Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87
88 == 1.5 ​ Applications ==
89
90 * Horizontal distance measurement
91 * Parking management system
92 * Object proximity and presence detection
93 * Intelligent trash can management system
94 * Robot obstacle avoidance
95 * Automatic control
96 * Sewer
97
98 == 1.6  Pin mapping and power on ==
99
100
101 [[image:1654827332142-133.png]]
102
103
104
105 = 2.  Configure LLDS12 to connect to LoRaWAN network =
106
107 == 2.1  How it works ==
108
109 (((
110 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
111 )))
112
113 (((
114 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
115 )))
116
117
118 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
119
120 (((
121 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 )))
123
124 (((
125 [[image:1654827857527-556.png]]
126 )))
127
128 (((
129 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
130 )))
131
132 (((
133
134
135 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 )))
137
138 (((
139 Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 )))
141
142 [[image:image-20220607170145-1.jpeg]]
143
144
145
146 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
147
148
149 **Register the device**
150
151
152 [[image:1654592600093-601.png]]
153
154
155
156 **Add APP EUI and DEV EUI**
157
158 [[image:1654592619856-881.png]]
159
160
161
162 **Add APP EUI in the application**
163
164 [[image:1654592632656-512.png]]
165
166
167
168 **Add APP KEY**
169
170 [[image:1654592653453-934.png]]
171
172
173 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
174
175
176 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
177
178 [[image:image-20220607170442-2.png]]
179
180
181 (((
182 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 )))
184
185 [[image:1654833501679-968.png]]
186
187
188
189 == 2.3  ​Uplink Payload ==
190
191 (((
192 LLDS12 will uplink payload via LoRaWAN with below payload format: 
193 )))
194
195 (((
196 Uplink payload includes in total 11 bytes.
197 )))
198
199 (((
200
201 )))
202
203 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
204 |=(% style="width: 62.5px;" %)(((
205 **Size (bytes)**
206 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
207 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
208 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
209 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
210 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
211 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
212 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
213 )))
214
215 [[image:1654833689380-972.png]]
216
217
218
219 === 2.3.1  Battery Info ===
220
221
222 Check the battery voltage for LLDS12.
223
224 Ex1: 0x0B45 = 2885mV
225
226 Ex2: 0x0B49 = 2889mV
227
228
229
230 === 2.3.2  DS18B20 Temperature sensor ===
231
232 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
233
234
235 **Example**:
236
237 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
238
239 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240
241
242
243 === 2.3.3  Distance ===
244
245 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
246
247
248 **Example**:
249
250 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
251
252
253
254 === 2.3.4  Distance signal strength ===
255
256 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
257
258
259 **Example**:
260
261 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
262
263 Customers can judge whether they need to adjust the environment based on the signal strength.
264
265
266
267 === 2.3.5  Interrupt Pin ===
268
269 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
270
271 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
272
273 **Example:**
274
275 0x00: Normal uplink packet.
276
277 0x01: Interrupt Uplink Packet.
278
279
280
281 === 2.3.6  LiDAR temp ===
282
283 Characterize the internal temperature value of the sensor.
284
285 **Example: **
286 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
287 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
288
289
290
291 === 2.3.7  Message Type ===
292
293 (((
294 For a normal uplink payload, the message type is always 0x01.
295 )))
296
297 (((
298 Valid Message Type:
299 )))
300
301
302 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
303 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
304 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
305 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
306
307 === 2.3.8  Decode payload in The Things Network ===
308
309 While using TTN network, you can add the payload format to decode the payload.
310
311
312 [[image:1654592762713-715.png]]
313
314 (((
315 The payload decoder function for TTN is here:
316 )))
317
318 (((
319 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
320 )))
321
322
323
324 == 2.4  Uplink Interval ==
325
326 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
327
328
329
330 == 2.5  ​Show Data in DataCake IoT Server ==
331
332 (((
333 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
334 )))
335
336 (((
337
338 )))
339
340 (((
341 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
342 )))
343
344 (((
345 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
346 )))
347
348
349 [[image:1654592790040-760.png]]
350
351
352 [[image:1654592800389-571.png]]
353
354
355 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
356
357 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
358
359 [[image:1654832691989-514.png]]
360
361
362 [[image:1654592833877-762.png]]
363
364
365 [[image:1654832740634-933.png]]
366
367
368
369 (((
370 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
371 )))
372
373 (((
374
375 )))
376
377 [[image:1654833065139-942.png]]
378
379
380
381 [[image:1654833092678-390.png]]
382
383
384
385 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
386
387 [[image:1654833163048-332.png]]
388
389
390
391 == 2.6  Frequency Plans ==
392
393 (((
394 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
395 )))
396
397
398 === 2.6.1  EU863-870 (EU868) ===
399
400 (((
401 (% style="color:blue" %)**Uplink:**
402 )))
403
404 (((
405 868.1 - SF7BW125 to SF12BW125
406 )))
407
408 (((
409 868.3 - SF7BW125 to SF12BW125 and SF7BW250
410 )))
411
412 (((
413 868.5 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 867.1 - SF7BW125 to SF12BW125
418 )))
419
420 (((
421 867.3 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.5 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.7 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.9 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 868.8 - FSK
438 )))
439
440 (((
441
442 )))
443
444 (((
445 (% style="color:blue" %)**Downlink:**
446 )))
447
448 (((
449 Uplink channels 1-9 (RX1)
450 )))
451
452 (((
453 869.525 - SF9BW125 (RX2 downlink only)
454 )))
455
456
457
458 === 2.6.2  US902-928(US915) ===
459
460 (((
461 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
462 )))
463
464 (((
465 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
466 )))
467
468 (((
469 After Join success, the end node will switch to the correct sub band by:
470 )))
471
472 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
473 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
474
475
476
477
478
479 === 2.6.3  CN470-510 (CN470) ===
480
481 (((
482 Used in China, Default use CHE=1
483 )))
484
485 (((
486 (% style="color:blue" %)**Uplink:**
487 )))
488
489 (((
490 486.3 - SF7BW125 to SF12BW125
491 )))
492
493 (((
494 486.5 - SF7BW125 to SF12BW125
495 )))
496
497 (((
498 486.7 - SF7BW125 to SF12BW125
499 )))
500
501 (((
502 486.9 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 487.1 - SF7BW125 to SF12BW125
507 )))
508
509 (((
510 487.3 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 487.5 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 487.7 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522
523 )))
524
525 (((
526 (% style="color:blue" %)**Downlink:**
527 )))
528
529 (((
530 506.7 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 506.9 - SF7BW125 to SF12BW125
535 )))
536
537 (((
538 507.1 - SF7BW125 to SF12BW125
539 )))
540
541 (((
542 507.3 - SF7BW125 to SF12BW125
543 )))
544
545 (((
546 507.5 - SF7BW125 to SF12BW125
547 )))
548
549 (((
550 507.7 - SF7BW125 to SF12BW125
551 )))
552
553 (((
554 507.9 - SF7BW125 to SF12BW125
555 )))
556
557 (((
558 508.1 - SF7BW125 to SF12BW125
559 )))
560
561 (((
562 505.3 - SF12BW125 (RX2 downlink only)
563 )))
564
565
566
567
568 === 2.6.4  AU915-928(AU915) ===
569
570 (((
571 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
572 )))
573
574 (((
575 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
576 )))
577
578 (((
579
580 )))
581
582 (((
583 After Join success, the end node will switch to the correct sub band by:
584 )))
585
586 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
587 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
588
589
590
591
592
593 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
594
595 (((
596 (% style="color:blue" %)**Default Uplink channel:**
597 )))
598
599 (((
600 923.2 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604 923.4 - SF7BW125 to SF10BW125
605 )))
606
607 (((
608
609 )))
610
611 (((
612 (% style="color:blue" %)**Additional Uplink Channel**:
613 )))
614
615 (((
616 (OTAA mode, channel added by JoinAccept message)
617 )))
618
619 (((
620
621 )))
622
623 (((
624 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
625 )))
626
627 (((
628 922.2 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.4 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.6 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 922.8 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 923.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648 922.0 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652
653 )))
654
655 (((
656 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
657 )))
658
659 (((
660 923.6 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 923.8 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.0 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.2 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.4 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680 924.6 - SF7BW125 to SF10BW125
681 )))
682
683 (((
684
685 )))
686
687 (((
688 (% style="color:blue" %)**Downlink:**
689 )))
690
691 (((
692 Uplink channels 1-8 (RX1)
693 )))
694
695 (((
696 923.2 - SF10BW125 (RX2)
697 )))
698
699
700
701
702 === 2.6.6  KR920-923 (KR920) ===
703
704 (((
705 (% style="color:blue" %)**Default channel:**
706 )))
707
708 (((
709 922.1 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.3 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717 922.5 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721
722 )))
723
724 (((
725 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
726 )))
727
728 (((
729 922.1 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.3 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.5 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.7 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 922.9 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 923.1 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753 923.3 - SF7BW125 to SF12BW125
754 )))
755
756 (((
757
758 )))
759
760 (((
761 (% style="color:blue" %)**Downlink:**
762 )))
763
764 (((
765 Uplink channels 1-7(RX1)
766 )))
767
768 (((
769 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
770 )))
771
772
773
774
775 === 2.6.7  IN865-867 (IN865) ===
776
777 (((
778 (% style="color:blue" %)**Uplink:**
779 )))
780
781 (((
782 865.0625 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 865.4025 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790 865.9850 - SF7BW125 to SF12BW125
791 )))
792
793 (((
794
795 )))
796
797 (((
798 (% style="color:blue" %)**Downlink:**
799 )))
800
801 (((
802 Uplink channels 1-3 (RX1)
803 )))
804
805 (((
806 866.550 - SF10BW125 (RX2)
807 )))
808
809
810
811
812 == 2.7  LED Indicator ==
813
814 The LLDS12 has an internal LED which is to show the status of different state.
815
816 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
817 * Blink once when device transmit a packet.
818
819
820
821
822
823 == 2.8  ​Firmware Change Log ==
824
825
826 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
827
828
829 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
830
831
832
833 = 3.  LiDAR ToF Measurement =
834
835 == 3.1 Principle of Distance Measurement ==
836
837 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
838
839 [[image:1654831757579-263.png]]
840
841
842
843 == 3.2 Distance Measurement Characteristics ==
844
845 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
846
847 [[image:1654831774373-275.png]]
848
849
850 (((
851 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
852 )))
853
854 (((
855 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
856 )))
857
858 (((
859 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
860 )))
861
862
863 (((
864 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
865 )))
866
867
868 [[image:1654831797521-720.png]]
869
870
871 (((
872 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
873 )))
874
875 [[image:1654831810009-716.png]]
876
877
878 (((
879 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
880 )))
881
882
883
884 == 3.3 Notice of usage: ==
885
886 Possible invalid /wrong reading for LiDAR ToF tech:
887
888 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
889 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
890 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
891 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
892
893
894
895
896
897
898 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
899
900 (((
901 (((
902 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
903 )))
904 )))
905
906 * (((
907 (((
908 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
909 )))
910 )))
911 * (((
912 (((
913 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
914 )))
915 )))
916
917 (((
918 (((
919
920 )))
921
922 (((
923 There are two kinds of commands to configure LLDS12, they are:
924 )))
925 )))
926
927 * (((
928 (((
929 (% style="color:#4f81bd" %)** General Commands**.
930 )))
931 )))
932
933 (((
934 (((
935 These commands are to configure:
936 )))
937 )))
938
939 * (((
940 (((
941 General system settings like: uplink interval.
942 )))
943 )))
944 * (((
945 (((
946 LoRaWAN protocol & radio related command.
947 )))
948 )))
949
950 (((
951 (((
952 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
953 )))
954 )))
955
956 (((
957 (((
958
959 )))
960 )))
961
962 * (((
963 (((
964 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
965 )))
966 )))
967
968 (((
969 (((
970 These commands only valid for LLDS12, as below:
971 )))
972 )))
973
974
975
976 == 4.1  Set Transmit Interval Time ==
977
978 Feature: Change LoRaWAN End Node Transmit Interval.
979
980 (% style="color:#037691" %)**AT Command: AT+TDC**
981
982 [[image:image-20220607171554-8.png]]
983
984
985 (((
986 (% style="color:#037691" %)**Downlink Command: 0x01**
987 )))
988
989 (((
990 Format: Command Code (0x01) followed by 3 bytes time value.
991 )))
992
993 (((
994 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
995 )))
996
997 * (((
998 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
999 )))
1000 * (((
1001 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1002
1003
1004
1005
1006 )))
1007
1008 == 4.2  Set Interrupt Mode ==
1009
1010 Feature, Set Interrupt mode for GPIO_EXIT.
1011
1012 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1013
1014 [[image:image-20220610105806-2.png]]
1015
1016
1017 (((
1018 (% style="color:#037691" %)**Downlink Command: 0x06**
1019 )))
1020
1021 (((
1022 Format: Command Code (0x06) followed by 3 bytes.
1023 )))
1024
1025 (((
1026 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1027 )))
1028
1029 * (((
1030 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1031 )))
1032 * (((
1033 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1034
1035
1036
1037
1038 )))
1039
1040 == 4.3  Get Firmware Version Info ==
1041
1042 Feature: use downlink to get firmware version.
1043
1044 (% style="color:#037691" %)**Downlink Command: 0x26**
1045
1046 [[image:image-20220607171917-10.png]]
1047
1048 * Reply to the confirmation package: 26 01
1049 * Reply to non-confirmed packet: 26 00
1050
1051 Device will send an uplink after got this downlink command. With below payload:
1052
1053 Configures info payload:
1054
1055 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1056 |=(((
1057 **Size(bytes)**
1058 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1059 |**Value**|Software Type|(((
1060 Frequency
1061
1062 Band
1063 )))|Sub-band|(((
1064 Firmware
1065
1066 Version
1067 )))|Sensor Type|Reserve|(((
1068 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1069 Always 0x02
1070 )))
1071
1072 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1073
1074
1075 (% style="color:#037691" %)**Frequency Band**:
1076
1077 *0x01: EU868
1078
1079 *0x02: US915
1080
1081 *0x03: IN865
1082
1083 *0x04: AU915
1084
1085 *0x05: KZ865
1086
1087 *0x06: RU864
1088
1089 *0x07: AS923
1090
1091 *0x08: AS923-1
1092
1093 *0x09: AS923-2
1094
1095 *0xa0: AS923-3
1096
1097
1098 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1099
1100
1101 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1102
1103
1104 (% style="color:#037691" %)**Sensor Type**:
1105
1106 0x01: LSE01
1107
1108 0x02: LDDS75
1109
1110 0x03: LDDS20
1111
1112 0x04: LLMS01
1113
1114 0x05: LSPH01
1115
1116 0x06: LSNPK01
1117
1118 0x07: LLDS12
1119
1120
1121
1122 = 5.  Battery & How to replace =
1123
1124 == 5.1  Battery Type ==
1125
1126 (((
1127 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1128 )))
1129
1130 (((
1131 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1132 )))
1133
1134 [[image:1654593587246-335.png]]
1135
1136
1137 Minimum Working Voltage for the LLDS12:
1138
1139 LLDS12:  2.45v ~~ 3.6v
1140
1141
1142
1143 == 5.2  Replace Battery ==
1144
1145 (((
1146 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1147 )))
1148
1149 (((
1150 And make sure the positive and negative pins match.
1151 )))
1152
1153
1154
1155 == 5.3  Power Consumption Analyze ==
1156
1157 (((
1158 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1159 )))
1160
1161 (((
1162 Instruction to use as below:
1163 )))
1164
1165
1166 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1167
1168 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1169
1170
1171 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1172
1173 * Product Model
1174 * Uplink Interval
1175 * Working Mode
1176
1177 And the Life expectation in difference case will be shown on the right.
1178
1179 [[image:1654593605679-189.png]]
1180
1181
1182 The battery related documents as below:
1183
1184 * (((
1185 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1186 )))
1187 * (((
1188 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1189 )))
1190 * (((
1191 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1192 )))
1193
1194 [[image:image-20220607172042-11.png]]
1195
1196
1197
1198 === 5.3.1  ​Battery Note ===
1199
1200 (((
1201 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1202 )))
1203
1204
1205
1206 === ​5.3.2  Replace the battery ===
1207
1208 (((
1209 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1210 )))
1211
1212 (((
1213 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1214 )))
1215
1216
1217
1218 = 6.  Use AT Command =
1219
1220 == 6.1  Access AT Commands ==
1221
1222 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1223
1224 [[image:1654593668970-604.png]]
1225
1226 **Connection:**
1227
1228 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1229
1230 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1231
1232 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1233
1234
1235 (((
1236 (((
1237 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1238 )))
1239
1240 (((
1241 LLDS12 will output system info once power on as below:
1242 )))
1243 )))
1244
1245
1246 [[image:1654593712276-618.png]]
1247
1248 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1249
1250
1251 = 7.  FAQ =
1252
1253 == 7.1  How to change the LoRa Frequency Bands/Region ==
1254
1255 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1256 When downloading the images, choose the required image file for download. ​
1257
1258
1259 = 8.  Trouble Shooting =
1260
1261 == 8.1  AT Commands input doesn't work ==
1262
1263
1264 (((
1265 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1266 )))
1267
1268
1269 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1270
1271
1272 (((
1273 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1274 )))
1275
1276 (((
1277 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1278 )))
1279
1280 (((
1281
1282 )))
1283
1284 (((
1285 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1286 )))
1287
1288 (((
1289 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1290 )))
1291
1292
1293
1294 = 9.  Order Info =
1295
1296
1297 Part Number: (% style="color:blue" %)**LLDS12-XX**
1298
1299
1300 (% style="color:blue" %)**XX**(%%): The default frequency band
1301
1302 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1303 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1304 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1305 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1306 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1307 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1308 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1309 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1310
1311
1312
1313
1314
1315 = 10. ​ Packing Info =
1316
1317
1318 **Package Includes**:
1319
1320 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1321
1322 **Dimension and weight**:
1323
1324 * Device Size: cm
1325 * Device Weight: g
1326 * Package Size / pcs : cm
1327 * Weight / pcs : g
1328
1329
1330
1331
1332
1333 = 11.  ​Support =
1334
1335 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1336 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0