Version 123.1 by Edwin Chen on 2022/10/23 10:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23
24
25
26
27 = 1.  Introduction =
28
29
30 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
31
32 (((
33
34
35 (((
36 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
37 )))
38
39 (((
40 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
41 )))
42
43 (((
44 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
45 )))
46
47 (((
48 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 )))
50
51 (((
52 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
53 )))
54
55 (((
56 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
57 )))
58 )))
59
60
61 [[image:1654826306458-414.png]]
62
63
64
65 == ​1.2  Features ==
66
67
68 * LoRaWAN 1.0.3 Class A
69 * Ultra-low power consumption
70 * Laser technology for distance detection
71 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
72 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Monitor Battery Level
74 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
75 * AT Commands to change parameters
76 * Uplink on periodically
77 * Downlink to change configure
78 * 8500mAh Battery for long-term use
79
80
81 == 1.3  Probe Specification ==
82
83
84 * Storage temperature:-20℃~~75℃
85 * Operating temperature - -20℃~~60℃
86 * Measure Distance:
87 ** 0.1m ~~ 12m @ 90% Reflectivity
88 ** 0.1m ~~ 4m @ 10% Reflectivity
89 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
90 * Distance resolution - 5mm
91 * Ambient light immunity - 70klux
92 * Enclosure rating - IP65
93 * Light source - LED
94 * Central wavelength - 850nm
95 * FOV - 3.6°
96 * Material of enclosure - ABS+PC
97 * Wire length - 25cm
98
99
100 == 1.4  Probe Dimension ==
101
102
103 [[image:1654827224480-952.png]]
104
105
106
107 == 1.5 ​ Applications ==
108
109
110 * Horizontal distance measurement
111 * Parking management system
112 * Object proximity and presence detection
113 * Intelligent trash can management system
114 * Robot obstacle avoidance
115 * Automatic control
116 * Sewer
117
118
119 == 1.6  Pin mapping and power on ==
120
121
122 [[image:1654827332142-133.png]]
123
124
125
126 = 2.  Configure LLDS12 to connect to LoRaWAN network =
127
128
129 == 2.1  How it works ==
130
131
132 (((
133 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
134 )))
135
136 (((
137 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
138 )))
139
140
141
142 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
143
144
145 (((
146 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
147 )))
148
149 (((
150 [[image:1654827857527-556.png]]
151 )))
152
153 (((
154 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
155 )))
156
157 (((
158
159
160 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
161 )))
162
163 (((
164 Each LSPH01 is shipped with a sticker with the default device EUI as below:
165 )))
166
167 [[image:image-20220607170145-1.jpeg]]
168
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 **Register the device**
175
176
177 [[image:1654592600093-601.png]]
178
179
180
181 **Add APP EUI and DEV EUI**
182
183 [[image:1654592619856-881.png]]
184
185
186
187 **Add APP EUI in the application**
188
189 [[image:1654592632656-512.png]]
190
191
192
193 **Add APP KEY**
194
195 [[image:1654592653453-934.png]]
196
197
198 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
199
200
201 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
202
203 [[image:image-20220607170442-2.png]]
204
205
206 (((
207 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
208 )))
209
210 [[image:1654833501679-968.png]]
211
212
213
214 == 2.3  ​Uplink Payload ==
215
216
217 (((
218 LLDS12 will uplink payload via LoRaWAN with below payload format: 
219 )))
220
221 (((
222 Uplink payload includes in total 11 bytes.
223 )))
224
225 (((
226
227 )))
228
229 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
230 |=(% style="width: 62.5px;" %)(((
231 **Size (bytes)**
232 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
233 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
234 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
235 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
236 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
237 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
238 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
239 )))
240
241 [[image:1654833689380-972.png]]
242
243
244
245 === 2.3.1  Battery Info ===
246
247
248 Check the battery voltage for LLDS12.
249
250 Ex1: 0x0B45 = 2885mV
251
252 Ex2: 0x0B49 = 2889mV
253
254
255
256 === 2.3.2  DS18B20 Temperature sensor ===
257
258
259 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
260
261
262 **Example**:
263
264 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
265
266 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
267
268
269
270 === 2.3.3  Distance ===
271
272
273 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
274
275
276 **Example**:
277
278 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
279
280
281
282 === 2.3.4  Distance signal strength ===
283
284
285 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
286
287
288 **Example**:
289
290 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
291
292 Customers can judge whether they need to adjust the environment based on the signal strength.
293
294
295
296 === 2.3.5  Interrupt Pin ===
297
298
299 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
300
301 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
302
303 **Example:**
304
305 0x00: Normal uplink packet.
306
307 0x01: Interrupt Uplink Packet.
308
309
310
311 === 2.3.6  LiDAR temp ===
312
313
314 Characterize the internal temperature value of the sensor.
315
316 **Example: **
317 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
318 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
319
320
321
322 === 2.3.7  Message Type ===
323
324
325 (((
326 For a normal uplink payload, the message type is always 0x01.
327 )))
328
329 (((
330 Valid Message Type:
331 )))
332
333
334 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
335 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
336 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
337 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
338
339 === 2.3.8  Decode payload in The Things Network ===
340
341
342 While using TTN network, you can add the payload format to decode the payload.
343
344
345 [[image:1654592762713-715.png]]
346
347
348 (((
349 The payload decoder function for TTN is here:
350 )))
351
352 (((
353 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
354 )))
355
356
357
358 == 2.4  Uplink Interval ==
359
360
361 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
362
363
364
365 == 2.5  ​Show Data in DataCake IoT Server ==
366
367
368 (((
369 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
370 )))
371
372 (((
373
374 )))
375
376 (((
377 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
378 )))
379
380 (((
381 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
382 )))
383
384
385 [[image:1654592790040-760.png]]
386
387
388 [[image:1654592800389-571.png]]
389
390
391 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
392
393 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
394
395 [[image:1654832691989-514.png]]
396
397
398 [[image:1654592833877-762.png]]
399
400
401 [[image:1654832740634-933.png]]
402
403
404
405 (((
406 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
407 )))
408
409 (((
410
411 )))
412
413 [[image:1654833065139-942.png]]
414
415
416
417 [[image:1654833092678-390.png]]
418
419
420
421 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
422
423 [[image:1654833163048-332.png]]
424
425
426
427 == 2.6  Frequency Plans ==
428
429
430 (((
431 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
432 )))
433
434
435
436 === 2.6.1  EU863-870 (EU868) ===
437
438
439 (((
440 (% style="color:blue" %)**Uplink:**
441 )))
442
443 (((
444 868.1 - SF7BW125 to SF12BW125
445 )))
446
447 (((
448 868.3 - SF7BW125 to SF12BW125 and SF7BW250
449 )))
450
451 (((
452 868.5 - SF7BW125 to SF12BW125
453 )))
454
455 (((
456 867.1 - SF7BW125 to SF12BW125
457 )))
458
459 (((
460 867.3 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 867.5 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 867.7 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 867.9 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 868.8 - FSK
477 )))
478
479 (((
480
481 )))
482
483 (((
484 (% style="color:blue" %)**Downlink:**
485 )))
486
487 (((
488 Uplink channels 1-9 (RX1)
489 )))
490
491 (((
492 869.525 - SF9BW125 (RX2 downlink only)
493 )))
494
495
496
497 === 2.6.2  US902-928(US915) ===
498
499
500 (((
501 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
502 )))
503
504 (((
505 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
506 )))
507
508 (((
509 After Join success, the end node will switch to the correct sub band by:
510 )))
511
512 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
513 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
514
515
516 === 2.6.3  CN470-510 (CN470) ===
517
518
519 (((
520 Used in China, Default use CHE=1
521 )))
522
523 (((
524 (% style="color:blue" %)**Uplink:**
525 )))
526
527 (((
528 486.3 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 486.5 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 486.7 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 486.9 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 487.1 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 487.3 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 487.5 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 487.7 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560
561 )))
562
563 (((
564 (% style="color:blue" %)**Downlink:**
565 )))
566
567 (((
568 506.7 - SF7BW125 to SF12BW125
569 )))
570
571 (((
572 506.9 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 507.1 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 507.3 - SF7BW125 to SF12BW125
581 )))
582
583 (((
584 507.5 - SF7BW125 to SF12BW125
585 )))
586
587 (((
588 507.7 - SF7BW125 to SF12BW125
589 )))
590
591 (((
592 507.9 - SF7BW125 to SF12BW125
593 )))
594
595 (((
596 508.1 - SF7BW125 to SF12BW125
597 )))
598
599 (((
600 505.3 - SF12BW125 (RX2 downlink only)
601 )))
602
603
604
605 === 2.6.4  AU915-928(AU915) ===
606
607
608 (((
609 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
610 )))
611
612 (((
613 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
614 )))
615
616 (((
617
618 )))
619
620 (((
621 After Join success, the end node will switch to the correct sub band by:
622 )))
623
624 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
625 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
626
627
628 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
629
630
631 (((
632 (% style="color:blue" %)**Default Uplink channel:**
633 )))
634
635 (((
636 923.2 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 923.4 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644
645 )))
646
647 (((
648 (% style="color:blue" %)**Additional Uplink Channel**:
649 )))
650
651 (((
652 (OTAA mode, channel added by JoinAccept message)
653 )))
654
655 (((
656
657 )))
658
659 (((
660 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
661 )))
662
663 (((
664 922.2 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 922.4 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 922.6 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 922.8 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680 923.0 - SF7BW125 to SF10BW125
681 )))
682
683 (((
684 922.0 - SF7BW125 to SF10BW125
685 )))
686
687 (((
688
689 )))
690
691 (((
692 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
693 )))
694
695 (((
696 923.6 - SF7BW125 to SF10BW125
697 )))
698
699 (((
700 923.8 - SF7BW125 to SF10BW125
701 )))
702
703 (((
704 924.0 - SF7BW125 to SF10BW125
705 )))
706
707 (((
708 924.2 - SF7BW125 to SF10BW125
709 )))
710
711 (((
712 924.4 - SF7BW125 to SF10BW125
713 )))
714
715 (((
716 924.6 - SF7BW125 to SF10BW125
717 )))
718
719 (((
720
721 )))
722
723 (((
724 (% style="color:blue" %)**Downlink:**
725 )))
726
727 (((
728 Uplink channels 1-8 (RX1)
729 )))
730
731 (((
732 923.2 - SF10BW125 (RX2)
733 )))
734
735
736
737 === 2.6.6  KR920-923 (KR920) ===
738
739
740 (((
741 (% style="color:blue" %)**Default channel:**
742 )))
743
744 (((
745 922.1 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 922.3 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753 922.5 - SF7BW125 to SF12BW125
754 )))
755
756 (((
757
758 )))
759
760 (((
761 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
762 )))
763
764 (((
765 922.1 - SF7BW125 to SF12BW125
766 )))
767
768 (((
769 922.3 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773 922.5 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777 922.7 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781 922.9 - SF7BW125 to SF12BW125
782 )))
783
784 (((
785 923.1 - SF7BW125 to SF12BW125
786 )))
787
788 (((
789 923.3 - SF7BW125 to SF12BW125
790 )))
791
792 (((
793
794 )))
795
796 (((
797 (% style="color:blue" %)**Downlink:**
798 )))
799
800 (((
801 Uplink channels 1-7(RX1)
802 )))
803
804 (((
805 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
806 )))
807
808
809
810 === 2.6.7  IN865-867 (IN865) ===
811
812
813 (((
814 (% style="color:blue" %)**Uplink:**
815 )))
816
817 (((
818 865.0625 - SF7BW125 to SF12BW125
819 )))
820
821 (((
822 865.4025 - SF7BW125 to SF12BW125
823 )))
824
825 (((
826 865.9850 - SF7BW125 to SF12BW125
827 )))
828
829 (((
830
831 )))
832
833 (((
834 (% style="color:blue" %)**Downlink:**
835 )))
836
837 (((
838 Uplink channels 1-3 (RX1)
839 )))
840
841 (((
842 866.550 - SF10BW125 (RX2)
843 )))
844
845
846
847 == 2.7  LED Indicator ==
848
849
850 The LLDS12 has an internal LED which is to show the status of different state.
851
852 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
853 * Blink once when device transmit a packet.
854
855
856 == 2.8  ​Firmware Change Log ==
857
858
859 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
860
861
862 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
863
864
865
866 = 3.  LiDAR ToF Measurement =
867
868
869 == 3.1 Principle of Distance Measurement ==
870
871
872 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
873
874
875 [[image:1654831757579-263.png]]
876
877
878
879 == 3.2 Distance Measurement Characteristics ==
880
881
882 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
883
884 [[image:1654831774373-275.png]]
885
886
887 (((
888 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
889 )))
890
891 (((
892 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
893 )))
894
895 (((
896 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
897 )))
898
899
900 (((
901 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
902 )))
903
904
905 [[image:1654831797521-720.png]]
906
907
908 (((
909 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
910 )))
911
912 [[image:1654831810009-716.png]]
913
914
915 (((
916 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
917 )))
918
919
920
921 == 3.3 Notice of usage: ==
922
923
924 Possible invalid /wrong reading for LiDAR ToF tech:
925
926 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
927 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
928 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
929 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
930
931
932 == 3.4  Reflectivity of different objects: ==
933
934 (% class="doOddEven filterable grid sortable" id="tableid" style="width:506.989px" %)
935 (% class="sortHeader" %)|=(% style="width: 266px;" %)Server Name |=(% style="width: 263px;" %)Server Type
936 |(% style="width:266px" %)[[Actility ThingPark Enterprise>>Actility ThingPark Enterprise]]|(% style="width:263px" %)LoRaWAN Network Server
937 |(% style="width:266px" %)[[AWS IoT Core for LoRaWAN>>AWS IoT Core for LoRaWAN]]|(% style="width:263px" %)LoRaWAN Network Server
938 |(% style="width:266px" %)[[ChirpStack>>doc:.Notes for ChirpStack.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
939 |(% style="width:266px" %)[[Helium>>doc:.Notes for Helium.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
940 |(% style="width:266px" %)[[Data Cake>>doc:.Notes for Data Cake.WebHome]]|(% style="width:263px" %)Application Server
941 |(% style="width:266px" %)[[KPN>>doc:.Notes for KPN.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
942 |(% style="width:266px" %)[[LORIOT>>doc:.Notes for LORIOT.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
943 |(% style="width:266px" %)[[lorawan-server by Petr Gotthard>>doc:.Lorawan-server by Petr Gotthard.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
944 |(% style="width:266px" %)[[Objenious>>doc:.Connection to Objenious.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
945 |(% style="width:266px" %)[[Senra>>doc:.Connection to Senra.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
946 |(% style="width:266px" %)[[Senet>>doc:.Connection to Senet.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
947 |(% style="width:266px" %)[[The Things Network>>doc:.Notes for TTN.WebHome]]|(% style="width:263px" %)TTN LoRaWAN Network Server
948 |(% style="width:266px" %)[[TTN Stack v3>>doc:.TTN Stack 3.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
949 |(% style="width:266px" %)[[Tago.IO>>doc:.Tago\.IO.WebHome]]|(% style="width:263px" %)Application Server
950 |(% style="width:266px" %)[[Mapwize>>Mapwize]]|(% style="width:263px" %)ibeacon location service description
951 |(% style="width:266px" %)[[Mydevices/Cayenne>>doc:.Mydevices.WebHome]]|(% style="width:263px" %)IoT Application Server
952 |(% style="width:266px" %)[[AllThingsTalk>>doc:.AllThingsTalk.WebHome]]|(% style="width:263px" %)LoRaWAN Server
953 |(% style="width:266px" %)[[Node-Red>>Node-RED]]|(% style="width:263px" %)IoT Application Server
954 |(% style="width:266px" %)[[Losant>>Losant]]|(% style="width:263px" %)IoT Application Server
955 |(% style="width:266px" %)[[Tencent Cloud(腾讯云)>>doc:.Tencent Cloud.WebHome]]|(% style="width:263px" %)LoRaWAN Network Server
956 )))
957
958
959
960 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
961
962
963 (((
964 (((
965 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
966 )))
967 )))
968
969 * (((
970 (((
971 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
972 )))
973 )))
974 * (((
975 (((
976 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
977 )))
978 )))
979
980 (((
981 (((
982
983 )))
984
985 (((
986 There are two kinds of commands to configure LLDS12, they are:
987 )))
988 )))
989
990 * (((
991 (((
992 (% style="color:#4f81bd" %)** General Commands**.
993 )))
994 )))
995
996 (((
997 (((
998 These commands are to configure:
999 )))
1000 )))
1001
1002 * (((
1003 (((
1004 General system settings like: uplink interval.
1005 )))
1006 )))
1007 * (((
1008 (((
1009 LoRaWAN protocol & radio related command.
1010 )))
1011 )))
1012
1013 (((
1014 (((
1015 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1016 )))
1017 )))
1018
1019 (((
1020 (((
1021
1022 )))
1023 )))
1024
1025 * (((
1026 (((
1027 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1028 )))
1029 )))
1030
1031 (((
1032 (((
1033 These commands only valid for LLDS12, as below:
1034 )))
1035 )))
1036
1037
1038
1039 == 4.1  Set Transmit Interval Time ==
1040
1041
1042 Feature: Change LoRaWAN End Node Transmit Interval.
1043
1044 (% style="color:#037691" %)**AT Command: AT+TDC**
1045
1046 [[image:image-20220607171554-8.png]]
1047
1048
1049 (((
1050 (% style="color:#037691" %)**Downlink Command: 0x01**
1051 )))
1052
1053 (((
1054 Format: Command Code (0x01) followed by 3 bytes time value.
1055 )))
1056
1057 (((
1058 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1059 )))
1060
1061 * (((
1062 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1063 )))
1064 * (((
1065 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1066
1067
1068
1069
1070 )))
1071
1072 == 4.2  Set Interrupt Mode ==
1073
1074
1075 Feature, Set Interrupt mode for GPIO_EXIT.
1076
1077 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1078
1079 [[image:image-20220610105806-2.png]]
1080
1081
1082 (((
1083 (% style="color:#037691" %)**Downlink Command: 0x06**
1084 )))
1085
1086 (((
1087 Format: Command Code (0x06) followed by 3 bytes.
1088 )))
1089
1090 (((
1091 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1092 )))
1093
1094 * (((
1095 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1096 )))
1097 * (((
1098 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1099
1100
1101
1102
1103 )))
1104
1105 == 4.3  Get Firmware Version Info ==
1106
1107
1108 Feature: use downlink to get firmware version.
1109
1110 (% style="color:#037691" %)**Downlink Command: 0x26**
1111
1112 [[image:image-20220607171917-10.png]]
1113
1114 * Reply to the confirmation package: 26 01
1115 * Reply to non-confirmed packet: 26 00
1116
1117 Device will send an uplink after got this downlink command. With below payload:
1118
1119 Configures info payload:
1120
1121 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1122 |=(((
1123 **Size(bytes)**
1124 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1125 |**Value**|Software Type|(((
1126 Frequency
1127
1128 Band
1129 )))|Sub-band|(((
1130 Firmware
1131
1132 Version
1133 )))|Sensor Type|Reserve|(((
1134 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1135 Always 0x02
1136 )))
1137
1138 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1139
1140
1141 (% style="color:#037691" %)**Frequency Band**:
1142
1143 *0x01: EU868
1144
1145 *0x02: US915
1146
1147 *0x03: IN865
1148
1149 *0x04: AU915
1150
1151 *0x05: KZ865
1152
1153 *0x06: RU864
1154
1155 *0x07: AS923
1156
1157 *0x08: AS923-1
1158
1159 *0x09: AS923-2
1160
1161 *0xa0: AS923-3
1162
1163
1164 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1165
1166
1167 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1168
1169
1170 (% style="color:#037691" %)**Sensor Type**:
1171
1172 0x01: LSE01
1173
1174 0x02: LDDS75
1175
1176 0x03: LDDS20
1177
1178 0x04: LLMS01
1179
1180 0x05: LSPH01
1181
1182 0x06: LSNPK01
1183
1184 0x07: LLDS12
1185
1186
1187
1188 = 5.  Battery & How to replace =
1189
1190
1191 == 5.1  Battery Type ==
1192
1193
1194 (((
1195 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1196 )))
1197
1198 (((
1199 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1200 )))
1201
1202 [[image:1654593587246-335.png]]
1203
1204
1205 Minimum Working Voltage for the LLDS12:
1206
1207 LLDS12:  2.45v ~~ 3.6v
1208
1209
1210
1211 == 5.2  Replace Battery ==
1212
1213
1214 (((
1215 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1216 )))
1217
1218 (((
1219 And make sure the positive and negative pins match.
1220 )))
1221
1222
1223
1224 == 5.3  Power Consumption Analyze ==
1225
1226
1227 (((
1228 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1229 )))
1230
1231 (((
1232 Instruction to use as below:
1233 )))
1234
1235
1236 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1237
1238 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1239
1240
1241 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1242
1243 * Product Model
1244 * Uplink Interval
1245 * Working Mode
1246
1247 And the Life expectation in difference case will be shown on the right.
1248
1249 [[image:1654593605679-189.png]]
1250
1251
1252 The battery related documents as below:
1253
1254 * (((
1255 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1256 )))
1257 * (((
1258 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1259 )))
1260 * (((
1261 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1262 )))
1263
1264 [[image:image-20220607172042-11.png]]
1265
1266
1267
1268 === 5.3.1  ​Battery Note ===
1269
1270
1271 (((
1272 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1273 )))
1274
1275
1276
1277 === ​5.3.2  Replace the battery ===
1278
1279
1280 (((
1281 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1282 )))
1283
1284 (((
1285 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1286 )))
1287
1288
1289
1290 = 6.  Use AT Command =
1291
1292
1293 == 6.1  Access AT Commands ==
1294
1295
1296 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1297
1298 [[image:1654593668970-604.png]]
1299
1300 **Connection:**
1301
1302 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1303
1304 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1305
1306 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1307
1308
1309 (((
1310 (((
1311 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1312 )))
1313
1314 (((
1315 LLDS12 will output system info once power on as below:
1316 )))
1317 )))
1318
1319
1320 [[image:1654593712276-618.png]]
1321
1322 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1323
1324
1325
1326 = 7.  FAQ =
1327
1328
1329 == 7.1  How to change the LoRa Frequency Bands/Region ==
1330
1331
1332 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1333 When downloading the images, choose the required image file for download. ​
1334
1335
1336
1337 = 8.  Trouble Shooting =
1338
1339
1340 == 8.1  AT Commands input doesn't work ==
1341
1342
1343
1344 (((
1345 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1346 )))
1347
1348
1349
1350 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1351
1352
1353 (((
1354 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1355 )))
1356
1357 (((
1358 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1359 )))
1360
1361 (((
1362
1363 )))
1364
1365 (((
1366 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1367 )))
1368
1369 (((
1370 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1371 )))
1372
1373
1374
1375 = 9.  Order Info =
1376
1377
1378 Part Number: (% style="color:blue" %)**LLDS12-XX**
1379
1380
1381 (% style="color:blue" %)**XX**(%%): The default frequency band
1382
1383 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1384 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1385 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1386 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1387 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1388 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1389 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1390 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1391
1392
1393 = 10. ​ Packing Info =
1394
1395
1396 **Package Includes**:
1397
1398 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1399
1400 **Dimension and weight**:
1401
1402 * Device Size: cm
1403 * Device Weight: g
1404 * Package Size / pcs : cm
1405 * Weight / pcs : g
1406
1407
1408 = 11.  ​Support =
1409
1410
1411 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1412 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1413
1414