Version 116.1 by Xiaoling on 2022/06/10 15:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67 == 1.3  Probe Specification ==
68
69 * Storage temperature :-20℃~~75℃
70 * Operating temperature - -20℃~~60℃
71 * Operating Range - 0.1m~~12m①
72 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution - 5mm
74 * Ambient light immunity - 70klux
75 * Enclosure rating - IP65
76 * Light source - LED
77 * Central wavelength - 850nm
78 * FOV - 3.6°
79 * Material of enclosure - ABS+PC
80 * Wire length - 25cm
81
82
83 == 1.4  Probe Dimension ==
84
85
86 [[image:1654827224480-952.png]]
87
88
89 == 1.5 ​ Applications ==
90
91 * Horizontal distance measurement
92 * Parking management system
93 * Object proximity and presence detection
94 * Intelligent trash can management system
95 * Robot obstacle avoidance
96 * Automatic control
97 * Sewer
98
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654827332142-133.png]]
104
105
106 = 2.  Configure LLDS12 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110 (((
111 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 )))
113
114 (((
115 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 )))
117
118
119 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120
121 (((
122 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
123 )))
124
125 (((
126 [[image:1654827857527-556.png]]
127 )))
128
129 (((
130 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 )))
132
133 (((
134 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
135 )))
136
137 (((
138 Each LSPH01 is shipped with a sticker with the default device EUI as below:
139 )))
140
141 [[image:image-20220607170145-1.jpeg]]
142
143
144
145 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
146
147
148 **Register the device**
149
150
151 [[image:1654592600093-601.png]]
152
153
154
155 **Add APP EUI and DEV EUI**
156
157 [[image:1654592619856-881.png]]
158
159
160
161 **Add APP EUI in the application**
162
163 [[image:1654592632656-512.png]]
164
165
166
167 **Add APP KEY**
168
169 [[image:1654592653453-934.png]]
170
171
172 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173
174
175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176
177 [[image:image-20220607170442-2.png]]
178
179
180 (((
181 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 )))
183
184 [[image:1654833501679-968.png]]
185
186
187
188 == 2.3  ​Uplink Payload ==
189
190 (((
191 LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 )))
193
194 (((
195 Uplink payload includes in total 11 bytes.
196 )))
197
198 (((
199
200 )))
201
202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 |=(% style="width: 62.5px;" %)(((
204 **Size (bytes)**
205 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
207 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
208 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
209 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
210 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
211 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
212 )))
213
214 [[image:1654833689380-972.png]]
215
216
217
218 === 2.3.1  Battery Info ===
219
220
221 Check the battery voltage for LLDS12.
222
223 Ex1: 0x0B45 = 2885mV
224
225 Ex2: 0x0B49 = 2889mV
226
227
228
229 === 2.3.2  DS18B20 Temperature sensor ===
230
231 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232
233
234 **Example**:
235
236 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237
238 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
239
240
241
242 === 2.3.3  Distance ===
243
244 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
245
246
247 **Example**:
248
249 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
250
251
252
253 === 2.3.4  Distance signal strength ===
254
255 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
256
257
258 **Example**:
259
260 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
261
262 Customers can judge whether they need to adjust the environment based on the signal strength.
263
264
265
266 === 2.3.5  Interrupt Pin ===
267
268 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
269
270 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
271
272 **Example:**
273
274 0x00: Normal uplink packet.
275
276 0x01: Interrupt Uplink Packet.
277
278
279
280 === 2.3.6  LiDAR temp ===
281
282 Characterize the internal temperature value of the sensor.
283
284 **Example: **
285 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
286 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
287
288
289
290 === 2.3.7  Message Type ===
291
292 (((
293 For a normal uplink payload, the message type is always 0x01.
294 )))
295
296 (((
297 Valid Message Type:
298 )))
299
300
301 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
302 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
303 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
304 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
305
306
307 === 2.3.8  Decode payload in The Things Network ===
308
309 While using TTN network, you can add the payload format to decode the payload.
310
311
312 [[image:1654592762713-715.png]]
313
314 (((
315 The payload decoder function for TTN is here:
316 )))
317
318 (((
319 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
320 )))
321
322
323
324 == 2.4  Uplink Interval ==
325
326 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
327
328
329
330 == 2.5  ​Show Data in DataCake IoT Server ==
331
332 (((
333 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
334 )))
335
336 (((
337
338 )))
339
340 (((
341 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
342 )))
343
344 (((
345 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
346 )))
347
348
349 [[image:1654592790040-760.png]]
350
351
352 [[image:1654592800389-571.png]]
353
354
355 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
356
357 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
358
359 [[image:1654832691989-514.png]]
360
361
362 [[image:1654592833877-762.png]]
363
364
365 [[image:1654832740634-933.png]]
366
367
368
369 (((
370 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
371 )))
372
373 (((
374
375 )))
376
377 [[image:1654833065139-942.png]]
378
379
380
381 [[image:1654833092678-390.png]]
382
383
384
385 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
386
387 [[image:1654833163048-332.png]]
388
389
390
391 == 2.6  Frequency Plans ==
392
393 (((
394 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
395 )))
396
397
398 === 2.6.1  EU863-870 (EU868) ===
399
400 (((
401 (% style="color:blue" %)**Uplink:**
402 )))
403
404 (((
405 868.1 - SF7BW125 to SF12BW125
406 )))
407
408 (((
409 868.3 - SF7BW125 to SF12BW125 and SF7BW250
410 )))
411
412 (((
413 868.5 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 867.1 - SF7BW125 to SF12BW125
418 )))
419
420 (((
421 867.3 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.5 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.7 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.9 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 868.8 - FSK
438 )))
439
440 (((
441
442 )))
443
444 (((
445 (% style="color:blue" %)**Downlink:**
446 )))
447
448 (((
449 Uplink channels 1-9 (RX1)
450 )))
451
452 (((
453 869.525 - SF9BW125 (RX2 downlink only)
454 )))
455
456
457
458 === 2.6.2  US902-928(US915) ===
459
460 (((
461 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
462 )))
463
464 (((
465 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
466 )))
467
468 (((
469 After Join success, the end node will switch to the correct sub band by:
470 )))
471
472 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
473 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
474
475
476 === 2.6.3  CN470-510 (CN470) ===
477
478 (((
479 Used in China, Default use CHE=1
480 )))
481
482 (((
483 (% style="color:blue" %)**Uplink:**
484 )))
485
486 (((
487 486.3 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 486.5 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.7 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.9 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.1 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.3 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.5 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.7 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519
520 )))
521
522 (((
523 (% style="color:blue" %)**Downlink:**
524 )))
525
526 (((
527 506.7 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 506.9 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.1 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.3 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.5 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.7 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.9 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 508.1 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 505.3 - SF12BW125 (RX2 downlink only)
560 )))
561
562
563
564
565 === 2.6.4  AU915-928(AU915) ===
566
567 (((
568 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
569 )))
570
571 (((
572 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
573 )))
574
575 (((
576
577 )))
578
579 (((
580 After Join success, the end node will switch to the correct sub band by:
581 )))
582
583 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
584 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
585
586
587 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588
589 (((
590 (% style="color:blue" %)**Default Uplink channel:**
591 )))
592
593 (((
594 923.2 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598 923.4 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602
603 )))
604
605 (((
606 (% style="color:blue" %)**Additional Uplink Channel**:
607 )))
608
609 (((
610 (OTAA mode, channel added by JoinAccept message)
611 )))
612
613 (((
614
615 )))
616
617 (((
618 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 )))
620
621 (((
622 922.2 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.4 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.6 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.8 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 923.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 922.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646
647 )))
648
649 (((
650 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651 )))
652
653 (((
654 923.6 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 923.8 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.0 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.2 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.4 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.6 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678
679 )))
680
681 (((
682 (% style="color:blue" %)**Downlink:**
683 )))
684
685 (((
686 Uplink channels 1-8 (RX1)
687 )))
688
689 (((
690 923.2 - SF10BW125 (RX2)
691 )))
692
693
694
695
696 === 2.6.6  KR920-923 (KR920) ===
697
698 (((
699 (% style="color:blue" %)**Default channel:**
700 )))
701
702 (((
703 922.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.5 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715
716 )))
717
718 (((
719 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
720 )))
721
722 (((
723 922.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.5 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.7 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.9 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.1 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.3 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751
752 )))
753
754 (((
755 (% style="color:blue" %)**Downlink:**
756 )))
757
758 (((
759 Uplink channels 1-7(RX1)
760 )))
761
762 (((
763 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
764 )))
765
766
767
768
769 === 2.6.7  IN865-867 (IN865) ===
770
771 (((
772 (% style="color:blue" %)**Uplink:**
773 )))
774
775 (((
776 865.0625 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.4025 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.9850 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788
789 )))
790
791 (((
792 (% style="color:blue" %)**Downlink:**
793 )))
794
795 (((
796 Uplink channels 1-3 (RX1)
797 )))
798
799 (((
800 866.550 - SF10BW125 (RX2)
801 )))
802
803
804
805
806 == 2.7  LED Indicator ==
807
808 The LLDS12 has an internal LED which is to show the status of different state.
809
810 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
811 * Blink once when device transmit a packet.
812
813
814 == 2.8  ​Firmware Change Log ==
815
816
817 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818
819
820 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
821
822
823
824 = 3.  LiDAR ToF Measurement =
825
826 == 3.1 Principle of Distance Measurement ==
827
828 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
829
830 [[image:1654831757579-263.png]]
831
832
833
834 == 3.2 Distance Measurement Characteristics ==
835
836 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837
838 [[image:1654831774373-275.png]]
839
840
841 (((
842 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
843 )))
844
845 (((
846 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
847 )))
848
849 (((
850 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
851 )))
852
853
854 (((
855 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 )))
857
858
859 [[image:1654831797521-720.png]]
860
861
862 (((
863 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
864 )))
865
866 [[image:1654831810009-716.png]]
867
868
869 (((
870 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
871 )))
872
873
874
875 == 3.3 Notice of usage: ==
876
877 Possible invalid /wrong reading for LiDAR ToF tech:
878
879 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
880 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
881 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
882 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
883
884
885 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
886
887 (((
888 (((
889 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
890 )))
891 )))
892
893 * (((
894 (((
895 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
896 )))
897 )))
898 * (((
899 (((
900 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
901 )))
902 )))
903
904 (((
905 (((
906
907 )))
908
909 (((
910 There are two kinds of commands to configure LLDS12, they are:
911 )))
912 )))
913
914 * (((
915 (((
916 (% style="color:#4f81bd" %)** General Commands**.
917 )))
918 )))
919
920 (((
921 (((
922 These commands are to configure:
923 )))
924 )))
925
926 * (((
927 (((
928 General system settings like: uplink interval.
929 )))
930 )))
931 * (((
932 (((
933 LoRaWAN protocol & radio related command.
934 )))
935 )))
936
937 (((
938 (((
939 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
940 )))
941 )))
942
943 (((
944 (((
945
946 )))
947 )))
948
949 * (((
950 (((
951 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
952 )))
953 )))
954
955 (((
956 (((
957 These commands only valid for LLDS12, as below:
958 )))
959 )))
960
961
962
963 == 4.1  Set Transmit Interval Time ==
964
965 Feature: Change LoRaWAN End Node Transmit Interval.
966
967 (% style="color:#037691" %)**AT Command: AT+TDC**
968
969 [[image:image-20220607171554-8.png]]
970
971
972 (((
973 (% style="color:#037691" %)**Downlink Command: 0x01**
974 )))
975
976 (((
977 Format: Command Code (0x01) followed by 3 bytes time value.
978 )))
979
980 (((
981 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
982 )))
983
984 * (((
985 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
986 )))
987 * (((
988 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
989 )))
990
991
992 == 4.2  Set Interrupt Mode ==
993
994 Feature, Set Interrupt mode for GPIO_EXIT.
995
996 (% style="color:#037691" %)**AT Command: AT+INTMOD**
997
998 [[image:image-20220610105806-2.png]]
999
1000
1001 (((
1002 (% style="color:#037691" %)**Downlink Command: 0x06**
1003 )))
1004
1005 (((
1006 Format: Command Code (0x06) followed by 3 bytes.
1007 )))
1008
1009 (((
1010 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1011 )))
1012
1013 * (((
1014 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1015 )))
1016 * (((
1017 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1018 )))
1019
1020
1021 == 4.3  Get Firmware Version Info ==
1022
1023 Feature: use downlink to get firmware version.
1024
1025 (% style="color:#037691" %)**Downlink Command: 0x26**
1026
1027 [[image:image-20220607171917-10.png]]
1028
1029 * Reply to the confirmation package: 26 01
1030 * Reply to non-confirmed packet: 26 00
1031
1032 Device will send an uplink after got this downlink command. With below payload:
1033
1034 Configures info payload:
1035
1036 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1037 |=(((
1038 **Size(bytes)**
1039 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1040 |**Value**|Software Type|(((
1041 Frequency
1042
1043 Band
1044 )))|Sub-band|(((
1045 Firmware
1046
1047 Version
1048 )))|Sensor Type|Reserve|(((
1049 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1050 Always 0x02
1051 )))
1052
1053 **Software Type**: Always 0x03 for LLDS12
1054
1055
1056 **Frequency Band**:
1057
1058 *0x01: EU868
1059
1060 *0x02: US915
1061
1062 *0x03: IN865
1063
1064 *0x04: AU915
1065
1066 *0x05: KZ865
1067
1068 *0x06: RU864
1069
1070 *0x07: AS923
1071
1072 *0x08: AS923-1
1073
1074 *0x09: AS923-2
1075
1076 *0xa0: AS923-3
1077
1078
1079 **Sub-Band**: value 0x00 ~~ 0x08
1080
1081
1082 **Firmware Version**: 0x0100, Means: v1.0.0 version
1083
1084
1085 **Sensor Type**:
1086
1087 0x01: LSE01
1088
1089 0x02: LDDS75
1090
1091 0x03: LDDS20
1092
1093 0x04: LLMS01
1094
1095 0x05: LSPH01
1096
1097 0x06: LSNPK01
1098
1099 0x07: LLDS12
1100
1101
1102
1103 = 5.  Battery & How to replace =
1104
1105 == 5.1  Battery Type ==
1106
1107 (((
1108 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1109 )))
1110
1111 (((
1112 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1113 )))
1114
1115 [[image:1654593587246-335.png]]
1116
1117
1118 Minimum Working Voltage for the LLDS12:
1119
1120 LLDS12:  2.45v ~~ 3.6v
1121
1122
1123
1124 == 5.2  Replace Battery ==
1125
1126 (((
1127 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1128 )))
1129
1130 (((
1131 And make sure the positive and negative pins match.
1132 )))
1133
1134
1135
1136 == 5.3  Power Consumption Analyze ==
1137
1138 (((
1139 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1140 )))
1141
1142 (((
1143 Instruction to use as below:
1144 )))
1145
1146
1147 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1148
1149 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1150
1151
1152 **Step 2**: Open it and choose
1153
1154 * Product Model
1155 * Uplink Interval
1156 * Working Mode
1157
1158 And the Life expectation in difference case will be shown on the right.
1159
1160 [[image:1654593605679-189.png]]
1161
1162
1163 The battery related documents as below:
1164
1165 * (((
1166 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1167 )))
1168 * (((
1169 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1170 )))
1171 * (((
1172 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1173 )))
1174
1175 [[image:image-20220607172042-11.png]]
1176
1177
1178
1179 === 5.3.1  ​Battery Note ===
1180
1181 (((
1182 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1183 )))
1184
1185
1186
1187 === ​5.3.2  Replace the battery ===
1188
1189 (((
1190 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1191 )))
1192
1193 (((
1194 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1195 )))
1196
1197
1198
1199 = 6.  Use AT Command =
1200
1201 == 6.1  Access AT Commands ==
1202
1203 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1204
1205 [[image:1654593668970-604.png]]
1206
1207 **Connection:**
1208
1209 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1210
1211 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1212
1213 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1214
1215
1216 (((
1217 (((
1218 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1219 )))
1220
1221 (((
1222 LLDS12 will output system info once power on as below:
1223 )))
1224 )))
1225
1226
1227 [[image:1654593712276-618.png]]
1228
1229 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1230
1231
1232 = 7.  FAQ =
1233
1234 == 7.1  How to change the LoRa Frequency Bands/Region ==
1235
1236 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1237 When downloading the images, choose the required image file for download. ​
1238
1239
1240 = 8.  Trouble Shooting =
1241
1242 == 8.1  AT Commands input doesn’t work ==
1243
1244
1245 (((
1246 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1247 )))
1248
1249
1250 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1251
1252
1253 (((
1254 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1255 )))
1256
1257 (((
1258 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1259 )))
1260
1261 (((
1262
1263 )))
1264
1265 (((
1266 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1267 )))
1268
1269 (((
1270 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1271 )))
1272
1273
1274
1275 = 9.  Order Info =
1276
1277
1278 Part Number: (% style="color:blue" %)**LLDS12-XX**
1279
1280
1281 (% style="color:blue" %)**XX**(%%): The default frequency band
1282
1283 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1284 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1285 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1286 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1287 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1288 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1289 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1290 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1291
1292
1293 = 10. ​ Packing Info =
1294
1295
1296 **Package Includes**:
1297
1298 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1299
1300 **Dimension and weight**:
1301
1302 * Device Size: cm
1303 * Device Weight: g
1304 * Package Size / pcs : cm
1305 * Weight / pcs : g
1306
1307
1308 = 11.  ​Support =
1309
1310 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1311 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].