Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20221206143242-2.png||height="602" width="551"]]
3
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 What is LHT65N-E5 Temperature,Humidity&Illuminance Sensor ==
27
28
29 (((
30 The Dragino (% style="color:blue" %)**LHT65N-E5 Temperature, Humidity & Illuminance sensor**(%%) is a Long Range LoRaWAN Sensor.It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an (% style="color:blue" %)**external Illuminance **(%%)** (% style="color:blue" %)sensor(%%).**
31
32 The LHT65N-E5 allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
33
34 LHT65N-E5 has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for more than 10 years*.
35
36 LHT65N-E5 is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
37
38 (% style="color:blue" %)*(%%)** **The actual battery life depends on how often to send data, please see battery analyzer chapter.
39 )))
40
41 (% style="display:none" %) (%%)
42
43 == 1.2 Features ==
44
45
46 * LoRaWAN v1.0.3 Class A protocol
47 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
48 * AT Commands to change parameters
49 * Remote configure parameters via LoRaWAN Downlink
50 * Firmware upgradeable via program port
51 * Built-in 2400mAh battery for up to 10 years of use.
52 * Built-in Temperature & Humidity sensor
53 * External Illuminance Sensor
54 * Tri-color LED to indicate working status
55 * Datalog feature to save sensor data when no LoRaWAN network
56
57 (% style="display:none" %)
58
59
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.02 °C/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External IIIuminace Sensor:**
79
80 * Base on BH1750 Illumination Sensor
81 * Cable Length : 50cm
82 * Resolution: 1 lx
83 * Range: 0-65535 lx
84 * Operating Range: -40 °C ~~ 85 °C
85
86
87 = 2. Connect LHT65N-E5 to IoT Server =
88
89 == 2.1 How does LHT65N-E5 work? ==
90
91
92 (((
93 LHT65N-E5 is configured as LoRaWAN OTAA Class A sensor by default. Each LHT65N-E5 is shipped with a worldwide unique set of OTAA keys. To use LHT65N-E5 in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N-E5.
94 )))
95
96 (((
97 If LHT65N-E5 is within the coverage of this LoRaWAN network. LHT65N-E5 can join the LoRaWAN network automatically. After successfully joining, LHT65N-E5 will start to measure environment temperature, humidity & illumination, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
98 )))
99
100
101 == 2.2 How to Activate LHT65N-E5? ==
102
103
104 (((
105 The LHT65N-E5 has two working modes:
106 )))
107
108 * (((
109 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N-E5 doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
110 )))
111 * (((
112 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N-E5 works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N-E5 will be in STOP mode (IDLE mode), in STOP mode, LHT65N-E5 has the same power consumption as Deep Sleep mode. 
113 )))
114
115 (((
116 The LHT65N-E5 is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
117 )))
118
119
120 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
121
122
123 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
124 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
126 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
127 )))
128 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
129 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
130 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
131 )))
132 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
133
134
135 == 2.3 Example to join LoRaWAN network ==
136
137
138 (% class="wikigeneratedid" %)
139 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
140
141
142 (% class="wikigeneratedid" %)
143 [[image:image-20221224101636-1.png||height="435" width="715"]]
144
145
146 (((
147 Assume the LPS8v2 is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N-E5. Next we need to add the LHT65N-E5 device in TTN V3:
148 )))
149
150
151 === 2.3.1 Step 1: Create Device n TTN ===
152
153
154 (((
155 Create a device in TTN V3 with the OTAA keys from LHT65N-E5.
156 )))
157
158 (((
159 Each LHT65N-E5 is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
160 )))
161
162 [[image:image-20230426083358-1.png]]
163
164 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
165
166 Add APP EUI in the application.
167
168
169 [[image:image-20220522232916-3.png||_mstalt="430495"]]
170
171
172 [[image:image-20220522232932-4.png||_mstalt="430157"]]
173
174
175 [[image:image-20220522232954-5.png||_mstalt="431847"]]
176
177
178
179 (% style="color:red" %)**Note: LHT65N-E5 use same payload decoder as LHT65.**
180
181
182 [[image:image-20220522233026-6.png||_mstalt="429403"]]
183
184
185 Input APP EUI,  APP KEY and DEV EUI:
186
187
188 [[image:image-20220522233118-7.png||_mstalt="430430"]]
189
190
191 === 2.3.2 Step 2: Activate LHT65N-E5 by pressing the ACT button for more than 5 seconds. ===
192
193
194 (((
195 Use ACT button to activate LHT65N-E5 and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
196 )))
197
198 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
199
200
201 == 2.4 Uplink Payload   ( Fport~=2) ==
202
203
204 (((
205 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
206 )))
207
208 (((
209 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
210 )))
211
212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
213 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
214 **Size(bytes)**
215 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
216 **2**
217 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
218 **2**
219 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
220 **2**
221 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
222 **1**
223 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
224 **4**
225 )))
226 |(% style="width:97px" %)(((
227 **Value**
228 )))|(% style="width:39px" %)(((
229 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
230 )))|(% style="width:100px" %)(((
231 (((
232 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
233 )))
234 )))|(% style="width:77px" %)(((
235 (((
236 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
237 )))
238 )))|(% style="width:47px" %)(((
239 Ext #
240 )))|(% style="width:51px" %)(((
241 [[Ext value>>||anchor="H2.4.5Extvalue"]]
242 )))
243
244 * The First 6 bytes: has fix meanings for every LHT65N-E5.
245 * The 7th byte (EXT #): defines the external sensor model. It can be 0x05 or 0x09 for LHT65N-E5
246 * The 8^^th^^ ~~ 9^^th^^ byte: Illuminance. Range: 0-65535 lx.
247 * The 10th ~~ 11th byte: Reserve, always 0xFFFF
248
249
250 === 2.4.1 Decoder in TTN V3 ===
251
252
253 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N-E5 decoder in TTNv3 for friendly reading.
254
255 Below is the position to put the decoder and LHT65N-E5 decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
256
257
258 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
259
260
261 === 2.4.2 BAT-Battery Info ===
262
263
264 These two bytes of BAT include the battery state and the actually voltage
265
266 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
267 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
268 **Bit(bit)**
269 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
270 |(% style="width:66px" %)(((
271 **Value**
272 )))|(% style="width:250px" %)(((
273 BAT Status
274 00(b): Ultra Low ( BAT <= 2.50v)
275 01(b): Low (2.50v <=BAT <= 2.55v)
276 10(b): OK (2.55v <= BAT <=2.65v)
277 11(b): Good (BAT >= 2.65v)
278 )))|(% style="width:152px" %)Actually BAT voltage
279
280 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
281
282
283 Check the battery voltage for LHT65N-E5.
284
285 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
286 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
287
288
289 === 2.4.3 Built-in Temperature ===
290
291
292 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
293
294 * Temperature:  0x0ABB/100=27.47℃
295
296 [[image:image-20220522235639-3.png||_mstalt="432120"]]
297
298 * Temperature:  (0xF5C6-65536)/100=-26.18℃
299
300
301 === 2.4.4 Built-in Humidity ===
302
303
304 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
305
306 * Humidity:    0x025C/10=60.4%
307
308
309 === 2.4.5 Ext value ===
310
311 ==== 2.4.5.1 Ext~=0x05, Illuminance Sensor ====
312
313
314 [[image:image-20221224161634-2.png||height="138" width="851"]]
315
316
317 * Illumination=0x005E=94 lux
318
319 The last 2 bytes of data are meaningless
320
321 [[image:image-20221224161725-3.png]]
322
323 * When the sensor is not connected or not connected properly, will show "NULL"
324
325 The last 2 bytes of data are meaningless
326
327
328
329 ==== 2.4.5.2 Ext~=0x85, E5 sensor with Unix Timestamp ====
330
331
332 (((
333 Timestamp mode is designed for LHT65N-E5 with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
334 )))
335
336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
337 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
338 **Size(bytes)**
339 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)(((
351 **Value**
352 )))|(% style="width:71px" %)(((
353 External temperature
354 )))|(% style="width:99px" %)(((
355 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
356 )))|(% style="width:132px" %)(((
357 BAT Status &
358 Illumination
359 )))|(% style="width:54px" %)(((
360 Status & Ext
361 )))|(% style="width:64px" %)(((
362 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
363 )))
364
365 * **Battery status & Built-in Humidity**
366
367 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
368 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
369 **Bit(bit)**
370 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
371 |(% style="width:66px" %)(((
372 **Value**
373 )))|(% style="width:250px" %)(((
374 BAT Status
375 00(b): Ultra Low ( BAT <= 2.50v)
376 01(b): Low (2.50v <=BAT <= 2.55v)
377 10(b): OK (2.55v <= BAT <=2.65v)
378 11(b): Good (BAT >= 2.65v)
379 )))|(% style="width:152px" %)Illumination
380
381 * **Status & Ext Byte**
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
384 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
385 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
386
387 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
388 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N-E5 will set this bit to 0 until got the time stamp from the application server.
389 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N-E5 will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
390
391
392 == 2.5 Show data on Datacake ==
393
394
395 (((
396 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
397 )))
398
399 (((
400
401 )))
402
403 (((
404 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
405 )))
406
407 (((
408 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
409 )))
410
411
412
413 (((
414 Add Datacake:
415 )))
416
417
418 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
419
420
421
422 Select default key as Access Key:
423
424
425 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
426
427
428 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
429
430
431 [[image:image-20221224161935-5.png||height="523" width="409"]]
432
433
434 [[image:image-20221224161957-6.png||height="306" width="852"]]
435
436
437 == 2.6 Datalog Feature ==
438
439
440 (((
441 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N-E5 will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N-E5.
442 )))
443
444
445 === 2.6.1 Ways to get datalog via LoRaWAN ===
446
447
448 There are two methods:
449
450 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
451
452
453 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N-E5 will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N-E5 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
454
455
456 (% style="color:red" %)**Note for method 2:**
457
458 * a) LHT65N-E5 will do an ACK check for data records sending to make sure every data arrive server.
459 * b) LHT65N-E5 will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N-E5 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N-E5 gets a ACK, LHT65N-E5 will consider there is a network connection and resend all NONE-ACK Message.
460
461 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
462
463
464 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
465
466
467 === 2.6.2 Unix TimeStamp ===
468
469
470 LHT65N-E5 uses Unix TimeStamp format based on
471
472
473 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
474
475
476
477 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
478
479 Below is the converter example
480
481 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
482
483
484 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
485
486
487 === 2.6.3 Set Device Time ===
488
489
490 (((
491 (% style="color:blue" %)**There are two ways to set device's time:**
492 )))
493
494 (((
495 **1.  Through LoRaWAN MAC Command (Default settings)**
496 )))
497
498 (((
499 User need to set SYNCMOD=1 to enable sync time via MAC command.
500 )))
501
502 (((
503 Once LHT65N-E5 Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N-E5. If LHT65N-E5 fails to get the time from the server, LHT65N-E5 will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
504 )))
505
506 (((
507 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
508 )))
509
510
511 (((
512 **2. Manually Set Time**
513 )))
514
515 (((
516 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
517 )))
518
519
520 === 2.6.4 Poll sensor value ===
521
522
523 User can poll sensor value based on timestamps from the server. Below is the downlink command.
524
525 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
526 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
527 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
528
529 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
530
531 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
532
533 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
534
535 Uplink Internal =5s,means LHT65N-E5 will send one packet every 5s. range 5~~255s.
536
537
538 === 2.6.5 Datalog Uplink payload ===
539
540
541 The Datalog poll reply uplink will use below payload format.
542
543 **Retrieval data payload:**
544
545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
546 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
547 **Size(bytes)**
548 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
549 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.5Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
550
551 **Poll message flag & Ext:**
552
553 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
554 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
555 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)No ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
556
557 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
558
559 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
560
561 * Poll Message Flag is set to 1.
562
563 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
564
565 For example, in US915 band, the max payload for different DR is:
566
567 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
568
569 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
570
571 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
572
573 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
574
575 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
576
577
578 **Example:**
579
580 If LHT65N-E5 has below data inside Flash:
581
582 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20230426171833-4.png?rev=1.1||alt="image-20230426171833-4.png"]]
583
584
585 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
586
587 Where : Start time: 60065F97 = time 21/1/19 04:27:03
588
589 Stop time: 60066DA7= time 21/1/19 05:27:03
590
591
592 **LHT65N-E5 will uplink this payload.**
593
594 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
595
596
597 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
598
599 Where the first 11 bytes is for the first entry:
600
601 7FFF089801464160065F97
602
603 Ext sensor data=0x7FFF/100=327.67
604
605 Temp=0x088E/100=22.00
606
607 Hum=0x014B/10=32.6
608
609 poll message flag & Ext=0x41,means reply data,Ext=1
610
611 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
612
613
614 == 2.7 Alarm Mode ==
615
616 (((
617
618
619 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
620 )))
621
622 (((
623 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
624
625
626 )))
627
628 === 2.7.1 ALARM MODE ===
629
630
631 (% class="box infomessage" %)
632 (((
633 (((
634 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
635 )))
636
637 (((
638 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
639 )))
640
641 (((
642 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
643 )))
644
645 (((
646 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
647 )))
648
649 (((
650 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
651 )))
652 )))
653
654 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
655
656 Total bytes: 8 bytes
657
658 **Example:**AA0100010001003C
659
660 WMOD=01
661
662 CITEMP=0001
663
664 TEMPlow=0001
665
666 TEMPhigh=003C
667
668
669 == 2.8 LED Indicator ==
670
671
672 The LHT65 has a triple color LED which for easy showing different stage .
673
674 While user press ACT button, the LED will work as per LED status with ACT button.
675
676 In a normal working state:
677
678 * For each uplink, the BLUE LED or RED LED will blink once.
679 BLUE LED when external sensor is connected.
680 * RED LED when external sensor is not connected
681 * For each success downlink, the PURPLE LED will blink once
682
683
684 == 2.9 installation ==
685
686
687 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
688
689
690 = 3. Sensors and Accessories =
691
692 == 3.1 E2 Extension Cable ==
693
694
695 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
696
697
698 **1m long breakout cable for LHT65N-E5. Features:**
699
700 * (((
701 Use for AT Command
702 )))
703 * (((
704 Update firmware for LHT65N-E5
705 )))
706 * (((
707 Exposed All pins from the LHT65N-E5 Type-C connector.
708
709
710
711 )))
712
713 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
714
715
716 = 4. Configure LHT65N-E5 via AT command or LoRaWAN downlink =
717
718
719 (((
720 Use can configure LHT65N-E5 via AT Command or LoRaWAN Downlink.
721 )))
722
723 * (((
724 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
725 )))
726
727 * (((
728 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
729 )))
730
731 (((
732 There are two kinds of commands to configure LHT65N-E5, they are:
733 )))
734
735 * (((
736 (% style="color:#4f81bd" %)**General Commands**.
737 )))
738
739 (((
740 These commands are to configure:
741 )))
742
743 1. (((
744 General system settings like: uplink interval.
745 )))
746 1. (((
747 LoRaWAN protocol & radio-related commands.
748 )))
749
750 (((
751 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
752 )))
753
754 * (((
755 (% style="color:#4f81bd" %)**Commands special design for LHT65N-E5**
756 )))
757
758 (((
759 These commands are only valid for LHT65N-E5, as below:
760 )))
761
762
763 == 4.1 Set Transmit Interval Time ==
764
765
766 Feature: Change LoRaWAN End Node Transmit Interval.
767
768 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
769
770 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
771 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
772 |(% style="width:155px" %)AT+TDC?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
773 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
774
775 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
776
777 Format: Command Code (0x01) followed by 3 bytes time value.
778
779 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
780
781 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
782
783 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
784
785
786 == 4.2 Currently only supports E5 ==
787
788
789 Feature: Set device password, max 9 digits
790
791 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
792
793 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
794 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
795 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get or Set external sensor model|(% style="width:158px" %)(((
796 5
797
798 OK
799 )))
800 |(% style="width:155px" %)AT+EXT=5|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 5
801
802 (% style="color:#4f81bd" %)**Downlink Command:0xA2**
803
804
805 Total bytes: 2 bytes
806
807 **Example:**
808
809 * 0xA205: Set external sensor type to E5
810
811
812 == 4.3 Set to sleep mode ==
813
814
815 Feature: Set device to sleep mode
816
817 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
818 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
819
820 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
821
822 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
823 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
824 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
825 Clear all stored sensor data…
826
827 OK
828 )))
829
830 (% style="color:#4f81bd" %)**Downlink Command:**
831
832 * There is no downlink command to set to Sleep mode.
833
834
835 == 4.4 Set system time ==
836
837
838 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
839
840 (% style="color:#4f81bd" %)**AT Command:**
841
842 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
843 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
844 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
845 OK
846
847 Set System time to 2021-01-20 00:59:12
848 )))
849
850 (% style="color:#4f81bd" %)**Downlink Command:**
851
852 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
853
854
855 == 4.5 Set Time Sync Mode ==
856
857
858 (((
859 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
860 )))
861
862 (((
863 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
864 )))
865
866 (% style="color:#4f81bd" %)**AT Command:**
867
868 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
869 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
870 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
871
872 (% style="color:#4f81bd" %)**Downlink Command:**
873
874 0x28 01  ~/~/  Same As AT+SYNCMOD=1
875 0x28 00  ~/~/  Same As AT+SYNCMOD=0
876
877
878 == 4.6 Set Time Sync Interval ==
879
880
881 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
882
883 (% style="color:#4f81bd" %)**AT Command:**
884
885 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
886 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
887 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
888
889 (% style="color:#4f81bd" %)**Downlink Command:**
890
891 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
892
893
894 == 4.7 Print data entries base on page. ==
895
896
897 Feature: Print the sector data from start page to stop page (max is 416 pages).
898
899 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
900
901 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20230426164330-2.png?rev=1.1||alt="image-20230426164330-2.png"]]
902
903 (% style="color:#4f81bd" %)**Downlink Command:**
904
905 No downlink commands for feature
906
907
908 == 4.8 Print last few data entries. ==
909
910
911 Feature: Print the last few data entries
912
913 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
914
915 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20230426164932-3.png?rev=1.1||alt="image-20230426164932-3.png"]]
916
917
918 (% style="color:#4f81bd" %)**Downlink Command:**
919
920 No downlink commands for feature
921
922
923 == 4.9 Clear Flash Record ==
924
925
926 Feature: Clear flash storage for data log feature.
927
928 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
929
930 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
931 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
932 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
933 Clear all stored sensor data…
934
935 OK
936 )))
937
938 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
939
940 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
941
942
943 == 4.10 Auto Send None-ACK messages ==
944
945
946 Feature: LHT65N-E5 will wait for ACK for each uplink, If LHT65N-E5 doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N-E5 keeps sending messages in normal periodically. Once LHT65N-E5 gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
947
948
949 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
950
951 The default factory setting is 0
952
953 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
954 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
955 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
956
957 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
958
959 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
960
961
962 = 5. Battery & How to replace =
963
964 == 5.1 Battery Type ==
965
966
967 (((
968 LHT65N-E5 is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
969 )))
970
971 (((
972 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
973
974
975 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
976 )))
977
978 The minimum Working Voltage for the LHT65N-E5 is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
979
980
981 == 5.2 Replace Battery ==
982
983
984 LHT65N-E5 has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery (3.0v). Any brand should be ok.
985
986 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
987
988
989 == 5.3 Battery Life Analyze ==
990
991
992 (((
993 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
994 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
995 )))
996
997
998 (((
999 A full detail test report for LHT65N-E5 on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1000 )))
1001
1002
1003 = 6. FAQ =
1004
1005 == 6.1 How to use AT Command? ==
1006
1007
1008 LHT65N-E5 supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1009
1010
1011 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1012
1013
1014
1015 [[image:1655802313617-381.png||_mstalt="293917"]]
1016
1017
1018
1019 (((
1020 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N-E5. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1021 )))
1022
1023 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1024
1025 AT Command List is as below:
1026
1027 AT+<CMD>? :  Help on <CMD>
1028
1029 AT+<CMD> :  Run <CMD>
1030
1031 AT+<CMD>=<value> :  Set the value
1032
1033 AT+<CMD>=? :  Get the value
1034
1035 AT+DEBUG:  Set more info output
1036
1037 ATZ:  Trig a reset of the MCU
1038
1039 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1040
1041 AT+DEUI:  Get or Set the Device EUI
1042
1043 AT+DADDR:  Get or Set the Device Address
1044
1045 AT+APPKEY:  Get or Set the Application Key
1046
1047 AT+NWKSKEY:  Get or Set the Network Session Key
1048
1049 AT+APPSKEY:  Get or Set the Application Session Key
1050
1051 AT+APPEUI:  Get or Set the Application EUI
1052
1053 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1054
1055 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1056
1057 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1058
1059 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1060
1061 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1062
1063 AT+RX2FQ:  Get or Set the Rx2 window frequency
1064
1065 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1066
1067 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1068
1069 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1070
1071 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1072
1073 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1074
1075 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1076
1077 AT+NWKID:  Get or Set the Network ID
1078
1079 AT+FCU:  Get or Set the Frame Counter Uplink
1080
1081 AT+FCD:  Get or Set the Frame Counter Downlink
1082
1083 AT+CLASS:  Get or Set the Device Class
1084
1085 AT+JOIN:  Join network
1086
1087 AT+NJS:  Get the join status
1088
1089 AT+SENDB:  Send hexadecimal data along with the application port
1090
1091 AT+SEND:  Send text data along with the application port
1092
1093 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1094
1095 AT+RECV:  Print last received data in raw format
1096
1097 AT+VER:  Get current image version and Frequency Band
1098
1099 AT+CFM:  Get or Set the confirmation mode (0-1)
1100
1101 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1102
1103 AT+SNR:  Get the SNR of the last received packet
1104
1105 AT+RSSI:  Get the RSSI of the last received packet
1106
1107 AT+TDC:  Get or set the application data transmission interval in ms
1108
1109 AT+PORT:  Get or set the application port
1110
1111 AT+DISAT:  Disable AT commands
1112
1113 AT+PWORD: Set password, max 9 digits
1114
1115 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1116
1117 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1118
1119 AT+PDTA:  Print the sector data from start page to stop page
1120
1121 AT+PLDTA:  Print the last few sets of data
1122
1123 AT+CLRDTA:  Clear the storage, record position back to 1st
1124
1125 AT+SLEEP:  Set sleep mode
1126
1127 AT+EXT:  Get or Set external sensor model
1128
1129 AT+BAT:  Get the current battery voltage in mV
1130
1131 AT+CFG:  Print all configurations
1132
1133 AT+WMOD:  Get or Set Work Mode
1134
1135 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1136
1137 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1138
1139 AT+SETCNT:  Set the count at present
1140
1141 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1142
1143 AT+RPL:  Get or set response level
1144
1145 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1146
1147 AT+LEAPSEC:  Get or Set Leap Second
1148
1149 AT+SYNCMOD:  Get or Set time synchronization method
1150
1151 AT+SYNCTDC:  Get or set time synchronization interval in day
1152
1153 AT+PID:  Get or set the PID
1154
1155
1156 == 6.2 Where to use AT commands and Downlink commands ==
1157
1158
1159 **AT commands:**
1160
1161 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1162
1163
1164 **Downlink commands:**
1165
1166
1167
1168 (% style="color:blue" %)**TTN:**
1169
1170 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1171
1172
1173
1174 (% style="color:blue" %)**Helium:**
1175
1176 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1177
1178
1179
1180 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1181
1182
1183 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1184
1185
1186 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1187
1188
1189
1190 (% style="color:blue" %)**Aws:**
1191
1192 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1193
1194
1195 == 6.3 How to change the uplink interval? ==
1196
1197
1198 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1199
1200
1201 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1202
1203
1204 == 6.4 How to use TTL-USB to connect PC to upgrade firmware? ==
1205
1206
1207 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1208
1209
1210 (% style="color:blue" %)**Step1**(%%): Install TremoProgrammer  first.
1211
1212 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1213
1214
1215
1216 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1217
1218 First connect the four lines;(% style="display:none" %)
1219
1220 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1221
1222
1223 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1224
1225 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1226
1227
1228
1229 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1230
1231 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1232
1233
1234 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1235
1236
1237 When this interface appears, it indicates that the download has been completed.
1238
1239 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1240
1241
1242 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1243
1244
1245
1246 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1247
1248
1249 = 7. Order Info =
1250
1251
1252 Part Number: (% style="color:#4f81bd" %)** LHT65N-E5-XX**
1253
1254 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1255
1256 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1257 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1258 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1259 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1260 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1261 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1262 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1263 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1264
1265
1266 = 8. Packing Info =
1267
1268
1269 **Package Includes**:
1270
1271 * LHT65N-E5 Temperature/Humidity/Illuminance Sensor x 1
1272
1273 **Dimension and weight**:
1274
1275 * Device Size:  10 x 10 x 3.5 mm
1276 * Device Weight: 120.5g
1277
1278
1279 = 9. Reference material =
1280
1281
1282 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1283
1284
1285 = 10. FCC Warning =
1286
1287
1288 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1289
1290 (1) This device may not cause harmful interference;
1291
1292 (2) this device must accept any interference received, including interference that may cause undesired operation.
1293
1294
1295
1296
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0