Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20221206143242-2.png||height="602" width="551"]]
3
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 What is LHT65N-E5 Temperature,Humidity&Illuminance Sensor ==
27
28
29 (((
30 The Dragino (% style="color:blue" %)**LHT65N-E5 Temperature, Humidity & Illuminance sensor**(%%) is a Long Range LoRaWAN Sensor.It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an (% style="color:blue" %)**external Illuminance **(%%)** (% style="color:blue" %)sensor(%%).**
31
32 The LHT65N-E5 allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
33
34 LHT65N-E5 has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for more than 10 years*.
35
36 LHT65N-E5 is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
37
38 (% style="color:blue" %)*(%%)** **The actual battery life depends on how often to send data, please see battery analyzer chapter.
39 )))
40
41 (% style="display:none" %) (%%)
42
43 == 1.2 Features ==
44
45
46 * LoRaWAN v1.0.3 Class A protocol
47 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
48 * AT Commands to change parameters
49 * Remote configure parameters via LoRaWAN Downlink
50 * Firmware upgradeable via program port
51 * Built-in 2400mAh battery for up to 10 years of use.
52 * Built-in Temperature & Humidity sensor
53 * External Illuminance Sensor
54 * Tri-color LED to indicate working status
55 * Datalog feature to save sensor data when no LoRaWAN network
56
57 (% style="display:none" %)
58
59
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.02 °C/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External IIIuminace Sensor:**
79
80 * Base on BH1750 Illumination Sensor
81 * Cable Length : 50cm
82 * Resolution: 1 lx
83 * Range: 0-65535 lx
84 * Operating Range: -40 °C ~~ 85 °C
85
86 = 2. Connect LHT65N-E5 to IoT Server =
87
88 == 2.1 How does LHT65N-E5 work? ==
89
90
91 (((
92 LHT65N-E5 is configured as LoRaWAN OTAA Class A sensor by default. Each LHT65N-E5 is shipped with a worldwide unique set of OTAA keys. To use LHT65N-E5 in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N-E5.
93 )))
94
95 (((
96 If LHT65N-E5 is within the coverage of this LoRaWAN network. LHT65N-E5 can join the LoRaWAN network automatically. After successfully joining, LHT65N-E5 will start to measure environment temperature, humidity & illumination, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
97 )))
98
99
100 == 2.2 How to Activate LHT65N-E5? ==
101
102
103 (((
104 The LHT65N-E5 has two working modes:
105 )))
106
107 * (((
108 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N-E5 doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
109 )))
110 * (((
111 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N-E5 works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N-E5 will be in STOP mode (IDLE mode), in STOP mode, LHT65N-E5 has the same power consumption as Deep Sleep mode. 
112 )))
113
114 (((
115 The LHT65N-E5 is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
116 )))
117
118
119 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
120
121
122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
123 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
124 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
125 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
126 )))
127 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
128 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
129 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
130 )))
131 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
132
133 == 2.3 Example to join LoRaWAN network ==
134
135
136 (% class="wikigeneratedid" %)
137 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
138
139
140 (% class="wikigeneratedid" %)
141 [[image:image-20221224101636-1.png||height="435" width="715"]]
142
143
144 (((
145 Assume the LPS8v2 is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N-E5. Next we need to add the LHT65N-E5 device in TTN V3:
146 )))
147
148
149 === 2.3.1 Step 1: Create Device n TTN ===
150
151
152 (((
153 Create a device in TTN V3 with the OTAA keys from LHT65N-E5.
154 )))
155
156 (((
157 Each LHT65N-E5 is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
158 )))
159
160 [[image:image-20230426083358-1.png]]
161
162 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
163
164 Add APP EUI in the application.
165
166
167 [[image:image-20220522232916-3.png||_mstalt="430495"]]
168
169
170 [[image:image-20220522232932-4.png||_mstalt="430157"]]
171
172
173 [[image:image-20220522232954-5.png||_mstalt="431847"]]
174
175
176
177 (% style="color:red" %)**Note: LHT65N-E5 use same payload decoder as LHT65.**
178
179
180 [[image:image-20220522233026-6.png||_mstalt="429403"]]
181
182
183 Input APP EUI,  APP KEY and DEV EUI:
184
185
186 [[image:image-20220522233118-7.png||_mstalt="430430"]]
187
188
189 === 2.3.2 Step 2: Activate LHT65N-E5 by pressing the ACT button for more than 5 seconds. ===
190
191
192 (((
193 Use ACT button to activate LHT65N-E5 and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
194 )))
195
196 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
197
198
199 == 2.4 Uplink Payload   ( Fport~=2) ==
200
201
202 (((
203 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
204 )))
205
206 (((
207 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
208 )))
209
210 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
211 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
212 **Size(bytes)**
213 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
214 **2**
215 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
216 **2**
217 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
218 **2**
219 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
220 **1**
221 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
222 **4**
223 )))
224 |(% style="width:97px" %)(((
225 **Value**
226 )))|(% style="width:39px" %)(((
227 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
228 )))|(% style="width:100px" %)(((
229 (((
230 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
231 )))
232 )))|(% style="width:77px" %)(((
233 (((
234 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
235 )))
236 )))|(% style="width:47px" %)(((
237 Ext #
238 )))|(% style="width:51px" %)(((
239 [[Ext value>>||anchor="H2.4.5Extvalue"]]
240 )))
241
242 * The First 6 bytes: has fix meanings for every LHT65N-E5.
243 * The 7th byte (EXT #): defines the external sensor model. It can be 0x05 or 0x09 for LHT65N-E5
244 * The 8^^th^^ ~~ 9^^th^^ byte: Illuminance. Range: 0-65535 lx.
245 * The 10th ~~ 11th byte: Reserve, always 0xFFFF
246
247 === 2.4.1 Decoder in TTN V3 ===
248
249
250 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N-E5 decoder in TTNv3 for friendly reading.
251
252 Below is the position to put the decoder and LHT65N-E5 decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
253
254
255 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
256
257
258 === 2.4.2 BAT-Battery Info ===
259
260
261 These two bytes of BAT include the battery state and the actually voltage
262
263 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
264 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
265 **Bit(bit)**
266 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
267 |(% style="width:66px" %)(((
268 **Value**
269 )))|(% style="width:250px" %)(((
270 BAT Status
271 00(b): Ultra Low ( BAT <= 2.50v)
272 01(b): Low (2.50v <=BAT <= 2.55v)
273 10(b): OK (2.55v <= BAT <=2.65v)
274 11(b): Good (BAT >= 2.65v)
275 )))|(% style="width:152px" %)Actually BAT voltage
276
277 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
278
279
280 Check the battery voltage for LHT65N-E5.
281
282 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
283 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext value ===
304
305 ==== 2.4.5.1 Ext~=0x05, Illuminance Sensor ====
306
307
308 [[image:image-20221224161634-2.png||height="138" width="851"]]
309
310
311 * Illumination=0x005E=94 lux
312
313 The last 2 bytes of data are meaningless
314
315 [[image:image-20221224161725-3.png]]
316
317 * When the sensor is not connected or not connected properly, will show "NULL"
318
319 The last 2 bytes of data are meaningless
320
321
322
323 ==== 2.4.5.2 Ext~=0x85, E5 sensor with Unix Timestamp ====
324
325
326 (((
327 Timestamp mode is designed for LHT65N-E5 with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
328 )))
329
330 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
331 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
332 **Size(bytes)**
333 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
334 **2**
335 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
336 **2**
337 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
338 **2**
339 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
340 **1**
341 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
342 **4**
343 )))
344 |(% style="width:110px" %)(((
345 **Value**
346 )))|(% style="width:71px" %)(((
347 [[External temperature>>||anchor="H4.2SetExternalSensorMode"]]
348 )))|(% style="width:99px" %)(((
349 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
350 )))|(% style="width:132px" %)(((
351 BAT Status &
352 Illumination
353 )))|(% style="width:54px" %)(((
354 Status & Ext
355 )))|(% style="width:64px" %)(((
356 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
357 )))
358
359 * **Battery status & Built-in Humidity**
360
361 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
362 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
363 **Bit(bit)**
364 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
365 |(% style="width:66px" %)(((
366 **Value**
367 )))|(% style="width:250px" %)(((
368 BAT Status
369 00(b): Ultra Low ( BAT <= 2.50v)
370 01(b): Low (2.50v <=BAT <= 2.55v)
371 10(b): OK (2.55v <= BAT <=2.65v)
372 11(b): Good (BAT >= 2.65v)
373 )))|(% style="width:152px" %)Illumination
374
375 * **Status & Ext Byte**
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
378 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
379 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
380
381 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
382 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N-E5 will set this bit to 0 until got the time stamp from the application server.
383 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N-E5 will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
384
385 == 2.5 Show data on Datacake ==
386
387
388 (((
389 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
390 )))
391
392 (((
393
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
398 )))
399
400 (((
401 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
402 )))
403
404
405
406 (((
407 Add Datacake:
408 )))
409
410
411 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
412
413
414
415 Select default key as Access Key:
416
417
418 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
419
420
421 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
422
423
424 [[image:image-20221224161935-5.png||height="523" width="409"]]
425
426
427 [[image:image-20221224161957-6.png||height="306" width="852"]]
428
429
430 == 2.6 Datalog Feature ==
431
432
433 (((
434 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N-E5 will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N-E5.
435 )))
436
437
438 === 2.6.1 Ways to get datalog via LoRaWAN ===
439
440
441 There are two methods:
442
443 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
444
445
446 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N-E5 will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N-E5 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
447
448
449 (% style="color:red" %)**Note for method 2:**
450
451 * a) LHT65N-E5 will do an ACK check for data records sending to make sure every data arrive server.
452 * b) LHT65N-E5 will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N-E5 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N-E5 gets a ACK, LHT65N-E5 will consider there is a network connection and resend all NONE-ACK Message.
453
454 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
455
456
457 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
458
459
460 === 2.6.2 Unix TimeStamp ===
461
462
463 LHT65N-E5 uses Unix TimeStamp format based on
464
465
466 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
467
468
469
470 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
471
472 Below is the converter example
473
474 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
475
476
477 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
478
479
480 === 2.6.3 Set Device Time ===
481
482
483 (((
484 (% style="color:blue" %)**There are two ways to set device's time:**
485 )))
486
487 (((
488 **1.  Through LoRaWAN MAC Command (Default settings)**
489 )))
490
491 (((
492 User need to set SYNCMOD=1 to enable sync time via MAC command.
493 )))
494
495 (((
496 Once LHT65N-E5 Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N-E5. If LHT65N-E5 fails to get the time from the server, LHT65N-E5 will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
497 )))
498
499 (((
500 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
501 )))
502
503
504 (((
505 **2. Manually Set Time**
506 )))
507
508 (((
509 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
510 )))
511
512
513 === 2.6.4 Poll sensor value ===
514
515
516 User can poll sensor value based on timestamps from the server. Below is the downlink command.
517
518 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
519 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
520 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
521
522
523
524 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
525
526 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
527
528 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
529
530 Uplink Internal =5s,means LHT65N-E5 will send one packet every 5s. range 5~~255s.
531
532
533 === 2.6.5 Datalog Uplink payload ===
534
535
536 The Datalog poll reply uplink will use below payload format.
537
538 **Retrieval data payload:**
539
540 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
541 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
542 **Size(bytes)**
543 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
544 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.5Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
545
546 **Poll message flag & Ext:**
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
549 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
550 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)No ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
551
552 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
553
554 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
555
556 * Poll Message Flag is set to 1.
557
558 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
559
560 For example, in US915 band, the max payload for different DR is:
561
562 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
563
564 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
565
566 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
567
568 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
569
570 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
571
572
573 **Example:**
574
575 If LHT65N-E5 has below data inside Flash:
576
577 [[image:image-20220523144455-1.png||_mstalt="430040" height="335" width="735"]]
578
579
580 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
581
582 Where : Start time: 60065F97 = time 21/1/19 04:27:03
583
584 Stop time: 60066DA7= time 21/1/19 05:27:03
585
586
587 **LHT65N-E5 will uplink this payload.**
588
589 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
590
591
592 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
593
594 Where the first 11 bytes is for the first entry:
595
596 7FFF089801464160065F97
597
598 Ext sensor data=0x7FFF/100=327.67
599
600 Temp=0x088E/100=22.00
601
602 Hum=0x014B/10=32.6
603
604 poll message flag & Ext=0x41,means reply data,Ext=1
605
606 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
607
608
609 == 2.7 Alarm Mode ==
610
611 (((
612
613
614 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
615 )))
616
617 (((
618 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
619
620
621 )))
622
623 === 2.7.1 ALARM MODE ===
624
625
626 (% class="box infomessage" %)
627 (((
628 (((
629 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
630 )))
631
632 (((
633 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
634 )))
635
636 (((
637 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
638 )))
639
640 (((
641 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
642 )))
643
644 (((
645 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
646 )))
647 )))
648
649 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
650
651 Total bytes: 8 bytes
652
653 **Example:**AA0100010001003C
654
655 WMOD=01
656
657 CITEMP=0001
658
659 TEMPlow=0001
660
661 TEMPhigh=003C
662
663
664 == 2.8 LED Indicator ==
665
666
667 The LHT65 has a triple color LED which for easy showing different stage .
668
669 While user press ACT button, the LED will work as per LED status with ACT button.
670
671 In a normal working state:
672
673 * For each uplink, the BLUE LED or RED LED will blink once.
674 BLUE LED when external sensor is connected.
675 * RED LED when external sensor is not connected
676 * For each success downlink, the PURPLE LED will blink once
677
678 == 2.9 installation ==
679
680
681 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
682
683
684 = 3. Sensors and Accessories =
685
686 == 3.1 E2 Extension Cable ==
687
688
689 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
690
691
692 **1m long breakout cable for LHT65N-E5. Features:**
693
694 * (((
695 Use for AT Command
696 )))
697 * (((
698 Update firmware for LHT65N-E5
699 )))
700 * (((
701 Exposed All pins from the LHT65N Type-C connector.
702
703
704
705 )))
706
707 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
708
709
710 = 4. Configure LHT65N-E5 via AT command or LoRaWAN downlink =
711
712
713 (((
714 Use can configure LHT65N-E5 via AT Command or LoRaWAN Downlink.
715 )))
716
717 * (((
718 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
719 )))
720
721 * (((
722 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
723 )))
724
725 (((
726 There are two kinds of commands to configure LHT65N-E5, they are:
727 )))
728
729 * (((
730 (% style="color:#4f81bd" %)**General Commands**.
731 )))
732
733 (((
734 These commands are to configure:
735 )))
736
737 1. (((
738 General system settings like: uplink interval.
739 )))
740 1. (((
741 LoRaWAN protocol & radio-related commands.
742 )))
743
744 (((
745 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
746 )))
747
748 * (((
749 (% style="color:#4f81bd" %)**Commands special design for LHT65N-E5**
750 )))
751
752 (((
753 These commands are only valid for LHT65N-E5, as below:
754 )))
755
756
757 == 4.1 Set Transmit Interval Time ==
758
759
760 Feature: Change LoRaWAN End Node Transmit Interval.
761
762
763 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
764
765 [[image:image-20220523150701-2.png||_mstalt="427453"]]
766
767
768 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
769
770 Format: Command Code (0x01) followed by 3 bytes time value.
771
772 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
773
774 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
775
776 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
777
778 == 4.2 Currently only supports E5 ==
779
780
781 Feature: Set device password, max 9 digits
782
783
784 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
785
786 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
787 |Command Example|Function|Response
788 |AT+EXT=?|Get or Set external sensor model|(((
789 5
790
791 OK
792 )))
793 |AT+EXT=5|(% colspan="2" %)Set external sensor mode to 5
794
795 (% style="color:#4f81bd" %)**Downlink Command:0xA2**
796
797
798 Total bytes: 2 bytes
799
800 **Example:**
801
802 * 0xA205: Set external sensor type to E5
803
804 == 4.3 Set to sleep mode ==
805
806
807 Feature: Set device to sleep mode
808
809 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
810 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
811
812 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
813
814 [[image:image-20220523151218-7.png||_mstalt="430703"]]
815
816
817 (% style="color:#4f81bd" %)**Downlink Command:**
818
819 * There is no downlink command to set to Sleep mode.
820
821 == 4.4 Set system time ==
822
823
824 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
825
826
827 (% style="color:#4f81bd" %)**AT Command:**
828
829 [[image:image-20220523151253-8.png||_mstalt="430677"]]
830
831
832 (% style="color:#4f81bd" %)**Downlink Command:**
833
834 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
835
836
837 == 4.5 Set Time Sync Mode ==
838
839
840 (((
841 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
842 )))
843
844 (((
845 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
846
847
848 )))
849
850 (% style="color:#4f81bd" %)**AT Command:**
851
852 [[image:image-20220523151336-9.png||_mstalt="431717"]]
853
854
855 (% style="color:#4f81bd" %)**Downlink Command:**
856
857 0x28 01  ~/~/  Same As AT+SYNCMOD=1
858 0x28 00  ~/~/  Same As AT+SYNCMOD=0
859
860
861 == 4.6 Set Time Sync Interval ==
862
863
864 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
865
866
867 (% style="color:#4f81bd" %)**AT Command:**
868
869 [[image:image-20220523151411-10.png||_mstalt="449696"]]
870
871
872 (% style="color:#4f81bd" %)**Downlink Command:**
873
874 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
875
876
877 == 4.7 Print data entries base on page. ==
878
879
880 Feature: Print the sector data from start page to stop page (max is 416 pages).
881
882
883 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
884
885 [[image:image-20220523151450-11.png||_mstalt="451035"]]
886
887
888 (% style="color:#4f81bd" %)**Downlink Command:**
889
890 No downlink commands for feature
891
892
893 == 4.8 Print last few data entries. ==
894
895
896 Feature: Print the last few data entries
897
898
899 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
900
901 [[image:image-20220523151524-12.png||_mstalt="452101"]]
902
903
904 (% style="color:#4f81bd" %)**Downlink Command:**
905
906 No downlink commands for feature
907
908
909 == 4.9 Clear Flash Record ==
910
911
912 Feature: Clear flash storage for data log feature.
913
914
915 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
916
917 [[image:image-20220523151556-13.png||_mstalt="454129"]]
918
919
920 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
921
922 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
923
924 == 4.10 Auto Send None-ACK messages ==
925
926
927 Feature: LHT65N-E5 will wait for ACK for each uplink, If LHT65N-E5 doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N-E5 keeps sending messages in normal periodically. Once LHT65N-E5 gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
928
929
930 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
931
932 The default factory setting is 0
933
934 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:367px" %)
935 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 118px;" %)**Function**|=(% style="width: 87px;" %)**Response**
936 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
937
938 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
939
940 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
941
942 = 5. Battery & How to replace =
943
944 == 5.1 Battery Type ==
945
946
947 (((
948 LHT65N-E5 is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
949 )))
950
951 (((
952 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
953
954
955 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
956 )))
957
958 The minimum Working Voltage for the LHT65N-E5 is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
959
960
961 == 5.2 Replace Battery ==
962
963
964 LHT65N-E5 has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery (3.0v). Any brand should be ok.
965
966 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
967
968
969 == 5.3 Battery Life Analyze ==
970
971
972 (((
973 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
974 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
975 )))
976
977
978 (((
979 A full detail test report for LHT65N-E5 on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
980 )))
981
982
983 = 6. FAQ =
984
985 == 6.1 How to use AT Command? ==
986
987
988 LHT65N-E5 supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
989
990
991 [[image:image-20220615153355-1.png||_mstalt="430222"]]
992
993
994
995 [[image:1655802313617-381.png||_mstalt="293917"]]
996
997
998
999 (((
1000 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N-E5. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1001 )))
1002
1003 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1004
1005 AT Command List is as below:
1006
1007 AT+<CMD>? :  Help on <CMD>
1008
1009 AT+<CMD> :  Run <CMD>
1010
1011 AT+<CMD>=<value> :  Set the value
1012
1013 AT+<CMD>=? :  Get the value
1014
1015 AT+DEBUG:  Set more info output
1016
1017 ATZ:  Trig a reset of the MCU
1018
1019 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1020
1021 AT+DEUI:  Get or Set the Device EUI
1022
1023 AT+DADDR:  Get or Set the Device Address
1024
1025 AT+APPKEY:  Get or Set the Application Key
1026
1027 AT+NWKSKEY:  Get or Set the Network Session Key
1028
1029 AT+APPSKEY:  Get or Set the Application Session Key
1030
1031 AT+APPEUI:  Get or Set the Application EUI
1032
1033 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1034
1035 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1036
1037 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1038
1039 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1040
1041 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1042
1043 AT+RX2FQ:  Get or Set the Rx2 window frequency
1044
1045 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1046
1047 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1048
1049 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1050
1051 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1052
1053 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1054
1055 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1056
1057 AT+NWKID:  Get or Set the Network ID
1058
1059 AT+FCU:  Get or Set the Frame Counter Uplink
1060
1061 AT+FCD:  Get or Set the Frame Counter Downlink
1062
1063 AT+CLASS:  Get or Set the Device Class
1064
1065 AT+JOIN:  Join network
1066
1067 AT+NJS:  Get the join status
1068
1069 AT+SENDB:  Send hexadecimal data along with the application port
1070
1071 AT+SEND:  Send text data along with the application port
1072
1073 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1074
1075 AT+RECV:  Print last received data in raw format
1076
1077 AT+VER:  Get current image version and Frequency Band
1078
1079 AT+CFM:  Get or Set the confirmation mode (0-1)
1080
1081 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1082
1083 AT+SNR:  Get the SNR of the last received packet
1084
1085 AT+RSSI:  Get the RSSI of the last received packet
1086
1087 AT+TDC:  Get or set the application data transmission interval in ms
1088
1089 AT+PORT:  Get or set the application port
1090
1091 AT+DISAT:  Disable AT commands
1092
1093 AT+PWORD: Set password, max 9 digits
1094
1095 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1096
1097 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1098
1099 AT+PDTA:  Print the sector data from start page to stop page
1100
1101 AT+PLDTA:  Print the last few sets of data
1102
1103 AT+CLRDTA:  Clear the storage, record position back to 1st
1104
1105 AT+SLEEP:  Set sleep mode
1106
1107 AT+EXT:  Get or Set external sensor model
1108
1109 AT+BAT:  Get the current battery voltage in mV
1110
1111 AT+CFG:  Print all configurations
1112
1113 AT+WMOD:  Get or Set Work Mode
1114
1115 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1116
1117 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1118
1119 AT+SETCNT:  Set the count at present
1120
1121 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1122
1123 AT+RPL:  Get or set response level
1124
1125 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1126
1127 AT+LEAPSEC:  Get or Set Leap Second
1128
1129 AT+SYNCMOD:  Get or Set time synchronization method
1130
1131 AT+SYNCTDC:  Get or set time synchronization interval in day
1132
1133 AT+PID:  Get or set the PID
1134
1135
1136 == 6.2 Where to use AT commands and Downlink commands ==
1137
1138
1139 **AT commands:**
1140
1141 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1142
1143
1144 **Downlink commands:**
1145
1146
1147
1148 (% style="color:blue" %)**TTN:**
1149
1150 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1151
1152
1153
1154 (% style="color:blue" %)**Helium:**
1155
1156 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1157
1158
1159
1160 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1161
1162
1163 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1164
1165
1166 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1167
1168
1169
1170 (% style="color:blue" %)**Aws:**
1171
1172 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1173
1174
1175 == 6.3 How to change the uplink interval? ==
1176
1177
1178 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1179
1180
1181
1182 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1183
1184
1185 == 6.4 How to use TTL-USB to connect PC to upgrade firmware? ==
1186
1187
1188 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1189
1190
1191 (% style="color:blue" %)**Step1**(%%): Install TremoProgrammer  first.
1192
1193 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1194
1195
1196
1197 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1198
1199 First connect the four lines;(% style="display:none" %)
1200
1201 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1202
1203
1204 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1205
1206 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1207
1208
1209
1210 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1211
1212 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1213
1214
1215 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1216
1217
1218 When this interface appears, it indicates that the download has been completed.
1219
1220 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1221
1222
1223 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1224
1225
1226
1227 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1228
1229
1230 = 7. Order Info =
1231
1232
1233 Part Number: (% style="color:#4f81bd" %)** LHT65N-E5-XX**
1234
1235 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1236
1237 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1238 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1239 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1240 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1241 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1242 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1243 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1244 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1245
1246 = 8. Packing Info =
1247
1248
1249 **Package Includes**:
1250
1251 * LHT65N-E5 Temperature/Humidity/Illuminance Sensor x 1
1252
1253 **Dimension and weight**:
1254
1255 * Device Size:  10 x 10 x 3.5 mm
1256 * Device Weight: 120.5g
1257
1258 = 9. Reference material =
1259
1260
1261 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1262
1263 = 10. FCC Warning =
1264
1265
1266 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1267
1268 (1) This device may not cause harmful interference;
1269
1270 (2) this device must accept any interference received, including interference that may cause undesired operation.
1271
1272
1273
1274
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0