Version 126.2 by Xiaoling on 2022/10/24 09:32

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11 = 1.  Introduction =
12
13 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
14
15 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
16
17 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
18
19 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
20
21 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
22
23 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
24
25 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
26
27
28 [[image:1654826306458-414.png]]
29
30
31
32 == ​1.2  Features ==
33
34
35 * LoRaWAN 1.0.3 Class A
36 * Ultra-low power consumption
37 * Laser technology for distance detection
38 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
39 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
40 * Monitor Battery Level
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * AT Commands to change parameters
43 * Uplink on periodically
44 * Downlink to change configure
45 * 8500mAh Battery for long-term use
46
47 == 1.3  Probe Specification ==
48
49
50 * Storage temperature:-20℃~~75℃
51 * Operating temperature : -20℃~~60℃
52 * Measure Distance:
53 ** 0.1m ~~ 12m @ 90% Reflectivity
54 ** 0.1m ~~ 4m @ 10% Reflectivity
55 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
56 * Distance resolution : 5mm
57 * Ambient light immunity : 70klux
58 * Enclosure rating : IP65
59 * Light source : LED
60 * Central wavelength : 850nm
61 * FOV : 3.6°
62 * Material of enclosure : ABS+PC
63 * Wire length : 25cm
64
65 == 1.4  Probe Dimension ==
66
67
68 [[image:1654827224480-952.png]]
69
70
71
72 == 1.5 ​ Applications ==
73
74
75 * Horizontal distance measurement
76 * Parking management system
77 * Object proximity and presence detection
78 * Intelligent trash can management system
79 * Robot obstacle avoidance
80 * Automatic control
81 * Sewer
82
83 == 1.6  Pin mapping and power on ==
84
85
86 [[image:1654827332142-133.png]]
87
88
89
90 = 2.  Configure LLDS12 to connect to LoRaWAN network =
91
92
93 == 2.1  How it works ==
94
95
96 (((
97 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
98 )))
99
100 (((
101 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
102 )))
103
104
105
106 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
107
108
109 (((
110 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 )))
112
113 (((
114 [[image:1654827857527-556.png]]
115 )))
116
117 (((
118 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
119 )))
120
121 (((
122
123
124 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
125 )))
126
127 (((
128 Each LSPH01 is shipped with a sticker with the default device EUI as below:
129 )))
130
131 [[image:image-20220607170145-1.jpeg]]
132
133
134
135 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
136
137
138 **Register the device**
139
140
141 [[image:1654592600093-601.png]]
142
143
144
145 **Add APP EUI and DEV EUI**
146
147 [[image:1654592619856-881.png]]
148
149
150
151 **Add APP EUI in the application**
152
153 [[image:1654592632656-512.png]]
154
155
156
157 **Add APP KEY**
158
159 [[image:1654592653453-934.png]]
160
161
162 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
163
164
165 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
166
167 [[image:image-20220607170442-2.png]]
168
169
170 (((
171 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 )))
173
174 [[image:1654833501679-968.png]]
175
176
177
178 == 2.3  ​Uplink Payload ==
179
180
181 (((
182 LLDS12 will uplink payload via LoRaWAN with below payload format: 
183 )))
184
185 (((
186 Uplink payload includes in total 11 bytes.
187 )))
188
189 (((
190
191 )))
192
193 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
194 |=(% style="width: 62.5px;" %)(((
195 **Size (bytes)**
196 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
197 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
198 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
199 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
200 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
201 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
202 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
203 )))
204
205 [[image:1654833689380-972.png]]
206
207
208
209 === 2.3.1  Battery Info ===
210
211
212 Check the battery voltage for LLDS12.
213
214 Ex1: 0x0B45 = 2885mV
215
216 Ex2: 0x0B49 = 2889mV
217
218
219
220 === 2.3.2  DS18B20 Temperature sensor ===
221
222
223 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
224
225
226 **Example**:
227
228 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
229
230 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
231
232
233
234 === 2.3.3  Distance ===
235
236
237 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
238
239
240 **Example**:
241
242 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
243
244
245
246 === 2.3.4  Distance signal strength ===
247
248
249 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
250
251
252 **Example**:
253
254 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
255
256 Customers can judge whether they need to adjust the environment based on the signal strength.
257
258
259
260 === 2.3.5  Interrupt Pin ===
261
262
263 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264
265 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266
267 **Example:**
268
269 0x00: Normal uplink packet.
270
271 0x01: Interrupt Uplink Packet.
272
273
274
275 === 2.3.6  LiDAR temp ===
276
277
278 Characterize the internal temperature value of the sensor.
279
280 **Example: **
281 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
282 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
283
284
285
286 === 2.3.7  Message Type ===
287
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303 === 2.3.8  Decode payload in The Things Network ===
304
305
306 While using TTN network, you can add the payload format to decode the payload.
307
308
309 [[image:1654592762713-715.png]]
310
311
312 (((
313 The payload decoder function for TTN is here:
314 )))
315
316 (((
317 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
318 )))
319
320
321
322 == 2.4  Uplink Interval ==
323
324
325 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326
327
328
329 == 2.5  ​Show Data in DataCake IoT Server ==
330
331
332 (((
333 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
334 )))
335
336 (((
337
338 )))
339
340 (((
341 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
342 )))
343
344 (((
345 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
346 )))
347
348
349 [[image:1654592790040-760.png]]
350
351
352 [[image:1654592800389-571.png]]
353
354
355 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
356
357 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
358
359 [[image:1654832691989-514.png]]
360
361
362 [[image:1654592833877-762.png]]
363
364
365 [[image:1654832740634-933.png]]
366
367
368
369 (((
370 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
371 )))
372
373 (((
374
375 )))
376
377 [[image:1654833065139-942.png]]
378
379
380
381 [[image:1654833092678-390.png]]
382
383
384
385 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
386
387 [[image:1654833163048-332.png]]
388
389
390
391 == 2.6  Frequency Plans ==
392
393
394 (((
395 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
396 )))
397
398
399
400 === 2.6.1  EU863-870 (EU868) ===
401
402
403 (((
404 (% style="color:blue" %)**Uplink:**
405 )))
406
407 (((
408 868.1 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 868.3 - SF7BW125 to SF12BW125 and SF7BW250
413 )))
414
415 (((
416 868.5 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.1 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.3 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 867.5 - SF7BW125 to SF12BW125
429 )))
430
431 (((
432 867.7 - SF7BW125 to SF12BW125
433 )))
434
435 (((
436 867.9 - SF7BW125 to SF12BW125
437 )))
438
439 (((
440 868.8 - FSK
441 )))
442
443 (((
444
445 )))
446
447 (((
448 (% style="color:blue" %)**Downlink:**
449 )))
450
451 (((
452 Uplink channels 1-9 (RX1)
453 )))
454
455 (((
456 869.525 - SF9BW125 (RX2 downlink only)
457 )))
458
459
460
461 === 2.6.2  US902-928(US915) ===
462
463
464 (((
465 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
466 )))
467
468 (((
469 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
470 )))
471
472 (((
473 After Join success, the end node will switch to the correct sub band by:
474 )))
475
476 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
477 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
478
479 === 2.6.3  CN470-510 (CN470) ===
480
481
482 (((
483 Used in China, Default use CHE=1
484 )))
485
486 (((
487 (% style="color:blue" %)**Uplink:**
488 )))
489
490 (((
491 486.3 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.5 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.7 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 486.9 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.1 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.3 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.5 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 487.7 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523
524 )))
525
526 (((
527 (% style="color:blue" %)**Downlink:**
528 )))
529
530 (((
531 506.7 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 506.9 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.1 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.3 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.5 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.7 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 507.9 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 508.1 - SF7BW125 to SF12BW125
560 )))
561
562 (((
563 505.3 - SF12BW125 (RX2 downlink only)
564 )))
565
566
567
568 === 2.6.4  AU915-928(AU915) ===
569
570
571 (((
572 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
573 )))
574
575 (((
576 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
577 )))
578
579 (((
580
581 )))
582
583 (((
584 After Join success, the end node will switch to the correct sub band by:
585 )))
586
587 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
588 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
589
590 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
591
592
593 (((
594 (% style="color:blue" %)**Default Uplink channel:**
595 )))
596
597 (((
598 923.2 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602 923.4 - SF7BW125 to SF10BW125
603 )))
604
605 (((
606
607 )))
608
609 (((
610 (% style="color:blue" %)**Additional Uplink Channel**:
611 )))
612
613 (((
614 (OTAA mode, channel added by JoinAccept message)
615 )))
616
617 (((
618
619 )))
620
621 (((
622 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
623 )))
624
625 (((
626 922.2 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.4 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.6 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.8 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 923.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646 922.0 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650
651 )))
652
653 (((
654 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
655 )))
656
657 (((
658 923.6 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 923.8 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.0 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.2 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.4 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678 924.6 - SF7BW125 to SF10BW125
679 )))
680
681 (((
682
683 )))
684
685 (((
686 (% style="color:blue" %)**Downlink:**
687 )))
688
689 (((
690 Uplink channels 1-8 (RX1)
691 )))
692
693 (((
694 923.2 - SF10BW125 (RX2)
695 )))
696
697
698
699 === 2.6.6  KR920-923 (KR920) ===
700
701
702 (((
703 (% style="color:blue" %)**Default channel:**
704 )))
705
706 (((
707 922.1 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.3 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715 922.5 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719
720 )))
721
722 (((
723 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
724 )))
725
726 (((
727 922.1 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.3 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.5 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.7 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 922.9 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.1 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751 923.3 - SF7BW125 to SF12BW125
752 )))
753
754 (((
755
756 )))
757
758 (((
759 (% style="color:blue" %)**Downlink:**
760 )))
761
762 (((
763 Uplink channels 1-7(RX1)
764 )))
765
766 (((
767 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
768 )))
769
770
771
772 === 2.6.7  IN865-867 (IN865) ===
773
774
775 (((
776 (% style="color:blue" %)**Uplink:**
777 )))
778
779 (((
780 865.0625 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.4025 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788 865.9850 - SF7BW125 to SF12BW125
789 )))
790
791 (((
792
793 )))
794
795 (((
796 (% style="color:blue" %)**Downlink:**
797 )))
798
799 (((
800 Uplink channels 1-3 (RX1)
801 )))
802
803 (((
804 866.550 - SF10BW125 (RX2)
805 )))
806
807
808
809 == 2.7  LED Indicator ==
810
811
812 The LLDS12 has an internal LED which is to show the status of different state.
813
814 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
815 * Blink once when device transmit a packet.
816
817 == 2.8  ​Firmware Change Log ==
818
819
820 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
821
822
823 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
824
825
826
827 = 3.  LiDAR ToF Measurement =
828
829
830 == 3.1 Principle of Distance Measurement ==
831
832
833 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
834
835
836 [[image:1654831757579-263.png]]
837
838
839
840 == 3.2 Distance Measurement Characteristics ==
841
842
843 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
844
845 [[image:1654831774373-275.png]]
846
847
848 (((
849 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
850 )))
851
852 (((
853 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
854 )))
855
856 (((
857 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
858 )))
859
860
861 (((
862 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
863 )))
864
865
866 [[image:1654831797521-720.png]]
867
868
869 (((
870 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
871 )))
872
873 [[image:1654831810009-716.png]]
874
875
876 (((
877 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
878 )))
879
880
881
882 == 3.3 Notice of usage: ==
883
884
885 Possible invalid /wrong reading for LiDAR ToF tech:
886
887 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
888 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
889 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
890 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
891
892 == 3.4  Reflectivity of different objects: ==
893
894 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:349px" %)
895 |=(% style="width: 53px;" %)Item|=(% style="width: 201px;" %)Material|=(% style="width: 91px;" %)Relectivity
896 |(% style="width:53px" %)1|(% style="width:201px" %)Black Foamed plastics|(% style="width:91px" %)2.4%
897 |(% style="width:53px" %)2|(% style="width:201px" %)Black fabric|(% style="width:91px" %)3%
898 |(% style="width:53px" %)3|(% style="width:201px" %)Black rubber|(% style="width:91px" %)4%
899 |(% style="width:53px" %)4|(% style="width:201px" %)Coal (different types of coal)|(% style="width:91px" %)4~~8%
900 |(% style="width:53px" %)5|(% style="width:201px" %) |(% style="width:91px" %)
901 |(% style="width:53px" %)6|(% style="width:201px" %) |(% style="width:91px" %)
902 |(% style="width:53px" %)7|(% style="width:201px" %) |(% style="width:91px" %)
903 |(% style="width:53px" %)8|(% style="width:201px" %) |(% style="width:91px" %)
904 |(% style="width:53px" %)9|(% style="width:201px" %) |(% style="width:91px" %)
905 |(% style="width:53px" %)10|(% style="width:201px" %) |(% style="width:91px" %)
906 |(% style="width:53px" %)11|(% style="width:201px" %) |(% style="width:91px" %)
907 |(% style="width:53px" %)12|(% style="width:201px" %) |(% style="width:91px" %)
908 |(% style="width:53px" %)13|(% style="width:201px" %) |(% style="width:91px" %)
909 |(% style="width:53px" %)14|(% style="width:201px" %) |(% style="width:91px" %)
910 |(% style="width:53px" %)15|(% style="width:201px" %) |(% style="width:91px" %)
911 |(% style="width:53px" %)16|(% style="width:201px" %) |(% style="width:91px" %)
912 |(% style="width:53px" %)17|(% style="width:201px" %) |(% style="width:91px" %)
913 |(% style="width:53px" %)18|(% style="width:201px" %) |(% style="width:91px" %)
914
915
916 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
917
918 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
919
920 * (((
921 (((
922 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
923 )))
924 )))
925 * (((
926 (((
927 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
928 )))
929 )))
930
931 (((
932 (((
933
934 )))
935
936 (((
937 There are two kinds of commands to configure LLDS12, they are:
938 )))
939 )))
940
941 * (((
942 (((
943 (% style="color:#4f81bd" %)** General Commands**.
944 )))
945 )))
946
947 (((
948 (((
949 These commands are to configure:
950 )))
951 )))
952
953 * (((
954 (((
955 General system settings like: uplink interval.
956 )))
957 )))
958 * (((
959 (((
960 LoRaWAN protocol & radio related command.
961 )))
962 )))
963
964 (((
965 (((
966 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
967 )))
968 )))
969
970 (((
971 (((
972
973 )))
974 )))
975
976 * (((
977 (((
978 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
979 )))
980 )))
981
982 (((
983 (((
984 These commands only valid for LLDS12, as below:
985 )))
986 )))
987
988
989
990 == 4.1  Set Transmit Interval Time ==
991
992
993 Feature: Change LoRaWAN End Node Transmit Interval.
994
995 (% style="color:#037691" %)**AT Command: AT+TDC**
996
997 [[image:image-20220607171554-8.png]]
998
999
1000 (((
1001 (% style="color:#037691" %)**Downlink Command: 0x01**
1002 )))
1003
1004 (((
1005 Format: Command Code (0x01) followed by 3 bytes time value.
1006 )))
1007
1008 (((
1009 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1010 )))
1011
1012 * (((
1013 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1014 )))
1015 * (((
1016 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1017
1018
1019
1020
1021 )))
1022
1023 == 4.2  Set Interrupt Mode ==
1024
1025
1026 Feature, Set Interrupt mode for GPIO_EXIT.
1027
1028 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1029
1030 [[image:image-20220610105806-2.png]]
1031
1032
1033 (((
1034 (% style="color:#037691" %)**Downlink Command: 0x06**
1035 )))
1036
1037 (((
1038 Format: Command Code (0x06) followed by 3 bytes.
1039 )))
1040
1041 (((
1042 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1043 )))
1044
1045 * (((
1046 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1047 )))
1048 * (((
1049 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1050
1051
1052
1053
1054 )))
1055
1056 == 4.3  Get Firmware Version Info ==
1057
1058
1059 Feature: use downlink to get firmware version.
1060
1061 (% style="color:#037691" %)**Downlink Command: 0x26**
1062
1063 [[image:image-20220607171917-10.png]]
1064
1065 * Reply to the confirmation package: 26 01
1066 * Reply to non-confirmed packet: 26 00
1067
1068 Device will send an uplink after got this downlink command. With below payload:
1069
1070 Configures info payload:
1071
1072 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1073 |=(((
1074 **Size(bytes)**
1075 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1076 |**Value**|Software Type|(((
1077 Frequency
1078
1079 Band
1080 )))|Sub-band|(((
1081 Firmware
1082
1083 Version
1084 )))|Sensor Type|Reserve|(((
1085 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1086 Always 0x02
1087 )))
1088
1089 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1090
1091
1092 (% style="color:#037691" %)**Frequency Band**:
1093
1094 *0x01: EU868
1095
1096 *0x02: US915
1097
1098 *0x03: IN865
1099
1100 *0x04: AU915
1101
1102 *0x05: KZ865
1103
1104 *0x06: RU864
1105
1106 *0x07: AS923
1107
1108 *0x08: AS923-1
1109
1110 *0x09: AS923-2
1111
1112 *0xa0: AS923-3
1113
1114
1115 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1116
1117
1118 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1119
1120
1121 (% style="color:#037691" %)**Sensor Type**:
1122
1123 0x01: LSE01
1124
1125 0x02: LDDS75
1126
1127 0x03: LDDS20
1128
1129 0x04: LLMS01
1130
1131 0x05: LSPH01
1132
1133 0x06: LSNPK01
1134
1135 0x07: LLDS12
1136
1137
1138
1139 = 5.  Battery & How to replace =
1140
1141
1142 == 5.1  Battery Type ==
1143
1144
1145 (((
1146 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1147 )))
1148
1149 (((
1150 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1151 )))
1152
1153 [[image:1654593587246-335.png]]
1154
1155
1156 Minimum Working Voltage for the LLDS12:
1157
1158 LLDS12:  2.45v ~~ 3.6v
1159
1160
1161
1162 == 5.2  Replace Battery ==
1163
1164
1165 (((
1166 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1167 )))
1168
1169 (((
1170 And make sure the positive and negative pins match.
1171 )))
1172
1173
1174
1175 == 5.3  Power Consumption Analyze ==
1176
1177
1178 (((
1179 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1180 )))
1181
1182 (((
1183 Instruction to use as below:
1184 )))
1185
1186
1187 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1188
1189 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1190
1191
1192 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1193
1194 * Product Model
1195 * Uplink Interval
1196 * Working Mode
1197
1198 And the Life expectation in difference case will be shown on the right.
1199
1200 [[image:1654593605679-189.png]]
1201
1202
1203 The battery related documents as below:
1204
1205 * (((
1206 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1207 )))
1208 * (((
1209 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1210 )))
1211 * (((
1212 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1213 )))
1214
1215 [[image:image-20220607172042-11.png]]
1216
1217
1218
1219 === 5.3.1  ​Battery Note ===
1220
1221
1222 (((
1223 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1224 )))
1225
1226
1227
1228 === ​5.3.2  Replace the battery ===
1229
1230
1231 (((
1232 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1233 )))
1234
1235 (((
1236 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1237 )))
1238
1239
1240
1241 = 6.  Use AT Command =
1242
1243
1244 == 6.1  Access AT Commands ==
1245
1246
1247 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1248
1249 [[image:1654593668970-604.png]]
1250
1251 **Connection:**
1252
1253 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1254
1255 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1256
1257 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1258
1259
1260 (((
1261 (((
1262 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1263 )))
1264
1265 (((
1266 LLDS12 will output system info once power on as below:
1267 )))
1268 )))
1269
1270
1271 [[image:1654593712276-618.png]]
1272
1273 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1274
1275
1276
1277 = 7.  FAQ =
1278
1279
1280 == 7.1  How to change the LoRa Frequency Bands/Region ==
1281
1282
1283 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1284 When downloading the images, choose the required image file for download. ​
1285
1286
1287
1288 = 8.  Trouble Shooting =
1289
1290
1291 == 8.1  AT Commands input doesn't work ==
1292
1293
1294
1295 (((
1296 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1297 )))
1298
1299
1300
1301 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1302
1303
1304 (((
1305 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1306 )))
1307
1308 (((
1309 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1310 )))
1311
1312 (((
1313
1314 )))
1315
1316 (((
1317 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1318 )))
1319
1320 (((
1321 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1322 )))
1323
1324
1325
1326 = 9.  Order Info =
1327
1328
1329 Part Number: (% style="color:blue" %)**LLDS12-XX**
1330
1331
1332 (% style="color:blue" %)**XX**(%%): The default frequency band
1333
1334 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1335 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1336 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1337 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1338 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1339 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1340 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1341 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1342
1343 = 10. ​ Packing Info =
1344
1345
1346 **Package Includes**:
1347
1348 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1349
1350 **Dimension and weight**:
1351
1352 * Device Size: cm
1353 * Device Weight: g
1354 * Package Size / pcs : cm
1355 * Weight / pcs : g
1356
1357 = 11.  ​Support =
1358
1359
1360 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1361 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1362
1363