Version 125.1 by Edwin Chen on 2022/10/23 10:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23
24
25
26
27 = 1.  Introduction =
28
29
30 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
31
32 (((
33
34
35 (((
36 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
37 )))
38
39 (((
40 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
41 )))
42
43 (((
44 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
45 )))
46
47 (((
48 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 )))
50
51 (((
52 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
53 )))
54
55 (((
56 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
57 )))
58 )))
59
60
61 [[image:1654826306458-414.png]]
62
63
64
65 == ​1.2  Features ==
66
67
68 * LoRaWAN 1.0.3 Class A
69 * Ultra-low power consumption
70 * Laser technology for distance detection
71 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
72 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Monitor Battery Level
74 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
75 * AT Commands to change parameters
76 * Uplink on periodically
77 * Downlink to change configure
78 * 8500mAh Battery for long-term use
79
80 == 1.3  Probe Specification ==
81
82
83 * Storage temperature:-20℃~~75℃
84 * Operating temperature - -20℃~~60℃
85 * Measure Distance:
86 ** 0.1m ~~ 12m @ 90% Reflectivity
87 ** 0.1m ~~ 4m @ 10% Reflectivity
88 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
89 * Distance resolution - 5mm
90 * Ambient light immunity - 70klux
91 * Enclosure rating - IP65
92 * Light source - LED
93 * Central wavelength - 850nm
94 * FOV - 3.6°
95 * Material of enclosure - ABS+PC
96 * Wire length - 25cm
97
98 == 1.4  Probe Dimension ==
99
100
101 [[image:1654827224480-952.png]]
102
103
104
105 == 1.5 ​ Applications ==
106
107
108 * Horizontal distance measurement
109 * Parking management system
110 * Object proximity and presence detection
111 * Intelligent trash can management system
112 * Robot obstacle avoidance
113 * Automatic control
114 * Sewer
115
116 == 1.6  Pin mapping and power on ==
117
118
119 [[image:1654827332142-133.png]]
120
121
122
123 = 2.  Configure LLDS12 to connect to LoRaWAN network =
124
125
126 == 2.1  How it works ==
127
128
129 (((
130 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
131 )))
132
133 (((
134 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
135 )))
136
137
138
139 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
140
141
142 (((
143 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
144 )))
145
146 (((
147 [[image:1654827857527-556.png]]
148 )))
149
150 (((
151 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
152 )))
153
154 (((
155
156
157 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
158 )))
159
160 (((
161 Each LSPH01 is shipped with a sticker with the default device EUI as below:
162 )))
163
164 [[image:image-20220607170145-1.jpeg]]
165
166
167
168 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
169
170
171 **Register the device**
172
173
174 [[image:1654592600093-601.png]]
175
176
177
178 **Add APP EUI and DEV EUI**
179
180 [[image:1654592619856-881.png]]
181
182
183
184 **Add APP EUI in the application**
185
186 [[image:1654592632656-512.png]]
187
188
189
190 **Add APP KEY**
191
192 [[image:1654592653453-934.png]]
193
194
195 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
196
197
198 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
199
200 [[image:image-20220607170442-2.png]]
201
202
203 (((
204 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
205 )))
206
207 [[image:1654833501679-968.png]]
208
209
210
211 == 2.3  ​Uplink Payload ==
212
213
214 (((
215 LLDS12 will uplink payload via LoRaWAN with below payload format: 
216 )))
217
218 (((
219 Uplink payload includes in total 11 bytes.
220 )))
221
222 (((
223
224 )))
225
226 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
227 |=(% style="width: 62.5px;" %)(((
228 **Size (bytes)**
229 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
230 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
231 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
232 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
233 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
234 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
235 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
236 )))
237
238 [[image:1654833689380-972.png]]
239
240
241
242 === 2.3.1  Battery Info ===
243
244
245 Check the battery voltage for LLDS12.
246
247 Ex1: 0x0B45 = 2885mV
248
249 Ex2: 0x0B49 = 2889mV
250
251
252
253 === 2.3.2  DS18B20 Temperature sensor ===
254
255
256 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
257
258
259 **Example**:
260
261 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
262
263 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
264
265
266
267 === 2.3.3  Distance ===
268
269
270 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
271
272
273 **Example**:
274
275 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
276
277
278
279 === 2.3.4  Distance signal strength ===
280
281
282 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
283
284
285 **Example**:
286
287 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
288
289 Customers can judge whether they need to adjust the environment based on the signal strength.
290
291
292
293 === 2.3.5  Interrupt Pin ===
294
295
296 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
297
298 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
299
300 **Example:**
301
302 0x00: Normal uplink packet.
303
304 0x01: Interrupt Uplink Packet.
305
306
307
308 === 2.3.6  LiDAR temp ===
309
310
311 Characterize the internal temperature value of the sensor.
312
313 **Example: **
314 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
315 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
316
317
318
319 === 2.3.7  Message Type ===
320
321
322 (((
323 For a normal uplink payload, the message type is always 0x01.
324 )))
325
326 (((
327 Valid Message Type:
328 )))
329
330
331 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
332 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
333 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
334 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
335
336 === 2.3.8  Decode payload in The Things Network ===
337
338
339 While using TTN network, you can add the payload format to decode the payload.
340
341
342 [[image:1654592762713-715.png]]
343
344
345 (((
346 The payload decoder function for TTN is here:
347 )))
348
349 (((
350 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
351 )))
352
353
354
355 == 2.4  Uplink Interval ==
356
357
358 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
359
360
361
362 == 2.5  ​Show Data in DataCake IoT Server ==
363
364
365 (((
366 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 )))
368
369 (((
370
371 )))
372
373 (((
374 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
375 )))
376
377 (((
378 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
379 )))
380
381
382 [[image:1654592790040-760.png]]
383
384
385 [[image:1654592800389-571.png]]
386
387
388 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
389
390 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
391
392 [[image:1654832691989-514.png]]
393
394
395 [[image:1654592833877-762.png]]
396
397
398 [[image:1654832740634-933.png]]
399
400
401
402 (((
403 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
404 )))
405
406 (((
407
408 )))
409
410 [[image:1654833065139-942.png]]
411
412
413
414 [[image:1654833092678-390.png]]
415
416
417
418 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
419
420 [[image:1654833163048-332.png]]
421
422
423
424 == 2.6  Frequency Plans ==
425
426
427 (((
428 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
429 )))
430
431
432
433 === 2.6.1  EU863-870 (EU868) ===
434
435
436 (((
437 (% style="color:blue" %)**Uplink:**
438 )))
439
440 (((
441 868.1 - SF7BW125 to SF12BW125
442 )))
443
444 (((
445 868.3 - SF7BW125 to SF12BW125 and SF7BW250
446 )))
447
448 (((
449 868.5 - SF7BW125 to SF12BW125
450 )))
451
452 (((
453 867.1 - SF7BW125 to SF12BW125
454 )))
455
456 (((
457 867.3 - SF7BW125 to SF12BW125
458 )))
459
460 (((
461 867.5 - SF7BW125 to SF12BW125
462 )))
463
464 (((
465 867.7 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 867.9 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 868.8 - FSK
474 )))
475
476 (((
477
478 )))
479
480 (((
481 (% style="color:blue" %)**Downlink:**
482 )))
483
484 (((
485 Uplink channels 1-9 (RX1)
486 )))
487
488 (((
489 869.525 - SF9BW125 (RX2 downlink only)
490 )))
491
492
493
494 === 2.6.2  US902-928(US915) ===
495
496
497 (((
498 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
499 )))
500
501 (((
502 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
503 )))
504
505 (((
506 After Join success, the end node will switch to the correct sub band by:
507 )))
508
509 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
510 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
511
512 === 2.6.3  CN470-510 (CN470) ===
513
514
515 (((
516 Used in China, Default use CHE=1
517 )))
518
519 (((
520 (% style="color:blue" %)**Uplink:**
521 )))
522
523 (((
524 486.3 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 486.5 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 486.7 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 486.9 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 487.1 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 487.3 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 487.5 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 487.7 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556
557 )))
558
559 (((
560 (% style="color:blue" %)**Downlink:**
561 )))
562
563 (((
564 506.7 - SF7BW125 to SF12BW125
565 )))
566
567 (((
568 506.9 - SF7BW125 to SF12BW125
569 )))
570
571 (((
572 507.1 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 507.3 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 507.5 - SF7BW125 to SF12BW125
581 )))
582
583 (((
584 507.7 - SF7BW125 to SF12BW125
585 )))
586
587 (((
588 507.9 - SF7BW125 to SF12BW125
589 )))
590
591 (((
592 508.1 - SF7BW125 to SF12BW125
593 )))
594
595 (((
596 505.3 - SF12BW125 (RX2 downlink only)
597 )))
598
599
600
601 === 2.6.4  AU915-928(AU915) ===
602
603
604 (((
605 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
606 )))
607
608 (((
609 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
610 )))
611
612 (((
613
614 )))
615
616 (((
617 After Join success, the end node will switch to the correct sub band by:
618 )))
619
620 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
621 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
622
623 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
624
625
626 (((
627 (% style="color:blue" %)**Default Uplink channel:**
628 )))
629
630 (((
631 923.2 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 923.4 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639
640 )))
641
642 (((
643 (% style="color:blue" %)**Additional Uplink Channel**:
644 )))
645
646 (((
647 (OTAA mode, channel added by JoinAccept message)
648 )))
649
650 (((
651
652 )))
653
654 (((
655 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
656 )))
657
658 (((
659 922.2 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 922.4 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 922.6 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 922.8 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675 923.0 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679 922.0 - SF7BW125 to SF10BW125
680 )))
681
682 (((
683
684 )))
685
686 (((
687 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
688 )))
689
690 (((
691 923.6 - SF7BW125 to SF10BW125
692 )))
693
694 (((
695 923.8 - SF7BW125 to SF10BW125
696 )))
697
698 (((
699 924.0 - SF7BW125 to SF10BW125
700 )))
701
702 (((
703 924.2 - SF7BW125 to SF10BW125
704 )))
705
706 (((
707 924.4 - SF7BW125 to SF10BW125
708 )))
709
710 (((
711 924.6 - SF7BW125 to SF10BW125
712 )))
713
714 (((
715
716 )))
717
718 (((
719 (% style="color:blue" %)**Downlink:**
720 )))
721
722 (((
723 Uplink channels 1-8 (RX1)
724 )))
725
726 (((
727 923.2 - SF10BW125 (RX2)
728 )))
729
730
731
732 === 2.6.6  KR920-923 (KR920) ===
733
734
735 (((
736 (% style="color:blue" %)**Default channel:**
737 )))
738
739 (((
740 922.1 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 922.3 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 922.5 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752
753 )))
754
755 (((
756 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
757 )))
758
759 (((
760 922.1 - SF7BW125 to SF12BW125
761 )))
762
763 (((
764 922.3 - SF7BW125 to SF12BW125
765 )))
766
767 (((
768 922.5 - SF7BW125 to SF12BW125
769 )))
770
771 (((
772 922.7 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 922.9 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 923.1 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 923.3 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788
789 )))
790
791 (((
792 (% style="color:blue" %)**Downlink:**
793 )))
794
795 (((
796 Uplink channels 1-7(RX1)
797 )))
798
799 (((
800 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 )))
802
803
804
805 === 2.6.7  IN865-867 (IN865) ===
806
807
808 (((
809 (% style="color:blue" %)**Uplink:**
810 )))
811
812 (((
813 865.0625 - SF7BW125 to SF12BW125
814 )))
815
816 (((
817 865.4025 - SF7BW125 to SF12BW125
818 )))
819
820 (((
821 865.9850 - SF7BW125 to SF12BW125
822 )))
823
824 (((
825
826 )))
827
828 (((
829 (% style="color:blue" %)**Downlink:**
830 )))
831
832 (((
833 Uplink channels 1-3 (RX1)
834 )))
835
836 (((
837 866.550 - SF10BW125 (RX2)
838 )))
839
840
841
842 == 2.7  LED Indicator ==
843
844
845 The LLDS12 has an internal LED which is to show the status of different state.
846
847 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
848 * Blink once when device transmit a packet.
849
850 == 2.8  ​Firmware Change Log ==
851
852
853 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
854
855
856 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
857
858
859
860 = 3.  LiDAR ToF Measurement =
861
862
863 == 3.1 Principle of Distance Measurement ==
864
865
866 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
867
868
869 [[image:1654831757579-263.png]]
870
871
872
873 == 3.2 Distance Measurement Characteristics ==
874
875
876 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
877
878 [[image:1654831774373-275.png]]
879
880
881 (((
882 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
883 )))
884
885 (((
886 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
887 )))
888
889 (((
890 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
891 )))
892
893
894 (((
895 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
896 )))
897
898
899 [[image:1654831797521-720.png]]
900
901
902 (((
903 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
904 )))
905
906 [[image:1654831810009-716.png]]
907
908
909 (((
910 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
911 )))
912
913
914
915 == 3.3 Notice of usage: ==
916
917
918 Possible invalid /wrong reading for LiDAR ToF tech:
919
920 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
921 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
922 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
923 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
924
925 == 3.4  Reflectivity of different objects: ==
926
927 {{velocity}}
928 $xwiki.ssfx.use("js/xwiki/table/table.css")
929 $xwiki.jsfx.use("js/xwiki/table/tablefilterNsort.js", true)
930 {{/velocity}}
931
932 (% class="doOddEven filterable grid sortable" id="tableid" style="width:506.989px" %)
933 (% class="sortHeader" %)|=(% style="width: 266px;" %)Server Name |=(% style="width: 263px;" %)Server Type
934 |(% style="width:266px" %)[[Actility ThingPark Enterprise>>Actility ThingPark Enterprise]]|(% style="width:263px" %)LoRaWAN Network Server
935 |(% style="width:266px" %)[[AWS IoT Core for LoRaWAN>>AWS IoT Core for LoRaWAN]]|(% style="width:263px" %)LoRaWAN Network Server
936 |(% style="width:266px" %)[[ChirpStack>>doc:.Notes for ChirpStack.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
937 |(% style="width:266px" %)[[Helium>>doc:.Notes for Helium.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
938 |(% style="width:266px" %)[[Data Cake>>doc:.Notes for Data Cake.WebHome]]|(% style="width:263px" %)Application Server
939 |(% style="width:266px" %)[[KPN>>doc:.Notes for KPN.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
940 |(% style="width:266px" %)[[LORIOT>>doc:.Notes for LORIOT.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
941 |(% style="width:266px" %)[[lorawan-server by Petr Gotthard>>doc:.Lorawan-server by Petr Gotthard.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
942 |(% style="width:266px" %)[[Objenious>>doc:.Connection to Objenious.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
943 |(% style="width:266px" %)[[Senra>>doc:.Connection to Senra.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
944 |(% style="width:266px" %)[[Senet>>doc:.Connection to Senet.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
945 |(% style="width:266px" %)[[The Things Network>>doc:.Notes for TTN.WebHome]]|(% style="width:263px" %)TTN LoRaWAN Network Server
946 |(% style="width:266px" %)[[TTN Stack v3>>doc:.TTN Stack 3.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
947 |(% style="width:266px" %)[[Tago.IO>>doc:.Tago\.IO.WebHome]]|(% style="width:263px" %)Application Server
948 |(% style="width:266px" %)[[Mapwize>>Mapwize]]|(% style="width:263px" %)ibeacon location service description
949 |(% style="width:266px" %)[[Mydevices/Cayenne>>doc:.Mydevices.WebHome]]|(% style="width:263px" %)IoT Application Server
950 |(% style="width:266px" %)[[AllThingsTalk>>doc:.AllThingsTalk.WebHome]]|(% style="width:263px" %)LoRaWAN Server
951 |(% style="width:266px" %)[[Node-Red>>Node-RED]]|(% style="width:263px" %)IoT Application Server
952 |(% style="width:266px" %)[[Losant>>Losant]]|(% style="width:263px" %)IoT Application Server
953 |(% style="width:266px" %)[[Tencent Cloud(腾讯云)>>doc:.Tencent Cloud.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
954
955 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
956
957
958 (((
959 (((
960 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
961 )))
962 )))
963
964 * (((
965 (((
966 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
967 )))
968 )))
969 * (((
970 (((
971 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
972 )))
973 )))
974
975 (((
976 (((
977
978 )))
979
980 (((
981 There are two kinds of commands to configure LLDS12, they are:
982 )))
983 )))
984
985 * (((
986 (((
987 (% style="color:#4f81bd" %)** General Commands**.
988 )))
989 )))
990
991 (((
992 (((
993 These commands are to configure:
994 )))
995 )))
996
997 * (((
998 (((
999 General system settings like: uplink interval.
1000 )))
1001 )))
1002 * (((
1003 (((
1004 LoRaWAN protocol & radio related command.
1005 )))
1006 )))
1007
1008 (((
1009 (((
1010 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1011 )))
1012 )))
1013
1014 (((
1015 (((
1016
1017 )))
1018 )))
1019
1020 * (((
1021 (((
1022 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1023 )))
1024 )))
1025
1026 (((
1027 (((
1028 These commands only valid for LLDS12, as below:
1029 )))
1030 )))
1031
1032
1033
1034 == 4.1  Set Transmit Interval Time ==
1035
1036
1037 Feature: Change LoRaWAN End Node Transmit Interval.
1038
1039 (% style="color:#037691" %)**AT Command: AT+TDC**
1040
1041 [[image:image-20220607171554-8.png]]
1042
1043
1044 (((
1045 (% style="color:#037691" %)**Downlink Command: 0x01**
1046 )))
1047
1048 (((
1049 Format: Command Code (0x01) followed by 3 bytes time value.
1050 )))
1051
1052 (((
1053 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1054 )))
1055
1056 * (((
1057 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1058 )))
1059 * (((
1060 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1061
1062
1063
1064
1065 )))
1066
1067 == 4.2  Set Interrupt Mode ==
1068
1069
1070 Feature, Set Interrupt mode for GPIO_EXIT.
1071
1072 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1073
1074 [[image:image-20220610105806-2.png]]
1075
1076
1077 (((
1078 (% style="color:#037691" %)**Downlink Command: 0x06**
1079 )))
1080
1081 (((
1082 Format: Command Code (0x06) followed by 3 bytes.
1083 )))
1084
1085 (((
1086 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1087 )))
1088
1089 * (((
1090 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1091 )))
1092 * (((
1093 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1094
1095
1096
1097
1098 )))
1099
1100 == 4.3  Get Firmware Version Info ==
1101
1102
1103 Feature: use downlink to get firmware version.
1104
1105 (% style="color:#037691" %)**Downlink Command: 0x26**
1106
1107 [[image:image-20220607171917-10.png]]
1108
1109 * Reply to the confirmation package: 26 01
1110 * Reply to non-confirmed packet: 26 00
1111
1112 Device will send an uplink after got this downlink command. With below payload:
1113
1114 Configures info payload:
1115
1116 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1117 |=(((
1118 **Size(bytes)**
1119 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1120 |**Value**|Software Type|(((
1121 Frequency
1122
1123 Band
1124 )))|Sub-band|(((
1125 Firmware
1126
1127 Version
1128 )))|Sensor Type|Reserve|(((
1129 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1130 Always 0x02
1131 )))
1132
1133 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1134
1135
1136 (% style="color:#037691" %)**Frequency Band**:
1137
1138 *0x01: EU868
1139
1140 *0x02: US915
1141
1142 *0x03: IN865
1143
1144 *0x04: AU915
1145
1146 *0x05: KZ865
1147
1148 *0x06: RU864
1149
1150 *0x07: AS923
1151
1152 *0x08: AS923-1
1153
1154 *0x09: AS923-2
1155
1156 *0xa0: AS923-3
1157
1158
1159 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1160
1161
1162 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1163
1164
1165 (% style="color:#037691" %)**Sensor Type**:
1166
1167 0x01: LSE01
1168
1169 0x02: LDDS75
1170
1171 0x03: LDDS20
1172
1173 0x04: LLMS01
1174
1175 0x05: LSPH01
1176
1177 0x06: LSNPK01
1178
1179 0x07: LLDS12
1180
1181
1182
1183 = 5.  Battery & How to replace =
1184
1185
1186 == 5.1  Battery Type ==
1187
1188
1189 (((
1190 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1191 )))
1192
1193 (((
1194 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1195 )))
1196
1197 [[image:1654593587246-335.png]]
1198
1199
1200 Minimum Working Voltage for the LLDS12:
1201
1202 LLDS12:  2.45v ~~ 3.6v
1203
1204
1205
1206 == 5.2  Replace Battery ==
1207
1208
1209 (((
1210 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1211 )))
1212
1213 (((
1214 And make sure the positive and negative pins match.
1215 )))
1216
1217
1218
1219 == 5.3  Power Consumption Analyze ==
1220
1221
1222 (((
1223 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1224 )))
1225
1226 (((
1227 Instruction to use as below:
1228 )))
1229
1230
1231 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1232
1233 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1234
1235
1236 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1237
1238 * Product Model
1239 * Uplink Interval
1240 * Working Mode
1241
1242 And the Life expectation in difference case will be shown on the right.
1243
1244 [[image:1654593605679-189.png]]
1245
1246
1247 The battery related documents as below:
1248
1249 * (((
1250 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1251 )))
1252 * (((
1253 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1254 )))
1255 * (((
1256 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1257 )))
1258
1259 [[image:image-20220607172042-11.png]]
1260
1261
1262
1263 === 5.3.1  ​Battery Note ===
1264
1265
1266 (((
1267 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1268 )))
1269
1270
1271
1272 === ​5.3.2  Replace the battery ===
1273
1274
1275 (((
1276 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1277 )))
1278
1279 (((
1280 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1281 )))
1282
1283
1284
1285 = 6.  Use AT Command =
1286
1287
1288 == 6.1  Access AT Commands ==
1289
1290
1291 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1292
1293 [[image:1654593668970-604.png]]
1294
1295 **Connection:**
1296
1297 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1298
1299 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1300
1301 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1302
1303
1304 (((
1305 (((
1306 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1307 )))
1308
1309 (((
1310 LLDS12 will output system info once power on as below:
1311 )))
1312 )))
1313
1314
1315 [[image:1654593712276-618.png]]
1316
1317 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1318
1319
1320
1321 = 7.  FAQ =
1322
1323
1324 == 7.1  How to change the LoRa Frequency Bands/Region ==
1325
1326
1327 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1328 When downloading the images, choose the required image file for download. ​
1329
1330
1331
1332 = 8.  Trouble Shooting =
1333
1334
1335 == 8.1  AT Commands input doesn't work ==
1336
1337
1338
1339 (((
1340 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1341 )))
1342
1343
1344
1345 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1346
1347
1348 (((
1349 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1350 )))
1351
1352 (((
1353 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1354 )))
1355
1356 (((
1357
1358 )))
1359
1360 (((
1361 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1362 )))
1363
1364 (((
1365 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1366 )))
1367
1368
1369
1370 = 9.  Order Info =
1371
1372
1373 Part Number: (% style="color:blue" %)**LLDS12-XX**
1374
1375
1376 (% style="color:blue" %)**XX**(%%): The default frequency band
1377
1378 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1379 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1380 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1381 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1382 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1383 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1384 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1385 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1386
1387 = 10. ​ Packing Info =
1388
1389
1390 **Package Includes**:
1391
1392 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1393
1394 **Dimension and weight**:
1395
1396 * Device Size: cm
1397 * Device Weight: g
1398 * Package Size / pcs : cm
1399 * Weight / pcs : g
1400
1401 = 11.  ​Support =
1402
1403
1404 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1405 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1406
1407