Version 119.2 by Xiaoling on 2022/06/10 15:29

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 )))
23
24 (((
25 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
26 )))
27
28 (((
29 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 )))
31
32 (((
33 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 )))
35
36 (((
37 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 )))
39
40 (((
41 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
42 )))
43 )))
44
45
46 [[image:1654826306458-414.png]]
47
48
49
50 == ​1.2  Features ==
51
52 * LoRaWAN 1.0.3 Class A
53 * Ultra-low power consumption
54 * Laser technology for distance detection
55 * Operating Range - 0.1m~~12m①
56 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
57 * Monitor Battery Level
58 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
59 * AT Commands to change parameters
60 * Uplink on periodically
61 * Downlink to change configure
62 * 8500mAh Battery for long term use
63
64 == 1.3  Probe Specification ==
65
66 * Storage temperature :-20℃~~75℃
67 * Operating temperature - -20℃~~60℃
68 * Operating Range - 0.1m~~12m①
69 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
70 * Distance resolution - 5mm
71 * Ambient light immunity - 70klux
72 * Enclosure rating - IP65
73 * Light source - LED
74 * Central wavelength - 850nm
75 * FOV - 3.6°
76 * Material of enclosure - ABS+PC
77 * Wire length - 25cm
78
79 == 1.4  Probe Dimension ==
80
81
82 [[image:1654827224480-952.png]]
83
84
85 == 1.5 ​ Applications ==
86
87 * Horizontal distance measurement
88 * Parking management system
89 * Object proximity and presence detection
90 * Intelligent trash can management system
91 * Robot obstacle avoidance
92 * Automatic control
93 * Sewer
94
95 == 1.6  Pin mapping and power on ==
96
97
98 [[image:1654827332142-133.png]]
99
100
101 = 2.  Configure LLDS12 to connect to LoRaWAN network =
102
103 == 2.1  How it works ==
104
105 (((
106 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
107 )))
108
109 (((
110 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
111 )))
112
113
114 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115
116 (((
117 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 )))
119
120 (((
121 [[image:1654827857527-556.png]]
122 )))
123
124 (((
125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 )))
127
128 (((
129 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
130 )))
131
132 (((
133 Each LSPH01 is shipped with a sticker with the default device EUI as below:
134 )))
135
136 [[image:image-20220607170145-1.jpeg]]
137
138
139
140 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141
142
143 **Register the device**
144
145
146 [[image:1654592600093-601.png]]
147
148
149
150 **Add APP EUI and DEV EUI**
151
152 [[image:1654592619856-881.png]]
153
154
155
156 **Add APP EUI in the application**
157
158 [[image:1654592632656-512.png]]
159
160
161
162 **Add APP KEY**
163
164 [[image:1654592653453-934.png]]
165
166
167 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
168
169
170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171
172 [[image:image-20220607170442-2.png]]
173
174
175 (((
176 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 )))
178
179 [[image:1654833501679-968.png]]
180
181
182
183 == 2.3  ​Uplink Payload ==
184
185 (((
186 LLDS12 will uplink payload via LoRaWAN with below payload format: 
187 )))
188
189 (((
190 Uplink payload includes in total 11 bytes.
191 )))
192
193 (((
194
195 )))
196
197 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
198 |=(% style="width: 62.5px;" %)(((
199 **Size (bytes)**
200 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
201 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
202 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
203 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
204 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
205 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
206 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
207 )))
208
209 [[image:1654833689380-972.png]]
210
211
212
213 === 2.3.1  Battery Info ===
214
215
216 Check the battery voltage for LLDS12.
217
218 Ex1: 0x0B45 = 2885mV
219
220 Ex2: 0x0B49 = 2889mV
221
222
223
224 === 2.3.2  DS18B20 Temperature sensor ===
225
226 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
227
228
229 **Example**:
230
231 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
232
233 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
234
235
236
237 === 2.3.3  Distance ===
238
239 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
240
241
242 **Example**:
243
244 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
245
246
247
248 === 2.3.4  Distance signal strength ===
249
250 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
251
252
253 **Example**:
254
255 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
256
257 Customers can judge whether they need to adjust the environment based on the signal strength.
258
259
260
261 === 2.3.5  Interrupt Pin ===
262
263 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264
265 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266
267 **Example:**
268
269 0x00: Normal uplink packet.
270
271 0x01: Interrupt Uplink Packet.
272
273
274
275 === 2.3.6  LiDAR temp ===
276
277 Characterize the internal temperature value of the sensor.
278
279 **Example: **
280 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
281 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
282
283
284
285 === 2.3.7  Message Type ===
286
287 (((
288 For a normal uplink payload, the message type is always 0x01.
289 )))
290
291 (((
292 Valid Message Type:
293 )))
294
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
297 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
298 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
299 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
300
301 === 2.3.8  Decode payload in The Things Network ===
302
303 While using TTN network, you can add the payload format to decode the payload.
304
305
306 [[image:1654592762713-715.png]]
307
308 (((
309 The payload decoder function for TTN is here:
310 )))
311
312 (((
313 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
314 )))
315
316
317
318 == 2.4  Uplink Interval ==
319
320 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321
322
323
324 == 2.5  ​Show Data in DataCake IoT Server ==
325
326 (((
327 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
328 )))
329
330 (((
331
332 )))
333
334 (((
335 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
336 )))
337
338 (((
339 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
340 )))
341
342
343 [[image:1654592790040-760.png]]
344
345
346 [[image:1654592800389-571.png]]
347
348
349 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350
351 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
352
353 [[image:1654832691989-514.png]]
354
355
356 [[image:1654592833877-762.png]]
357
358
359 [[image:1654832740634-933.png]]
360
361
362
363 (((
364 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
365 )))
366
367 (((
368
369 )))
370
371 [[image:1654833065139-942.png]]
372
373
374
375 [[image:1654833092678-390.png]]
376
377
378
379 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
380
381 [[image:1654833163048-332.png]]
382
383
384
385 == 2.6  Frequency Plans ==
386
387 (((
388 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
389 )))
390
391
392 === 2.6.1  EU863-870 (EU868) ===
393
394 (((
395 (% style="color:blue" %)**Uplink:**
396 )))
397
398 (((
399 868.1 - SF7BW125 to SF12BW125
400 )))
401
402 (((
403 868.3 - SF7BW125 to SF12BW125 and SF7BW250
404 )))
405
406 (((
407 868.5 - SF7BW125 to SF12BW125
408 )))
409
410 (((
411 867.1 - SF7BW125 to SF12BW125
412 )))
413
414 (((
415 867.3 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.5 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.7 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.9 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 868.8 - FSK
432 )))
433
434 (((
435
436 )))
437
438 (((
439 (% style="color:blue" %)**Downlink:**
440 )))
441
442 (((
443 Uplink channels 1-9 (RX1)
444 )))
445
446 (((
447 869.525 - SF9BW125 (RX2 downlink only)
448 )))
449
450
451
452 === 2.6.2  US902-928(US915) ===
453
454 (((
455 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
456 )))
457
458 (((
459 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
460 )))
461
462 (((
463 After Join success, the end node will switch to the correct sub band by:
464 )))
465
466 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
467 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
468
469 === 2.6.3  CN470-510 (CN470) ===
470
471 (((
472 Used in China, Default use CHE=1
473 )))
474
475 (((
476 (% style="color:blue" %)**Uplink:**
477 )))
478
479 (((
480 486.3 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 486.5 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 486.7 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 486.9 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 487.1 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 487.3 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 487.5 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 487.7 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512
513 )))
514
515 (((
516 (% style="color:blue" %)**Downlink:**
517 )))
518
519 (((
520 506.7 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 506.9 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.1 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 507.3 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 507.5 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 507.7 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 507.9 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 508.1 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 505.3 - SF12BW125 (RX2 downlink only)
553 )))
554
555
556
557
558 === 2.6.4  AU915-928(AU915) ===
559
560 (((
561 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
562 )))
563
564 (((
565 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
566 )))
567
568 (((
569
570 )))
571
572 (((
573 After Join success, the end node will switch to the correct sub band by:
574 )))
575
576 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
577 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
578
579 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
580
581 (((
582 (% style="color:blue" %)**Default Uplink channel:**
583 )))
584
585 (((
586 923.2 - SF7BW125 to SF10BW125
587 )))
588
589 (((
590 923.4 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594
595 )))
596
597 (((
598 (% style="color:blue" %)**Additional Uplink Channel**:
599 )))
600
601 (((
602 (OTAA mode, channel added by JoinAccept message)
603 )))
604
605 (((
606
607 )))
608
609 (((
610 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 )))
612
613 (((
614 922.2 - SF7BW125 to SF10BW125
615 )))
616
617 (((
618 922.4 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.6 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.8 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 923.0 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.0 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638
639 )))
640
641 (((
642 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
643 )))
644
645 (((
646 923.6 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650 923.8 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 924.0 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 924.2 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.4 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.6 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670
671 )))
672
673 (((
674 (% style="color:blue" %)**Downlink:**
675 )))
676
677 (((
678 Uplink channels 1-8 (RX1)
679 )))
680
681 (((
682 923.2 - SF10BW125 (RX2)
683 )))
684
685
686
687
688 === 2.6.6  KR920-923 (KR920) ===
689
690 (((
691 (% style="color:blue" %)**Default channel:**
692 )))
693
694 (((
695 922.1 - SF7BW125 to SF12BW125
696 )))
697
698 (((
699 922.3 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 922.5 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707
708 )))
709
710 (((
711 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
712 )))
713
714 (((
715 922.1 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719 922.3 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.5 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.7 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.9 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 923.1 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 923.3 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743
744 )))
745
746 (((
747 (% style="color:blue" %)**Downlink:**
748 )))
749
750 (((
751 Uplink channels 1-7(RX1)
752 )))
753
754 (((
755 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
756 )))
757
758
759
760
761 === 2.6.7  IN865-867 (IN865) ===
762
763 (((
764 (% style="color:blue" %)**Uplink:**
765 )))
766
767 (((
768 865.0625 - SF7BW125 to SF12BW125
769 )))
770
771 (((
772 865.4025 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 865.9850 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780
781 )))
782
783 (((
784 (% style="color:blue" %)**Downlink:**
785 )))
786
787 (((
788 Uplink channels 1-3 (RX1)
789 )))
790
791 (((
792 866.550 - SF10BW125 (RX2)
793 )))
794
795
796
797
798 == 2.7  LED Indicator ==
799
800 The LLDS12 has an internal LED which is to show the status of different state.
801
802 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 * Blink once when device transmit a packet.
804
805
806 == 2.8  ​Firmware Change Log ==
807
808
809 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
810
811
812 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
813
814
815
816 = 3.  LiDAR ToF Measurement =
817
818 == 3.1 Principle of Distance Measurement ==
819
820 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
821
822 [[image:1654831757579-263.png]]
823
824
825
826 == 3.2 Distance Measurement Characteristics ==
827
828 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
829
830 [[image:1654831774373-275.png]]
831
832
833 (((
834 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
835 )))
836
837 (((
838 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 )))
840
841 (((
842 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
843 )))
844
845
846 (((
847 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
848 )))
849
850
851 [[image:1654831797521-720.png]]
852
853
854 (((
855 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
856 )))
857
858 [[image:1654831810009-716.png]]
859
860
861 (((
862 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
863 )))
864
865
866
867 == 3.3 Notice of usage: ==
868
869 Possible invalid /wrong reading for LiDAR ToF tech:
870
871 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
872 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
873 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
874 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
875
876 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
877
878 (((
879 (((
880 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
881 )))
882 )))
883
884 * (((
885 (((
886 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
887 )))
888 )))
889 * (((
890 (((
891 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
892 )))
893 )))
894
895 (((
896 (((
897
898 )))
899
900 (((
901 There are two kinds of commands to configure LLDS12, they are:
902 )))
903 )))
904
905 * (((
906 (((
907 (% style="color:#4f81bd" %)** General Commands**.
908 )))
909 )))
910
911 (((
912 (((
913 These commands are to configure:
914 )))
915 )))
916
917 * (((
918 (((
919 General system settings like: uplink interval.
920 )))
921 )))
922 * (((
923 (((
924 LoRaWAN protocol & radio related command.
925 )))
926 )))
927
928 (((
929 (((
930 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
931 )))
932 )))
933
934 (((
935 (((
936
937 )))
938 )))
939
940 * (((
941 (((
942 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
943 )))
944 )))
945
946 (((
947 (((
948 These commands only valid for LLDS12, as below:
949 )))
950 )))
951
952
953
954 == 4.1  Set Transmit Interval Time ==
955
956 Feature: Change LoRaWAN End Node Transmit Interval.
957
958 (% style="color:#037691" %)**AT Command: AT+TDC**
959
960 [[image:image-20220607171554-8.png]]
961
962
963 (((
964 (% style="color:#037691" %)**Downlink Command: 0x01**
965 )))
966
967 (((
968 Format: Command Code (0x01) followed by 3 bytes time value.
969 )))
970
971 (((
972 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
973 )))
974
975 * (((
976 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
977 )))
978 * (((
979 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
980 )))
981
982 == 4.2  Set Interrupt Mode ==
983
984 Feature, Set Interrupt mode for GPIO_EXIT.
985
986 (% style="color:#037691" %)**AT Command: AT+INTMOD**
987
988 [[image:image-20220610105806-2.png]]
989
990
991 (((
992 (% style="color:#037691" %)**Downlink Command: 0x06**
993 )))
994
995 (((
996 Format: Command Code (0x06) followed by 3 bytes.
997 )))
998
999 (((
1000 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1001 )))
1002
1003 * (((
1004 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1005 )))
1006 * (((
1007 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1008 )))
1009
1010 == 4.3  Get Firmware Version Info ==
1011
1012 Feature: use downlink to get firmware version.
1013
1014 (% style="color:#037691" %)**Downlink Command: 0x26**
1015
1016 [[image:image-20220607171917-10.png]]
1017
1018 * Reply to the confirmation package: 26 01
1019 * Reply to non-confirmed packet: 26 00
1020
1021 Device will send an uplink after got this downlink command. With below payload:
1022
1023 Configures info payload:
1024
1025 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1026 |=(((
1027 **Size(bytes)**
1028 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1029 |**Value**|Software Type|(((
1030 Frequency
1031
1032 Band
1033 )))|Sub-band|(((
1034 Firmware
1035
1036 Version
1037 )))|Sensor Type|Reserve|(((
1038 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1039 Always 0x02
1040 )))
1041
1042 **Software Type**: Always 0x03 for LLDS12
1043
1044
1045 **Frequency Band**:
1046
1047 *0x01: EU868
1048
1049 *0x02: US915
1050
1051 *0x03: IN865
1052
1053 *0x04: AU915
1054
1055 *0x05: KZ865
1056
1057 *0x06: RU864
1058
1059 *0x07: AS923
1060
1061 *0x08: AS923-1
1062
1063 *0x09: AS923-2
1064
1065 *0xa0: AS923-3
1066
1067
1068 **Sub-Band**: value 0x00 ~~ 0x08
1069
1070
1071 **Firmware Version**: 0x0100, Means: v1.0.0 version
1072
1073
1074 **Sensor Type**:
1075
1076 0x01: LSE01
1077
1078 0x02: LDDS75
1079
1080 0x03: LDDS20
1081
1082 0x04: LLMS01
1083
1084 0x05: LSPH01
1085
1086 0x06: LSNPK01
1087
1088 0x07: LLDS12
1089
1090
1091
1092 = 5.  Battery & How to replace =
1093
1094 == 5.1  Battery Type ==
1095
1096 (((
1097 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1098 )))
1099
1100 (((
1101 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1102 )))
1103
1104 [[image:1654593587246-335.png]]
1105
1106
1107 Minimum Working Voltage for the LLDS12:
1108
1109 LLDS12:  2.45v ~~ 3.6v
1110
1111
1112
1113 == 5.2  Replace Battery ==
1114
1115 (((
1116 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1117 )))
1118
1119 (((
1120 And make sure the positive and negative pins match.
1121 )))
1122
1123
1124
1125 == 5.3  Power Consumption Analyze ==
1126
1127 (((
1128 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1129 )))
1130
1131 (((
1132 Instruction to use as below:
1133 )))
1134
1135
1136 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1137
1138 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1139
1140
1141 **Step 2**: Open it and choose
1142
1143 * Product Model
1144 * Uplink Interval
1145 * Working Mode
1146
1147 And the Life expectation in difference case will be shown on the right.
1148
1149 [[image:1654593605679-189.png]]
1150
1151
1152 The battery related documents as below:
1153
1154 * (((
1155 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1156 )))
1157 * (((
1158 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1159 )))
1160 * (((
1161 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1162 )))
1163
1164 [[image:image-20220607172042-11.png]]
1165
1166
1167
1168 === 5.3.1  ​Battery Note ===
1169
1170 (((
1171 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1172 )))
1173
1174
1175
1176 === ​5.3.2  Replace the battery ===
1177
1178 (((
1179 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1180 )))
1181
1182 (((
1183 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1184 )))
1185
1186
1187
1188 = 6.  Use AT Command =
1189
1190 == 6.1  Access AT Commands ==
1191
1192 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1193
1194 [[image:1654593668970-604.png]]
1195
1196 **Connection:**
1197
1198 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1199
1200 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1201
1202 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1203
1204
1205 (((
1206 (((
1207 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1208 )))
1209
1210 (((
1211 LLDS12 will output system info once power on as below:
1212 )))
1213 )))
1214
1215
1216 [[image:1654593712276-618.png]]
1217
1218 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1219
1220
1221 = 7.  FAQ =
1222
1223 == 7.1  How to change the LoRa Frequency Bands/Region ==
1224
1225 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1226 When downloading the images, choose the required image file for download. ​
1227
1228
1229 = 8.  Trouble Shooting =
1230
1231 == 8.1  AT Commands input doesn’t work ==
1232
1233
1234 (((
1235 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1236 )))
1237
1238
1239 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1240
1241
1242 (((
1243 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1244 )))
1245
1246 (((
1247 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1248 )))
1249
1250 (((
1251
1252 )))
1253
1254 (((
1255 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1256 )))
1257
1258 (((
1259 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1260 )))
1261
1262
1263
1264 = 9.  Order Info =
1265
1266
1267 Part Number: (% style="color:blue" %)**LLDS12-XX**
1268
1269
1270 (% style="color:blue" %)**XX**(%%): The default frequency band
1271
1272 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1273 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1274 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1275 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1276 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1277 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1278 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1279 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1280
1281
1282
1283 = 10. ​ Packing Info =
1284
1285
1286 **Package Includes**:
1287
1288 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1289
1290 **Dimension and weight**:
1291
1292 * Device Size: cm
1293 * Device Weight: g
1294 * Package Size / pcs : cm
1295 * Weight / pcs : g
1296
1297
1298
1299 = 11.  ​Support =
1300
1301 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1302 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].