Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11 = 1.  Introduction =
12
13 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
14
15
16 (((
17 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
18 )))
19
20 (((
21 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
22 )))
23
24 (((
25 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
26 )))
27
28 (((
29 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 )))
31
32 (((
33 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 )))
35
36 (((
37 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 )))
39
40
41 [[image:1654826306458-414.png]]
42
43
44
45 == ​1.2  Features ==
46
47
48 * LoRaWAN 1.0.3 Class A
49 * Ultra-low power consumption
50 * Laser technology for distance detection
51 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
52 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
53 * Monitor Battery Level
54 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 * AT Commands to change parameters
56 * Uplink on periodically
57 * Downlink to change configure
58 * 8500mAh Battery for long-term use
59
60
61
62 == 1.3  Probe Specification ==
63
64
65 * Storage temperature:-20℃~~75℃
66 * Operating temperature : -20℃~~60℃
67 * Measure Distance:
68 ** 0.1m ~~ 12m @ 90% Reflectivity
69 ** 0.1m ~~ 4m @ 10% Reflectivity
70 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
71 * Distance resolution : 5mm
72 * Ambient light immunity : 70klux
73 * Enclosure rating : IP65
74 * Light source : LED
75 * Central wavelength : 850nm
76 * FOV : 3.6°
77 * Material of enclosure : ABS+PC
78 * Wire length : 25cm
79
80
81
82 == 1.4  Probe Dimension ==
83
84
85 [[image:1654827224480-952.png]]
86
87
88
89 == 1.5 ​ Applications ==
90
91
92 * Horizontal distance measurement
93 * Parking management system
94 * Object proximity and presence detection
95 * Intelligent trash can management system
96 * Robot obstacle avoidance
97 * Automatic control
98 * Sewer
99
100
101
102 == 1.6  Pin mapping and power on ==
103
104
105 [[image:1654827332142-133.png]]
106
107
108
109 = 2.  Configure LLDS12 to connect to LoRaWAN network =
110
111
112 == 2.1  How it works ==
113
114
115 (((
116 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
117 )))
118
119 (((
120 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
121 )))
122
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127
128 (((
129 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 )))
131
132 (((
133 [[image:1654827857527-556.png]]
134 )))
135
136 (((
137 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 )))
139
140 (((
141
142
143 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
144 )))
145
146 (((
147 Each LSPH01 is shipped with a sticker with the default device EUI as below:
148 )))
149
150 [[image:image-20220607170145-1.jpeg]]
151
152
153
154 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
155
156
157 **Register the device**
158
159
160 [[image:1654592600093-601.png]]
161
162
163
164 **Add APP EUI and DEV EUI**
165
166 [[image:1654592619856-881.png]]
167
168
169
170 **Add APP EUI in the application**
171
172 [[image:1654592632656-512.png]]
173
174
175
176 **Add APP KEY**
177
178 [[image:1654592653453-934.png]]
179
180
181 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
182
183
184 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
185
186
187 [[image:image-20220607170442-2.png]]
188
189
190 (((
191 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
192
193
194 )))
195
196 [[image:1654833501679-968.png]]
197
198
199
200 == 2.3  ​Uplink Payload ==
201
202
203 (((
204 LLDS12 will uplink payload via LoRaWAN with below payload format: 
205 )))
206
207 (((
208 Uplink payload includes in total 11 bytes.
209 )))
210
211 (((
212
213 )))
214
215 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
216 |=(% style="width: 62.5px;" %)(((
217 **Size (bytes)**
218 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
219 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
220 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
221 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
222 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
223 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
224 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
225 )))
226
227 [[image:1654833689380-972.png]]
228
229
230
231 === 2.3.1  Battery Info ===
232
233
234 Check the battery voltage for LLDS12.
235
236 Ex1: 0x0B45 = 2885mV
237
238 Ex2: 0x0B49 = 2889mV
239
240
241
242 === 2.3.2  DS18B20 Temperature sensor ===
243
244
245 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
246
247
248 **Example**:
249
250 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
251
252 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
253
254
255
256 === 2.3.3  Distance ===
257
258
259 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
260
261
262 **Example**:
263
264 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
265
266
267
268 === 2.3.4  Distance signal strength ===
269
270
271 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
272
273
274 **Example**:
275
276 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
277
278 Customers can judge whether they need to adjust the environment based on the signal strength.
279
280
281
282 === 2.3.5  Interrupt Pin ===
283
284
285 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
286
287 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
288
289 **Example:**
290
291 0x00: Normal uplink packet.
292
293 0x01: Interrupt Uplink Packet.
294
295
296
297 === 2.3.6  LiDAR temp ===
298
299
300 Characterize the internal temperature value of the sensor.
301
302 **Example: **
303 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
304 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
305
306
307
308 === 2.3.7  Message Type ===
309
310
311 (((
312 For a normal uplink payload, the message type is always 0x01.
313 )))
314
315 (((
316 Valid Message Type:
317 )))
318
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:499px" %)
321 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
322 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
323 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
324
325
326
327 === 2.3.8  Decode payload in The Things Network ===
328
329
330 While using TTN network, you can add the payload format to decode the payload.
331
332
333 [[image:1654592762713-715.png]]
334
335
336 (((
337 The payload decoder function for TTN is here:
338 )))
339
340 (((
341 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
342 )))
343
344
345
346 == 2.4  Uplink Interval ==
347
348
349 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
350
351
352
353 == 2.5  ​Show Data in DataCake IoT Server ==
354
355
356 (((
357 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
358 )))
359
360 (((
361
362 )))
363
364 (((
365 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
366 )))
367
368 (((
369 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
370 )))
371
372
373 [[image:1654592790040-760.png]]
374
375
376 [[image:1654592800389-571.png]]
377
378
379 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
380
381 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
382
383 [[image:1654832691989-514.png]]
384
385
386 [[image:1654592833877-762.png]]
387
388
389 [[image:1654832740634-933.png]]
390
391
392
393 (((
394 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
395 )))
396
397 (((
398
399 )))
400
401 [[image:1654833065139-942.png]]
402
403
404
405 [[image:1654833092678-390.png]]
406
407
408
409 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
410
411 [[image:1654833163048-332.png]]
412
413
414
415 == 2.6  Frequency Plans ==
416
417
418 (((
419 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
420 )))
421
422
423
424 === 2.6.1  EU863-870 (EU868) ===
425
426
427 (((
428 (% style="color:blue" %)**Uplink:**
429 )))
430
431 (((
432 868.1 - SF7BW125 to SF12BW125
433 )))
434
435 (((
436 868.3 - SF7BW125 to SF12BW125 and SF7BW250
437 )))
438
439 (((
440 868.5 - SF7BW125 to SF12BW125
441 )))
442
443 (((
444 867.1 - SF7BW125 to SF12BW125
445 )))
446
447 (((
448 867.3 - SF7BW125 to SF12BW125
449 )))
450
451 (((
452 867.5 - SF7BW125 to SF12BW125
453 )))
454
455 (((
456 867.7 - SF7BW125 to SF12BW125
457 )))
458
459 (((
460 867.9 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 868.8 - FSK
465 )))
466
467 (((
468
469 )))
470
471 (((
472 (% style="color:blue" %)**Downlink:**
473 )))
474
475 (((
476 Uplink channels 1-9 (RX1)
477 )))
478
479 (((
480 869.525 - SF9BW125 (RX2 downlink only)
481 )))
482
483
484
485 === 2.6.2  US902-928(US915) ===
486
487
488 (((
489 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
490 )))
491
492 (((
493 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
494 )))
495
496 (((
497 After Join success, the end node will switch to the correct sub band by:
498 )))
499
500 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
501 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
502
503
504
505 === 2.6.3  CN470-510 (CN470) ===
506
507
508 (((
509 Used in China, Default use CHE=1
510 )))
511
512 (((
513 (% style="color:blue" %)**Uplink:**
514 )))
515
516 (((
517 486.3 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 486.5 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 486.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 486.9 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 487.1 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 487.3 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 487.5 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 487.7 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549
550 )))
551
552 (((
553 (% style="color:blue" %)**Downlink:**
554 )))
555
556 (((
557 506.7 - SF7BW125 to SF12BW125
558 )))
559
560 (((
561 506.9 - SF7BW125 to SF12BW125
562 )))
563
564 (((
565 507.1 - SF7BW125 to SF12BW125
566 )))
567
568 (((
569 507.3 - SF7BW125 to SF12BW125
570 )))
571
572 (((
573 507.5 - SF7BW125 to SF12BW125
574 )))
575
576 (((
577 507.7 - SF7BW125 to SF12BW125
578 )))
579
580 (((
581 507.9 - SF7BW125 to SF12BW125
582 )))
583
584 (((
585 508.1 - SF7BW125 to SF12BW125
586 )))
587
588 (((
589 505.3 - SF12BW125 (RX2 downlink only)
590 )))
591
592
593
594 === 2.6.4  AU915-928(AU915) ===
595
596
597 (((
598 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
599 )))
600
601 (((
602 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
603 )))
604
605 (((
606
607 )))
608
609 (((
610 After Join success, the end node will switch to the correct sub band by:
611 )))
612
613 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
614 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
615
616
617
618 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
619
620
621 (((
622 (% style="color:blue" %)**Default Uplink channel:**
623 )))
624
625 (((
626 923.2 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 923.4 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634
635 )))
636
637 (((
638 (% style="color:blue" %)**Additional Uplink Channel**:
639 )))
640
641 (((
642 (OTAA mode, channel added by JoinAccept message)
643 )))
644
645 (((
646
647 )))
648
649 (((
650 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
651 )))
652
653 (((
654 922.2 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 922.4 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 922.6 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 922.8 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 923.0 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 922.0 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678
679 )))
680
681 (((
682 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
683 )))
684
685 (((
686 923.6 - SF7BW125 to SF10BW125
687 )))
688
689 (((
690 923.8 - SF7BW125 to SF10BW125
691 )))
692
693 (((
694 924.0 - SF7BW125 to SF10BW125
695 )))
696
697 (((
698 924.2 - SF7BW125 to SF10BW125
699 )))
700
701 (((
702 924.4 - SF7BW125 to SF10BW125
703 )))
704
705 (((
706 924.6 - SF7BW125 to SF10BW125
707 )))
708
709 (((
710
711 )))
712
713 (((
714 (% style="color:blue" %)**Downlink:**
715 )))
716
717 (((
718 Uplink channels 1-8 (RX1)
719 )))
720
721 (((
722 923.2 - SF10BW125 (RX2)
723 )))
724
725
726
727 === 2.6.6  KR920-923 (KR920) ===
728
729
730 (((
731 (% style="color:blue" %)**Default channel:**
732 )))
733
734 (((
735 922.1 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.3 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 922.5 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747
748 )))
749
750 (((
751 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
752 )))
753
754 (((
755 922.1 - SF7BW125 to SF12BW125
756 )))
757
758 (((
759 922.3 - SF7BW125 to SF12BW125
760 )))
761
762 (((
763 922.5 - SF7BW125 to SF12BW125
764 )))
765
766 (((
767 922.7 - SF7BW125 to SF12BW125
768 )))
769
770 (((
771 922.9 - SF7BW125 to SF12BW125
772 )))
773
774 (((
775 923.1 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 923.3 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783
784 )))
785
786 (((
787 (% style="color:blue" %)**Downlink:**
788 )))
789
790 (((
791 Uplink channels 1-7(RX1)
792 )))
793
794 (((
795 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
796 )))
797
798
799
800 === 2.6.7  IN865-867 (IN865) ===
801
802
803 (((
804 (% style="color:blue" %)**Uplink:**
805 )))
806
807 (((
808 865.0625 - SF7BW125 to SF12BW125
809 )))
810
811 (((
812 865.4025 - SF7BW125 to SF12BW125
813 )))
814
815 (((
816 865.9850 - SF7BW125 to SF12BW125
817 )))
818
819 (((
820
821 )))
822
823 (((
824 (% style="color:blue" %)**Downlink:**
825 )))
826
827 (((
828 Uplink channels 1-3 (RX1)
829 )))
830
831 (((
832 866.550 - SF10BW125 (RX2)
833 )))
834
835
836
837 == 2.7  LED Indicator ==
838
839
840 The LLDS12 has an internal LED which is to show the status of different state.
841
842 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
843 * Blink once when device transmit a packet.
844
845
846
847 == 2.8  ​Firmware Change Log ==
848
849
850 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
851
852 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
853
854
855
856 = 3.  LiDAR ToF Measurement =
857
858
859 == 3.1 Principle of Distance Measurement ==
860
861
862 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
863
864
865 [[image:1654831757579-263.png]]
866
867
868
869 == 3.2 Distance Measurement Characteristics ==
870
871
872 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
873
874 [[image:1654831774373-275.png]]
875
876
877 (((
878 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
879 )))
880
881 (((
882 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
883 )))
884
885 (((
886 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
887 )))
888
889
890 (((
891 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
892 )))
893
894
895 [[image:1654831797521-720.png]]
896
897
898 (((
899 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
900 )))
901
902 [[image:1654831810009-716.png]]
903
904
905 (((
906 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
907 )))
908
909
910
911 == 3.3 Notice of usage: ==
912
913
914 Possible invalid /wrong reading for LiDAR ToF tech:
915
916 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
917 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
918 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
919 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
920
921
922
923 == 3.4  Reflectivity of different objects: ==
924
925
926 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:379px" %)
927 |=(% style="width: 53px;" %)Item|=(% style="width: 229px;" %)Material|=(% style="width: 93px;" %)Relectivity
928 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
929 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
930 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
931 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
932 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
933 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
934 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
935 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
936 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
937 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
938 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
939 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
940 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
941 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
942 |(% style="width:53px" %)15|(% style="width:229px" %)(((
943 Unpolished white metal surface
944 )))|(% style="width:93px" %)130%
945 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
946 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
947 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
948
949
950
951 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
952
953
954 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
955
956 * (((
957 (((
958 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
959 )))
960 )))
961 * (((
962 (((
963 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
964 )))
965 )))
966
967 (((
968 (((
969
970 )))
971
972 (((
973 There are two kinds of commands to configure LLDS12, they are:
974 )))
975 )))
976
977 * (((
978 (((
979 (% style="color:#4f81bd" %)** General Commands**.
980 )))
981 )))
982
983 (((
984 (((
985 These commands are to configure:
986 )))
987 )))
988
989 * (((
990 (((
991 General system settings like: uplink interval.
992 )))
993 )))
994 * (((
995 (((
996 LoRaWAN protocol & radio related command.
997 )))
998 )))
999
1000 (((
1001 (((
1002 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1003 )))
1004 )))
1005
1006 (((
1007 (((
1008
1009 )))
1010 )))
1011
1012 * (((
1013 (((
1014 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1015 )))
1016 )))
1017
1018 (((
1019 (((
1020 These commands only valid for LLDS12, as below:
1021 )))
1022 )))
1023
1024
1025
1026 == 4.1  Set Transmit Interval Time ==
1027
1028
1029 Feature: Change LoRaWAN End Node Transmit Interval.
1030
1031 (% style="color:#037691" %)**AT Command: AT+TDC**
1032
1033 [[image:image-20220607171554-8.png]]
1034
1035
1036 (((
1037 (% style="color:#037691" %)**Downlink Command: 0x01**
1038 )))
1039
1040 (((
1041 Format: Command Code (0x01) followed by 3 bytes time value.
1042 )))
1043
1044 (((
1045 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1046 )))
1047
1048 * (((
1049 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1050 )))
1051 * (((
1052 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1053
1054
1055
1056
1057 )))
1058
1059 == 4.2  Set Interrupt Mode ==
1060
1061
1062 Feature, Set Interrupt mode for GPIO_EXIT.
1063
1064 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1065
1066 [[image:image-20220610105806-2.png]]
1067
1068
1069 (((
1070 (% style="color:#037691" %)**Downlink Command: 0x06**
1071 )))
1072
1073 (((
1074 Format: Command Code (0x06) followed by 3 bytes.
1075 )))
1076
1077 (((
1078 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1079 )))
1080
1081 * (((
1082 Example 1: Downlink Payload: 06000000  ~/~/ Turn off interrupt mode
1083 )))
1084 * (((
1085 Example 2: Downlink Payload: 06000003  ~/~/ Set the interrupt mode to rising edge trigger
1086
1087
1088
1089
1090 )))
1091
1092 == 4.3  Get Firmware Version Info ==
1093
1094
1095 Feature: use downlink to get firmware version.
1096
1097 (% style="color:#037691" %)**Downlink Command: 0x26**
1098
1099 [[image:image-20220607171917-10.png]]
1100
1101 * Reply to the confirmation package: 26 01
1102 * Reply to non-confirmed packet: 26 00
1103
1104 Device will send an uplink after got this downlink command. With below payload:
1105
1106 Configures info payload:
1107
1108 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1109 |=(((
1110 **Size(bytes)**
1111 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1112 |**Value**|Software Type|(((
1113 Frequency
1114 Band
1115 )))|Sub-band|(((
1116 Firmware
1117 Version
1118 )))|Sensor Type|Reserve|(((
1119 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1120 Always 0x02
1121 )))
1122
1123 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1124
1125
1126 (% style="color:#037691" %)**Frequency Band**:
1127
1128 *0x01: EU868
1129
1130 *0x02: US915
1131
1132 *0x03: IN865
1133
1134 *0x04: AU915
1135
1136 *0x05: KZ865
1137
1138 *0x06: RU864
1139
1140 *0x07: AS923
1141
1142 *0x08: AS923-1
1143
1144 *0x09: AS923-2
1145
1146 *0xa0: AS923-3
1147
1148
1149 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1150
1151
1152 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1153
1154
1155 (% style="color:#037691" %)**Sensor Type**:
1156
1157 0x01: LSE01
1158
1159 0x02: LDDS75
1160
1161 0x03: LDDS20
1162
1163 0x04: LLMS01
1164
1165 0x05: LSPH01
1166
1167 0x06: LSNPK01
1168
1169 0x07: LLDS12
1170
1171
1172
1173 = 5.  Battery & How to replace =
1174
1175
1176 == 5.1  Battery Type ==
1177
1178
1179 (((
1180 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1181 )))
1182
1183 (((
1184 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1185
1186
1187 )))
1188
1189 [[image:1654593587246-335.png]]
1190
1191
1192 Minimum Working Voltage for the LLDS12:
1193
1194 LLDS12:  2.45v ~~ 3.6v
1195
1196
1197
1198 == 5.2  Replace Battery ==
1199
1200
1201 (((
1202 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1203 )))
1204
1205 (((
1206 And make sure the positive and negative pins match.
1207 )))
1208
1209
1210
1211 == 5.3  Power Consumption Analyze ==
1212
1213
1214 (((
1215 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1216 )))
1217
1218 (((
1219 Instruction to use as below:
1220 )))
1221
1222
1223 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1224
1225 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1226
1227
1228 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1229
1230 * Product Model
1231 * Uplink Interval
1232 * Working Mode
1233
1234 And the Life expectation in difference case will be shown on the right.
1235
1236 [[image:1654593605679-189.png]]
1237
1238
1239 The battery related documents as below:
1240
1241 * (((
1242 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1243 )))
1244 * (((
1245 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1246 )))
1247 * (((
1248 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1249 )))
1250
1251 [[image:image-20220607172042-11.png]]
1252
1253
1254
1255 === 5.3.1  ​Battery Note ===
1256
1257
1258 (((
1259 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1260 )))
1261
1262
1263
1264 === ​5.3.2  Replace the battery ===
1265
1266
1267 (((
1268 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1269 )))
1270
1271 (((
1272 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1273 )))
1274
1275
1276
1277 = 6.  Use AT Command =
1278
1279
1280 == 6.1  Access AT Commands ==
1281
1282
1283 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1284
1285
1286 [[image:1654593668970-604.png]]
1287
1288
1289 **Connection:**
1290
1291 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1292
1293 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1294
1295 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1296
1297
1298 (((
1299 (((
1300 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1301 )))
1302
1303 (((
1304 LLDS12 will output system info once power on as below:
1305 )))
1306 )))
1307
1308
1309 [[image:1654593712276-618.png]]
1310
1311 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1312
1313
1314
1315 = 7.  FAQ =
1316
1317
1318 == 7.1  How to change the LoRa Frequency Bands/Region ==
1319
1320
1321 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1322 When downloading the images, choose the required image file for download. ​
1323
1324
1325
1326 = 8.  Trouble Shooting =
1327
1328
1329 == 8.1  AT Commands input doesn't work ==
1330
1331
1332
1333 (((
1334 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1335 )))
1336
1337
1338
1339 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1340
1341
1342 (((
1343 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1344 )))
1345
1346 (((
1347 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1348 )))
1349
1350 (((
1351
1352 )))
1353
1354 (((
1355 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1356 )))
1357
1358 (((
1359 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1360 )))
1361
1362
1363
1364 = 9.  Order Info =
1365
1366
1367 Part Number: (% style="color:blue" %)**LLDS12-XX**
1368
1369
1370 (% style="color:blue" %)**XX**(%%): The default frequency band
1371
1372 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1373 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1374 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1375 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1376 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1377 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1378 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1379 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1380
1381
1382
1383 = 10. ​ Packing Info =
1384
1385
1386 **Package Includes**:
1387
1388 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1389
1390 **Dimension and weight**:
1391
1392 * Device Size: cm
1393 * Device Weight: g
1394 * Package Size / pcs : cm
1395 * Weight / pcs : g
1396
1397
1398
1399 = 11.  ​Support =
1400
1401
1402 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1403 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1404
1405
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0