Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23
24
25
26
27 = 1.  Introduction =
28
29 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
30
31 (((
32
33
34 (((
35 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
36 )))
37
38 (((
39 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
40 )))
41
42 (((
43 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
44 )))
45
46 (((
47 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
48 )))
49
50 (((
51 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
52 )))
53
54 (((
55 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
56 )))
57 )))
58
59
60 [[image:1654826306458-414.png]]
61
62
63
64 == ​1.2  Features ==
65
66 * LoRaWAN 1.0.3 Class A
67 * Ultra-low power consumption
68 * Laser technology for distance detection
69 * Operating Range - 0.1m~~12m①
70 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
71 * Monitor Battery Level
72 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
73 * AT Commands to change parameters
74 * Uplink on periodically
75 * Downlink to change configure
76 * 8500mAh Battery for long term use
77
78
79
80 == 1.3  Probe Specification ==
81
82 * Storage temperature :-20℃~~75℃
83 * Operating temperature - -20℃~~60℃
84 * Operating Range - 0.1m~~12m①
85 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
86 * Distance resolution - 5mm
87 * Ambient light immunity - 70klux
88 * Enclosure rating - IP65
89 * Light source - LED
90 * Central wavelength - 850nm
91 * FOV - 3.6°
92 * Material of enclosure - ABS+PC
93 * Wire length - 25cm
94
95
96
97 == 1.4  Probe Dimension ==
98
99
100 [[image:1654827224480-952.png]]
101
102
103
104 == 1.5 ​ Applications ==
105
106 * Horizontal distance measurement
107 * Parking management system
108 * Object proximity and presence detection
109 * Intelligent trash can management system
110 * Robot obstacle avoidance
111 * Automatic control
112 * Sewer
113
114
115
116 == 1.6  Pin mapping and power on ==
117
118
119 [[image:1654827332142-133.png]]
120
121
122
123 = 2.  Configure LLDS12 to connect to LoRaWAN network =
124
125 == 2.1  How it works ==
126
127 (((
128 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
129 )))
130
131 (((
132 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
133 )))
134
135
136 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
137
138 (((
139 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
140 )))
141
142 (((
143 [[image:1654827857527-556.png]]
144 )))
145
146 (((
147 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
148 )))
149
150 (((
151
152
153 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
154 )))
155
156 (((
157 Each LSPH01 is shipped with a sticker with the default device EUI as below:
158 )))
159
160 [[image:image-20220607170145-1.jpeg]]
161
162
163
164 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
165
166
167 **Register the device**
168
169
170 [[image:1654592600093-601.png]]
171
172
173
174 **Add APP EUI and DEV EUI**
175
176 [[image:1654592619856-881.png]]
177
178
179
180 **Add APP EUI in the application**
181
182 [[image:1654592632656-512.png]]
183
184
185
186 **Add APP KEY**
187
188 [[image:1654592653453-934.png]]
189
190
191 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
192
193
194 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
195
196 [[image:image-20220607170442-2.png]]
197
198
199 (((
200 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 )))
202
203 [[image:1654833501679-968.png]]
204
205
206
207 == 2.3  ​Uplink Payload ==
208
209 (((
210 LLDS12 will uplink payload via LoRaWAN with below payload format: 
211 )))
212
213 (((
214 Uplink payload includes in total 11 bytes.
215 )))
216
217 (((
218
219 )))
220
221 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
222 |=(% style="width: 62.5px;" %)(((
223 **Size (bytes)**
224 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
225 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
226 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
227 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
228 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
229 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
230 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
231 )))
232
233 [[image:1654833689380-972.png]]
234
235
236
237 === 2.3.1  Battery Info ===
238
239
240 Check the battery voltage for LLDS12.
241
242 Ex1: 0x0B45 = 2885mV
243
244 Ex2: 0x0B49 = 2889mV
245
246
247
248 === 2.3.2  DS18B20 Temperature sensor ===
249
250 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
251
252
253 **Example**:
254
255 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
256
257 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
258
259
260
261 === 2.3.3  Distance ===
262
263 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
264
265
266 **Example**:
267
268 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
269
270
271
272 === 2.3.4  Distance signal strength ===
273
274 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
275
276
277 **Example**:
278
279 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
280
281 Customers can judge whether they need to adjust the environment based on the signal strength.
282
283
284
285 === 2.3.5  Interrupt Pin ===
286
287 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
288
289 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
290
291 **Example:**
292
293 0x00: Normal uplink packet.
294
295 0x01: Interrupt Uplink Packet.
296
297
298
299 === 2.3.6  LiDAR temp ===
300
301 Characterize the internal temperature value of the sensor.
302
303 **Example: **
304 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
305 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
306
307
308
309 === 2.3.7  Message Type ===
310
311 (((
312 For a normal uplink payload, the message type is always 0x01.
313 )))
314
315 (((
316 Valid Message Type:
317 )))
318
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
321 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
322 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
323 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
324
325
326
327 === 2.3.8  Decode payload in The Things Network ===
328
329 While using TTN network, you can add the payload format to decode the payload.
330
331
332 [[image:1654592762713-715.png]]
333
334 (((
335 The payload decoder function for TTN is here:
336 )))
337
338 (((
339 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
340 )))
341
342
343
344 == 2.4  Uplink Interval ==
345
346 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
347
348
349
350 == 2.5  ​Show Data in DataCake IoT Server ==
351
352 (((
353 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
354 )))
355
356 (((
357
358 )))
359
360 (((
361 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
362 )))
363
364 (((
365 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
366 )))
367
368
369 [[image:1654592790040-760.png]]
370
371
372 [[image:1654592800389-571.png]]
373
374
375 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
376
377 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
378
379 [[image:1654832691989-514.png]]
380
381
382 [[image:1654592833877-762.png]]
383
384
385 [[image:1654832740634-933.png]]
386
387
388
389 (((
390 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
391 )))
392
393 (((
394
395 )))
396
397 [[image:1654833065139-942.png]]
398
399
400
401 [[image:1654833092678-390.png]]
402
403
404
405 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
406
407 [[image:1654833163048-332.png]]
408
409
410
411 == 2.6  Frequency Plans ==
412
413 (((
414 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 )))
416
417
418 === 2.6.1  EU863-870 (EU868) ===
419
420 (((
421 (% style="color:blue" %)**Uplink:**
422 )))
423
424 (((
425 868.1 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 868.3 - SF7BW125 to SF12BW125 and SF7BW250
430 )))
431
432 (((
433 868.5 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 867.1 - SF7BW125 to SF12BW125
438 )))
439
440 (((
441 867.3 - SF7BW125 to SF12BW125
442 )))
443
444 (((
445 867.5 - SF7BW125 to SF12BW125
446 )))
447
448 (((
449 867.7 - SF7BW125 to SF12BW125
450 )))
451
452 (((
453 867.9 - SF7BW125 to SF12BW125
454 )))
455
456 (((
457 868.8 - FSK
458 )))
459
460 (((
461
462 )))
463
464 (((
465 (% style="color:blue" %)**Downlink:**
466 )))
467
468 (((
469 Uplink channels 1-9 (RX1)
470 )))
471
472 (((
473 869.525 - SF9BW125 (RX2 downlink only)
474 )))
475
476
477
478 === 2.6.2  US902-928(US915) ===
479
480 (((
481 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
482 )))
483
484 (((
485 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
486 )))
487
488 (((
489 After Join success, the end node will switch to the correct sub band by:
490 )))
491
492 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
493 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
494
495
496
497 === 2.6.3  CN470-510 (CN470) ===
498
499 (((
500 Used in China, Default use CHE=1
501 )))
502
503 (((
504 (% style="color:blue" %)**Uplink:**
505 )))
506
507 (((
508 486.3 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 486.5 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 486.7 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 486.9 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 487.1 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 487.3 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 487.5 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 487.7 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540
541 )))
542
543 (((
544 (% style="color:blue" %)**Downlink:**
545 )))
546
547 (((
548 506.7 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 506.9 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 507.1 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 507.3 - SF7BW125 to SF12BW125
561 )))
562
563 (((
564 507.5 - SF7BW125 to SF12BW125
565 )))
566
567 (((
568 507.7 - SF7BW125 to SF12BW125
569 )))
570
571 (((
572 507.9 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 508.1 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 505.3 - SF12BW125 (RX2 downlink only)
581 )))
582
583
584
585 === 2.6.4  AU915-928(AU915) ===
586
587 (((
588 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
589 )))
590
591 (((
592 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
593 )))
594
595 (((
596
597 )))
598
599 (((
600 After Join success, the end node will switch to the correct sub band by:
601 )))
602
603 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
604 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
605
606
607
608 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
609
610 (((
611 (% style="color:blue" %)**Default Uplink channel:**
612 )))
613
614 (((
615 923.2 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 923.4 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623
624 )))
625
626 (((
627 (% style="color:blue" %)**Additional Uplink Channel**:
628 )))
629
630 (((
631 (OTAA mode, channel added by JoinAccept message)
632 )))
633
634 (((
635
636 )))
637
638 (((
639 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
640 )))
641
642 (((
643 922.2 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647 922.4 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 922.6 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 922.8 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 923.0 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 922.0 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667
668 )))
669
670 (((
671 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
672 )))
673
674 (((
675 923.6 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679 923.8 - SF7BW125 to SF10BW125
680 )))
681
682 (((
683 924.0 - SF7BW125 to SF10BW125
684 )))
685
686 (((
687 924.2 - SF7BW125 to SF10BW125
688 )))
689
690 (((
691 924.4 - SF7BW125 to SF10BW125
692 )))
693
694 (((
695 924.6 - SF7BW125 to SF10BW125
696 )))
697
698 (((
699
700 )))
701
702 (((
703 (% style="color:blue" %)**Downlink:**
704 )))
705
706 (((
707 Uplink channels 1-8 (RX1)
708 )))
709
710 (((
711 923.2 - SF10BW125 (RX2)
712 )))
713
714
715
716 === 2.6.6  KR920-923 (KR920) ===
717
718 (((
719 (% style="color:blue" %)**Default channel:**
720 )))
721
722 (((
723 922.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.5 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735
736 )))
737
738 (((
739 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
740 )))
741
742 (((
743 922.1 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 922.3 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751 922.5 - SF7BW125 to SF12BW125
752 )))
753
754 (((
755 922.7 - SF7BW125 to SF12BW125
756 )))
757
758 (((
759 922.9 - SF7BW125 to SF12BW125
760 )))
761
762 (((
763 923.1 - SF7BW125 to SF12BW125
764 )))
765
766 (((
767 923.3 - SF7BW125 to SF12BW125
768 )))
769
770 (((
771
772 )))
773
774 (((
775 (% style="color:blue" %)**Downlink:**
776 )))
777
778 (((
779 Uplink channels 1-7(RX1)
780 )))
781
782 (((
783 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
784 )))
785
786
787
788 === 2.6.7  IN865-867 (IN865) ===
789
790 (((
791 (% style="color:blue" %)**Uplink:**
792 )))
793
794 (((
795 865.0625 - SF7BW125 to SF12BW125
796 )))
797
798 (((
799 865.4025 - SF7BW125 to SF12BW125
800 )))
801
802 (((
803 865.9850 - SF7BW125 to SF12BW125
804 )))
805
806 (((
807
808 )))
809
810 (((
811 (% style="color:blue" %)**Downlink:**
812 )))
813
814 (((
815 Uplink channels 1-3 (RX1)
816 )))
817
818 (((
819 866.550 - SF10BW125 (RX2)
820 )))
821
822
823
824 == 2.7  LED Indicator ==
825
826 The LLDS12 has an internal LED which is to show the status of different state.
827
828 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
829 * Blink once when device transmit a packet.
830
831
832
833 == 2.8  ​Firmware Change Log ==
834
835
836 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
837
838
839 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
840
841
842
843 = 3.  LiDAR ToF Measurement =
844
845 == 3.1 Principle of Distance Measurement ==
846
847 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
848
849 [[image:1654831757579-263.png]]
850
851
852
853 == 3.2 Distance Measurement Characteristics ==
854
855 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
856
857 [[image:1654831774373-275.png]]
858
859
860 (((
861 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
862 )))
863
864 (((
865 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
866 )))
867
868 (((
869 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
870 )))
871
872
873 (((
874 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
875 )))
876
877
878 [[image:1654831797521-720.png]]
879
880
881 (((
882 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
883 )))
884
885 [[image:1654831810009-716.png]]
886
887
888 (((
889 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
890 )))
891
892
893
894 == 3.3 Notice of usage: ==
895
896 Possible invalid /wrong reading for LiDAR ToF tech:
897
898 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
899 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
900 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
901 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
902
903
904
905 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
906
907 (((
908 (((
909 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
910 )))
911 )))
912
913 * (((
914 (((
915 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
916 )))
917 )))
918 * (((
919 (((
920 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
921 )))
922 )))
923
924 (((
925 (((
926
927 )))
928
929 (((
930 There are two kinds of commands to configure LLDS12, they are:
931 )))
932 )))
933
934 * (((
935 (((
936 (% style="color:#4f81bd" %)** General Commands**.
937 )))
938 )))
939
940 (((
941 (((
942 These commands are to configure:
943 )))
944 )))
945
946 * (((
947 (((
948 General system settings like: uplink interval.
949 )))
950 )))
951 * (((
952 (((
953 LoRaWAN protocol & radio related command.
954 )))
955 )))
956
957 (((
958 (((
959 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
960 )))
961 )))
962
963 (((
964 (((
965
966 )))
967 )))
968
969 * (((
970 (((
971 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
972 )))
973 )))
974
975 (((
976 (((
977 These commands only valid for LLDS12, as below:
978 )))
979 )))
980
981
982
983 == 4.1  Set Transmit Interval Time ==
984
985 Feature: Change LoRaWAN End Node Transmit Interval.
986
987 (% style="color:#037691" %)**AT Command: AT+TDC**
988
989 [[image:image-20220607171554-8.png]]
990
991
992 (((
993 (% style="color:#037691" %)**Downlink Command: 0x01**
994 )))
995
996 (((
997 Format: Command Code (0x01) followed by 3 bytes time value.
998 )))
999
1000 (((
1001 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1002 )))
1003
1004 * (((
1005 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1006 )))
1007 * (((
1008 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1009
1010
1011
1012 )))
1013
1014 == 4.2  Set Interrupt Mode ==
1015
1016 Feature, Set Interrupt mode for GPIO_EXIT.
1017
1018 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1019
1020 [[image:image-20220610105806-2.png]]
1021
1022
1023 (((
1024 (% style="color:#037691" %)**Downlink Command: 0x06**
1025 )))
1026
1027 (((
1028 Format: Command Code (0x06) followed by 3 bytes.
1029 )))
1030
1031 (((
1032 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1033 )))
1034
1035 * (((
1036 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1037 )))
1038 * (((
1039 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1040
1041
1042
1043 )))
1044
1045 == 4.3  Get Firmware Version Info ==
1046
1047 Feature: use downlink to get firmware version.
1048
1049 (% style="color:#037691" %)**Downlink Command: 0x26**
1050
1051 [[image:image-20220607171917-10.png]]
1052
1053 * Reply to the confirmation package: 26 01
1054 * Reply to non-confirmed packet: 26 00
1055
1056 Device will send an uplink after got this downlink command. With below payload:
1057
1058 Configures info payload:
1059
1060 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1061 |=(((
1062 **Size(bytes)**
1063 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1064 |**Value**|Software Type|(((
1065 Frequency
1066
1067 Band
1068 )))|Sub-band|(((
1069 Firmware
1070
1071 Version
1072 )))|Sensor Type|Reserve|(((
1073 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1074 Always 0x02
1075 )))
1076
1077 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1078
1079
1080 (% style="color:#037691" %)**Frequency Band**:
1081
1082 *0x01: EU868
1083
1084 *0x02: US915
1085
1086 *0x03: IN865
1087
1088 *0x04: AU915
1089
1090 *0x05: KZ865
1091
1092 *0x06: RU864
1093
1094 *0x07: AS923
1095
1096 *0x08: AS923-1
1097
1098 *0x09: AS923-2
1099
1100 *0xa0: AS923-3
1101
1102
1103 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1104
1105
1106 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1107
1108
1109 (% style="color:#037691" %)**Sensor Type**:
1110
1111 0x01: LSE01
1112
1113 0x02: LDDS75
1114
1115 0x03: LDDS20
1116
1117 0x04: LLMS01
1118
1119 0x05: LSPH01
1120
1121 0x06: LSNPK01
1122
1123 0x07: LLDS12
1124
1125
1126
1127 = 5.  Battery & How to replace =
1128
1129 == 5.1  Battery Type ==
1130
1131 (((
1132 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1133 )))
1134
1135 (((
1136 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1137 )))
1138
1139 [[image:1654593587246-335.png]]
1140
1141
1142 Minimum Working Voltage for the LLDS12:
1143
1144 LLDS12:  2.45v ~~ 3.6v
1145
1146
1147
1148 == 5.2  Replace Battery ==
1149
1150 (((
1151 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1152 )))
1153
1154 (((
1155 And make sure the positive and negative pins match.
1156 )))
1157
1158
1159
1160 == 5.3  Power Consumption Analyze ==
1161
1162 (((
1163 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1164 )))
1165
1166 (((
1167 Instruction to use as below:
1168 )))
1169
1170
1171 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1172
1173 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1174
1175
1176 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1177
1178 * Product Model
1179 * Uplink Interval
1180 * Working Mode
1181
1182 And the Life expectation in difference case will be shown on the right.
1183
1184 [[image:1654593605679-189.png]]
1185
1186
1187 The battery related documents as below:
1188
1189 * (((
1190 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1191 )))
1192 * (((
1193 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1194 )))
1195 * (((
1196 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1197 )))
1198
1199 [[image:image-20220607172042-11.png]]
1200
1201
1202
1203 === 5.3.1  ​Battery Note ===
1204
1205 (((
1206 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1207 )))
1208
1209
1210
1211 === ​5.3.2  Replace the battery ===
1212
1213 (((
1214 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1215 )))
1216
1217 (((
1218 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1219 )))
1220
1221
1222
1223 = 6.  Use AT Command =
1224
1225 == 6.1  Access AT Commands ==
1226
1227 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1228
1229 [[image:1654593668970-604.png]]
1230
1231 **Connection:**
1232
1233 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1234
1235 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1236
1237 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1238
1239
1240 (((
1241 (((
1242 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1243 )))
1244
1245 (((
1246 LLDS12 will output system info once power on as below:
1247 )))
1248 )))
1249
1250
1251 [[image:1654593712276-618.png]]
1252
1253 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1254
1255
1256 = 7.  FAQ =
1257
1258 == 7.1  How to change the LoRa Frequency Bands/Region ==
1259
1260 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1261 When downloading the images, choose the required image file for download. ​
1262
1263
1264 = 8.  Trouble Shooting =
1265
1266 == 8.1  AT Commands input doesn't work ==
1267
1268
1269 (((
1270 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1271 )))
1272
1273
1274 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1275
1276
1277 (((
1278 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1279 )))
1280
1281 (((
1282 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 (((
1290 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1291 )))
1292
1293 (((
1294 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1295 )))
1296
1297
1298
1299 = 9.  Order Info =
1300
1301 Part Number: (% style="color:blue" %)**LLDS12-XX**
1302
1303
1304 (% style="color:blue" %)**XX**(%%): The default frequency band
1305
1306 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1307 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1308 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1309 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1310 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1311 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1312 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1313 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1314
1315
1316
1317 = 10. ​ Packing Info =
1318
1319
1320 **Package Includes**:
1321
1322 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1323
1324 **Dimension and weight**:
1325
1326 * Device Size: cm
1327 * Device Weight: g
1328 * Package Size / pcs : cm
1329 * Weight / pcs : g
1330
1331
1332
1333 = 11.  ​Support =
1334
1335 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1336 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0