of commands to configure LLDS12, they are:
873 873  )))
869 +)))
874 874  
875 875  * (((
872 +(((
876 876  (% style="color:#4f81bd" %)** General Commands**.
877 877  )))
875 +)))
878 878  
879 879  (((
878 +(((
880 880  These commands are to configure:
881 881  )))
881 +)))
882 882  
883 883  * (((
884 +(((
884 884  General system settings like: uplink interval.
885 885  )))
887 +)))
886 886  * (((
889 +(((
887 887  LoRaWAN protocol & radio related command.
888 888  )))
892 +)))
889 889  
890 890  (((
891 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
895 +(((
896 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
892 892  )))
898 +)))
893 893  
894 894  (((
901 +(((
895 895  
896 896  )))
904 +)))
897 897  
898 898  * (((
907 +(((
899 899  (% style="color:#4f81bd" %)** Commands special design for LLDS12**
900 900  )))
910 +)))
901 901  
902 902  (((
913 +(((
903 903  These commands only valid for LLDS12, as below:
904 904  )))
916 +)))
905 905  
906 906  
907 907  
... ... @@ -914,7 +914,6 @@
914 914  [[image:image-20220607171554-8.png]]
915 915  
916 916  
917 -
918 918  (((
919 919  (% style="color:#037691" %)**Downlink Command: 0x01**
920 920  )))
... ... @@ -932,9 +932,6 @@
932 932  )))
933 933  * (((
934 934  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
935 -
936 -
937 -
938 938  )))
939 939  
940 940  == 4.2  Set Interrupt Mode ==
... ... @@ -946,8 +946,6 @@
946 946  [[image:image-20220610105806-2.png]]
947 947  
948 948  
949 -
950 -
951 951  (((
952 952  (% style="color:#037691" %)**Downlink Command: 0x06**
953 953  )))
... ... @@ -995,7 +995,7 @@
995 995  
996 996  Version
997 997  )))|Sensor Type|Reserve|(((
998 -[[Message Type>>||anchor="H2.3.6MessageType"]]
1004 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
999 999  Always 0x02
1000 1000  )))
1001 1001  
... ... @@ -1163,13 +1163,19 @@
1163 1163  
1164 1164  
1165 1165  (((
1166 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1172 +(((
1173 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1167 1167  )))
1168 1168  
1176 +(((
1177 +LLDS12 will output system info once power on as below:
1178 +)))
1179 +)))
1169 1169  
1181 +
1170 1170   [[image:1654593712276-618.png]]
1171 1171  
1172 -Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1184 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1173 1173  
1174 1174  
1175 1175  = 7.  FAQ =
... ... @@ -1176,7 +1176,7 @@
1176 1176  
1177 1177  == 7.1  How to change the LoRa Frequency Bands/Region ==
1178 1178  
1179 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1191 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1180 1180  When downloading the images, choose the required image file for download. ​
1181 1181  
1182 1182  
... ... @@ -1185,7 +1185,9 @@
1185 1185  == 8.1  AT Commands input doesn’t work ==
1186 1186  
1187 1187  
1200 +(((
1188 1188  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1202 +)))
1189 1189  
1190 1190  
1191 1191  == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content