Version 128.2 by Xiaoling on 2022/10/28 11:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20221028115319-1.jpeg||height="574" width="574"]]
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19
20 (((
21 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 )))
23
24 (((
25 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
26 )))
27
28 (((
29 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 )))
31
32 (((
33 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 )))
35
36 (((
37 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 )))
39
40 (((
41 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
42 )))
43
44
45 [[image:1654826306458-414.png]]
46
47
48
49 == ​1.2  Features ==
50
51
52 * LoRaWAN 1.0.3 Class A
53 * Ultra-low power consumption
54 * Laser technology for distance detection
55 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
56 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
57 * Monitor Battery Level
58 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
59 * AT Commands to change parameters
60 * Uplink on periodically
61 * Downlink to change configure
62 * 8500mAh Battery for long-term use
63
64
65 == 1.3  Probe Specification ==
66
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 * Distance resolution : 5mm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
83
84 == 1.4  Probe Dimension ==
85
86
87 [[image:1654827224480-952.png]]
88
89
90
91 == 1.5 ​ Applications ==
92
93
94 * Horizontal distance measurement
95 * Parking management system
96 * Object proximity and presence detection
97 * Intelligent trash can management system
98 * Robot obstacle avoidance
99 * Automatic control
100 * Sewer
101
102
103 == 1.6  Pin mapping and power on ==
104
105
106 [[image:1654827332142-133.png]]
107
108
109
110 = 2.  Configure LLDS12 to connect to LoRaWAN network =
111
112
113 == 2.1  How it works ==
114
115
116 (((
117 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 )))
119
120 (((
121 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 )))
123
124
125
126 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
127
128
129 (((
130 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
131 )))
132
133 (((
134 [[image:1654827857527-556.png]]
135 )))
136
137 (((
138 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 )))
140
141 (((
142
143
144 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
145 )))
146
147 (((
148 Each LSPH01 is shipped with a sticker with the default device EUI as below:
149 )))
150
151 [[image:image-20220607170145-1.jpeg]]
152
153
154
155 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
156
157
158 **Register the device**
159
160
161 [[image:1654592600093-601.png]]
162
163
164
165 **Add APP EUI and DEV EUI**
166
167 [[image:1654592619856-881.png]]
168
169
170
171 **Add APP EUI in the application**
172
173 [[image:1654592632656-512.png]]
174
175
176
177 **Add APP KEY**
178
179 [[image:1654592653453-934.png]]
180
181
182 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
183
184
185 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
186
187
188 [[image:image-20220607170442-2.png]]
189
190
191 (((
192 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
193
194
195 )))
196
197 [[image:1654833501679-968.png]]
198
199
200
201 == 2.3  ​Uplink Payload ==
202
203
204 (((
205 LLDS12 will uplink payload via LoRaWAN with below payload format: 
206 )))
207
208 (((
209 Uplink payload includes in total 11 bytes.
210 )))
211
212 (((
213
214 )))
215
216 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
217 |=(% style="width: 62.5px;" %)(((
218 **Size (bytes)**
219 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
220 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
221 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
222 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
223 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
224 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
225 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
226 )))
227
228 [[image:1654833689380-972.png]]
229
230
231
232 === 2.3.1  Battery Info ===
233
234
235 Check the battery voltage for LLDS12.
236
237 Ex1: 0x0B45 = 2885mV
238
239 Ex2: 0x0B49 = 2889mV
240
241
242
243 === 2.3.2  DS18B20 Temperature sensor ===
244
245
246 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
247
248
249 **Example**:
250
251 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
252
253 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
254
255
256
257 === 2.3.3  Distance ===
258
259
260 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
261
262
263 **Example**:
264
265 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
266
267
268
269 === 2.3.4  Distance signal strength ===
270
271
272 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
273
274
275 **Example**:
276
277 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
278
279 Customers can judge whether they need to adjust the environment based on the signal strength.
280
281
282
283 === 2.3.5  Interrupt Pin ===
284
285
286 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
287
288 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
289
290 **Example:**
291
292 0x00: Normal uplink packet.
293
294 0x01: Interrupt Uplink Packet.
295
296
297
298 === 2.3.6  LiDAR temp ===
299
300
301 Characterize the internal temperature value of the sensor.
302
303 **Example: **
304 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
305 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
306
307
308
309 === 2.3.7  Message Type ===
310
311
312 (((
313 For a normal uplink payload, the message type is always 0x01.
314 )))
315
316 (((
317 Valid Message Type:
318 )))
319
320
321 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:499px" %)
322 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
323 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
324 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
325
326
327 === 2.3.8  Decode payload in The Things Network ===
328
329
330 While using TTN network, you can add the payload format to decode the payload.
331
332
333 [[image:1654592762713-715.png]]
334
335
336 (((
337 The payload decoder function for TTN is here:
338 )))
339
340 (((
341 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
342 )))
343
344
345
346 == 2.4  Uplink Interval ==
347
348
349 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
350
351
352
353 == 2.5  ​Show Data in DataCake IoT Server ==
354
355
356 (((
357 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
358 )))
359
360 (((
361
362 )))
363
364 (((
365 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
366 )))
367
368 (((
369 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
370 )))
371
372
373 [[image:1654592790040-760.png]]
374
375
376 [[image:1654592800389-571.png]]
377
378
379 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
380
381 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
382
383 [[image:1654832691989-514.png]]
384
385
386 [[image:1654592833877-762.png]]
387
388
389 [[image:1654832740634-933.png]]
390
391
392
393 (((
394 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
395 )))
396
397 (((
398
399 )))
400
401 [[image:1654833065139-942.png]]
402
403
404
405 [[image:1654833092678-390.png]]
406
407
408
409 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
410
411 [[image:1654833163048-332.png]]
412
413
414
415 == 2.6  Frequency Plans ==
416
417
418 (((
419 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
420 )))
421
422
423
424 === 2.6.1  EU863-870 (EU868) ===
425
426
427 (((
428 (% style="color:blue" %)**Uplink:**
429 )))
430
431 (((
432 868.1 - SF7BW125 to SF12BW125
433 )))
434
435 (((
436 868.3 - SF7BW125 to SF12BW125 and SF7BW250
437 )))
438
439 (((
440 868.5 - SF7BW125 to SF12BW125
441 )))
442
443 (((
444 867.1 - SF7BW125 to SF12BW125
445 )))
446
447 (((
448 867.3 - SF7BW125 to SF12BW125
449 )))
450
451 (((
452 867.5 - SF7BW125 to SF12BW125
453 )))
454
455 (((
456 867.7 - SF7BW125 to SF12BW125
457 )))
458
459 (((
460 867.9 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 868.8 - FSK
465 )))
466
467 (((
468
469 )))
470
471 (((
472 (% style="color:blue" %)**Downlink:**
473 )))
474
475 (((
476 Uplink channels 1-9 (RX1)
477 )))
478
479 (((
480 869.525 - SF9BW125 (RX2 downlink only)
481 )))
482
483
484
485 === 2.6.2  US902-928(US915) ===
486
487
488 (((
489 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
490 )))
491
492 (((
493 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
494 )))
495
496 (((
497 After Join success, the end node will switch to the correct sub band by:
498 )))
499
500 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
501 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
502
503
504 === 2.6.3  CN470-510 (CN470) ===
505
506
507 (((
508 Used in China, Default use CHE=1
509 )))
510
511 (((
512 (% style="color:blue" %)**Uplink:**
513 )))
514
515 (((
516 486.3 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 486.5 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 486.7 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 486.9 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 487.1 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 487.3 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 487.5 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 487.7 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548
549 )))
550
551 (((
552 (% style="color:blue" %)**Downlink:**
553 )))
554
555 (((
556 506.7 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 506.9 - SF7BW125 to SF12BW125
561 )))
562
563 (((
564 507.1 - SF7BW125 to SF12BW125
565 )))
566
567 (((
568 507.3 - SF7BW125 to SF12BW125
569 )))
570
571 (((
572 507.5 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 507.7 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 507.9 - SF7BW125 to SF12BW125
581 )))
582
583 (((
584 508.1 - SF7BW125 to SF12BW125
585 )))
586
587 (((
588 505.3 - SF12BW125 (RX2 downlink only)
589 )))
590
591
592
593 === 2.6.4  AU915-928(AU915) ===
594
595
596 (((
597 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
598 )))
599
600 (((
601 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
602 )))
603
604 (((
605
606 )))
607
608 (((
609 After Join success, the end node will switch to the correct sub band by:
610 )))
611
612 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
613 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
614
615
616 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
617
618
619 (((
620 (% style="color:blue" %)**Default Uplink channel:**
621 )))
622
623 (((
624 923.2 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 923.4 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632
633 )))
634
635 (((
636 (% style="color:blue" %)**Additional Uplink Channel**:
637 )))
638
639 (((
640 (OTAA mode, channel added by JoinAccept message)
641 )))
642
643 (((
644
645 )))
646
647 (((
648 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
649 )))
650
651 (((
652 922.2 - SF7BW125 to SF10BW125
653 )))
654
655 (((
656 922.4 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 922.6 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 922.8 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 923.0 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 922.0 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676
677 )))
678
679 (((
680 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
681 )))
682
683 (((
684 923.6 - SF7BW125 to SF10BW125
685 )))
686
687 (((
688 923.8 - SF7BW125 to SF10BW125
689 )))
690
691 (((
692 924.0 - SF7BW125 to SF10BW125
693 )))
694
695 (((
696 924.2 - SF7BW125 to SF10BW125
697 )))
698
699 (((
700 924.4 - SF7BW125 to SF10BW125
701 )))
702
703 (((
704 924.6 - SF7BW125 to SF10BW125
705 )))
706
707 (((
708
709 )))
710
711 (((
712 (% style="color:blue" %)**Downlink:**
713 )))
714
715 (((
716 Uplink channels 1-8 (RX1)
717 )))
718
719 (((
720 923.2 - SF10BW125 (RX2)
721 )))
722
723
724
725 === 2.6.6  KR920-923 (KR920) ===
726
727
728 (((
729 (% style="color:blue" %)**Default channel:**
730 )))
731
732 (((
733 922.1 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.3 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.5 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745
746 )))
747
748 (((
749 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
750 )))
751
752 (((
753 922.1 - SF7BW125 to SF12BW125
754 )))
755
756 (((
757 922.3 - SF7BW125 to SF12BW125
758 )))
759
760 (((
761 922.5 - SF7BW125 to SF12BW125
762 )))
763
764 (((
765 922.7 - SF7BW125 to SF12BW125
766 )))
767
768 (((
769 922.9 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773 923.1 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777 923.3 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781
782 )))
783
784 (((
785 (% style="color:blue" %)**Downlink:**
786 )))
787
788 (((
789 Uplink channels 1-7(RX1)
790 )))
791
792 (((
793 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
794 )))
795
796
797
798 === 2.6.7  IN865-867 (IN865) ===
799
800
801 (((
802 (% style="color:blue" %)**Uplink:**
803 )))
804
805 (((
806 865.0625 - SF7BW125 to SF12BW125
807 )))
808
809 (((
810 865.4025 - SF7BW125 to SF12BW125
811 )))
812
813 (((
814 865.9850 - SF7BW125 to SF12BW125
815 )))
816
817 (((
818
819 )))
820
821 (((
822 (% style="color:blue" %)**Downlink:**
823 )))
824
825 (((
826 Uplink channels 1-3 (RX1)
827 )))
828
829 (((
830 866.550 - SF10BW125 (RX2)
831 )))
832
833
834
835 == 2.7  LED Indicator ==
836
837
838 The LLDS12 has an internal LED which is to show the status of different state.
839
840 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
841 * Blink once when device transmit a packet.
842
843
844 == 2.8  ​Firmware Change Log ==
845
846
847 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
848
849 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
850
851
852
853 = 3.  LiDAR ToF Measurement =
854
855
856 == 3.1 Principle of Distance Measurement ==
857
858
859 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
860
861
862 [[image:1654831757579-263.png]]
863
864
865
866 == 3.2 Distance Measurement Characteristics ==
867
868
869 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
870
871 [[image:1654831774373-275.png]]
872
873
874 (((
875 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
876 )))
877
878 (((
879 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
880 )))
881
882 (((
883 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
884 )))
885
886
887 (((
888 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
889 )))
890
891
892 [[image:1654831797521-720.png]]
893
894
895 (((
896 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
897 )))
898
899 [[image:1654831810009-716.png]]
900
901
902 (((
903 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
904 )))
905
906
907
908 == 3.3 Notice of usage: ==
909
910
911 Possible invalid /wrong reading for LiDAR ToF tech:
912
913 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
914 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
915 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
916 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
917
918
919 == 3.4  Reflectivity of different objects: ==
920
921
922 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:379px" %)
923 |=(% style="width: 53px;" %)Item|=(% style="width: 229px;" %)Material|=(% style="width: 93px;" %)Relectivity
924 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
925 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
926 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
927 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
928 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
929 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
930 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
931 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
932 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
933 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
934 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
935 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
936 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
937 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
938 |(% style="width:53px" %)15|(% style="width:229px" %)(((
939 Unpolished white metal surface
940 )))|(% style="width:93px" %)130%
941 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
942 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
943 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
944
945
946 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
947
948
949 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
950
951 * (((
952 (((
953 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
954 )))
955 )))
956 * (((
957 (((
958 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
959 )))
960 )))
961
962 (((
963 (((
964
965 )))
966
967 (((
968 There are two kinds of commands to configure LLDS12, they are:
969 )))
970 )))
971
972 * (((
973 (((
974 (% style="color:#4f81bd" %)** General Commands**.
975 )))
976 )))
977
978 (((
979 (((
980 These commands are to configure:
981 )))
982 )))
983
984 * (((
985 (((
986 General system settings like: uplink interval.
987 )))
988 )))
989 * (((
990 (((
991 LoRaWAN protocol & radio related command.
992 )))
993 )))
994
995 (((
996 (((
997 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
998 )))
999 )))
1000
1001 (((
1002 (((
1003
1004 )))
1005 )))
1006
1007 * (((
1008 (((
1009 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1010 )))
1011 )))
1012
1013 (((
1014 (((
1015 These commands only valid for LLDS12, as below:
1016 )))
1017 )))
1018
1019
1020
1021 == 4.1  Set Transmit Interval Time ==
1022
1023
1024 Feature: Change LoRaWAN End Node Transmit Interval.
1025
1026 (% style="color:#037691" %)**AT Command: AT+TDC**
1027
1028 [[image:image-20220607171554-8.png]]
1029
1030
1031 (((
1032 (% style="color:#037691" %)**Downlink Command: 0x01**
1033 )))
1034
1035 (((
1036 Format: Command Code (0x01) followed by 3 bytes time value.
1037 )))
1038
1039 (((
1040 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1041 )))
1042
1043 * (((
1044 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1045 )))
1046 * (((
1047 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1048
1049
1050
1051
1052 )))
1053
1054 == 4.2  Set Interrupt Mode ==
1055
1056
1057 Feature, Set Interrupt mode for GPIO_EXIT.
1058
1059 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1060
1061 [[image:image-20220610105806-2.png]]
1062
1063
1064 (((
1065 (% style="color:#037691" %)**Downlink Command: 0x06**
1066 )))
1067
1068 (((
1069 Format: Command Code (0x06) followed by 3 bytes.
1070 )))
1071
1072 (((
1073 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1074 )))
1075
1076 * (((
1077 Example 1: Downlink Payload: 06000000  ~/~/ Turn off interrupt mode
1078 )))
1079 * (((
1080 Example 2: Downlink Payload: 06000003  ~/~/ Set the interrupt mode to rising edge trigger
1081
1082
1083
1084
1085 )))
1086
1087 == 4.3  Get Firmware Version Info ==
1088
1089
1090 Feature: use downlink to get firmware version.
1091
1092 (% style="color:#037691" %)**Downlink Command: 0x26**
1093
1094 [[image:image-20220607171917-10.png]]
1095
1096 * Reply to the confirmation package: 26 01
1097 * Reply to non-confirmed packet: 26 00
1098
1099 Device will send an uplink after got this downlink command. With below payload:
1100
1101 Configures info payload:
1102
1103 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1104 |=(((
1105 **Size(bytes)**
1106 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1107 |**Value**|Software Type|(((
1108 Frequency
1109 Band
1110 )))|Sub-band|(((
1111 Firmware
1112 Version
1113 )))|Sensor Type|Reserve|(((
1114 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1115 Always 0x02
1116 )))
1117
1118 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1119
1120
1121 (% style="color:#037691" %)**Frequency Band**:
1122
1123 *0x01: EU868
1124
1125 *0x02: US915
1126
1127 *0x03: IN865
1128
1129 *0x04: AU915
1130
1131 *0x05: KZ865
1132
1133 *0x06: RU864
1134
1135 *0x07: AS923
1136
1137 *0x08: AS923-1
1138
1139 *0x09: AS923-2
1140
1141 *0xa0: AS923-3
1142
1143
1144 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1145
1146
1147 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1148
1149
1150 (% style="color:#037691" %)**Sensor Type**:
1151
1152 0x01: LSE01
1153
1154 0x02: LDDS75
1155
1156 0x03: LDDS20
1157
1158 0x04: LLMS01
1159
1160 0x05: LSPH01
1161
1162 0x06: LSNPK01
1163
1164 0x07: LLDS12
1165
1166
1167
1168 = 5.  Battery & How to replace =
1169
1170
1171 == 5.1  Battery Type ==
1172
1173
1174 (((
1175 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1176 )))
1177
1178 (((
1179 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1180
1181
1182 )))
1183
1184 [[image:1654593587246-335.png]]
1185
1186
1187 Minimum Working Voltage for the LLDS12:
1188
1189 LLDS12:  2.45v ~~ 3.6v
1190
1191
1192
1193 == 5.2  Replace Battery ==
1194
1195
1196 (((
1197 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1198 )))
1199
1200 (((
1201 And make sure the positive and negative pins match.
1202 )))
1203
1204
1205
1206 == 5.3  Power Consumption Analyze ==
1207
1208
1209 (((
1210 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1211 )))
1212
1213 (((
1214 Instruction to use as below:
1215 )))
1216
1217
1218 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1219
1220 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1221
1222
1223 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1224
1225 * Product Model
1226 * Uplink Interval
1227 * Working Mode
1228
1229 And the Life expectation in difference case will be shown on the right.
1230
1231 [[image:1654593605679-189.png]]
1232
1233
1234 The battery related documents as below:
1235
1236 * (((
1237 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1238 )))
1239 * (((
1240 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1241 )))
1242 * (((
1243 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1244 )))
1245
1246 [[image:image-20220607172042-11.png]]
1247
1248
1249
1250 === 5.3.1  ​Battery Note ===
1251
1252
1253 (((
1254 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1255 )))
1256
1257
1258
1259 === ​5.3.2  Replace the battery ===
1260
1261
1262 (((
1263 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1264 )))
1265
1266 (((
1267 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1268 )))
1269
1270
1271
1272 = 6.  Use AT Command =
1273
1274
1275 == 6.1  Access AT Commands ==
1276
1277
1278 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1279
1280
1281 [[image:1654593668970-604.png]]
1282
1283
1284 **Connection:**
1285
1286 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1287
1288 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1289
1290 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1291
1292
1293 (((
1294 (((
1295 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1296 )))
1297
1298 (((
1299 LLDS12 will output system info once power on as below:
1300 )))
1301 )))
1302
1303
1304 [[image:1654593712276-618.png]]
1305
1306 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1307
1308
1309
1310 = 7.  FAQ =
1311
1312
1313 == 7.1  How to change the LoRa Frequency Bands/Region ==
1314
1315
1316 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1317 When downloading the images, choose the required image file for download. ​
1318
1319
1320
1321 = 8.  Trouble Shooting =
1322
1323
1324 == 8.1  AT Commands input doesn't work ==
1325
1326
1327
1328 (((
1329 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1330 )))
1331
1332
1333
1334 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1335
1336
1337 (((
1338 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1339 )))
1340
1341 (((
1342 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1343 )))
1344
1345 (((
1346
1347 )))
1348
1349 (((
1350 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1351 )))
1352
1353 (((
1354 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1355 )))
1356
1357
1358
1359 = 9.  Order Info =
1360
1361
1362 Part Number: (% style="color:blue" %)**LLDS12-XX**
1363
1364
1365 (% style="color:blue" %)**XX**(%%): The default frequency band
1366
1367 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1368 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1369 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1370 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1371 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1372 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1373 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1374 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1375
1376
1377 = 10. ​ Packing Info =
1378
1379
1380 **Package Includes**:
1381
1382 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1383
1384 **Dimension and weight**:
1385
1386 * Device Size: cm
1387 * Device Weight: g
1388 * Package Size / pcs : cm
1389 * Weight / pcs : g
1390
1391
1392 = 11.  ​Support =
1393
1394
1395 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1396 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].