Version 3.1 by Edwin Chen on 2023/04/09 00:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20221206143242-2.png||height="602" width="551"]]
3
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 What is LHT65N-PIR Temperature,Humidity & PIR Sensor ==
27
28 The Dragino (% style="color:blue" %)**LHT65N-PIR Temperature, Humidity & PIR sensor**(%%) is a Long Range LoRaWAN Sensor.It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an (% style="color:blue" %)**external PIR Probe**(%%)**.** LHT65N-PIR can detect environment Temperature & Humdity, it also detects (% style="color:blue" %)**People Activity**(%%) via PIR probe and them send these info to LoRaWAN IoT Server.
29
30 The LHT65N-PIR allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
31
32 LHT65N-PIR has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for more than 5 years*.
33
34 LHT65N-PIR supports (% style="color:blue" %)**wireless configure & OTA update**(%%) which make user easy to use.
35
36 LHT65N-PIR is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
37
38
39 **~*~***The actual battery life depends on how often to send data, please see battery analyzer chapter.
40
41
42 == 1.2 Features ==
43
44 * LoRaWAN v1.0.3 Class A protocol
45 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
46 * AT Commands to change parameters
47 * Remote configure parameters via LoRaWAN Downlink
48 * Support wireless OTA update firmware
49 * Firmware upgradeable via program port
50 * Built-in 2400mAh battery for up to 5 years of use.
51 * Built-in Temperature & Humidity sensor
52 * External PIR Sensor
53 * Tri-color LED to indicate working status(% style="display:none" %)
54
55
56 == 1.3 Specification ==
57
58
59 (% style="color:#037691" %)**Built-in Temperature Sensor:**
60
61 * Resolution: 0.01 °C
62 * Accuracy Tolerance : Typ ±0.3 °C
63 * Long Term Drift: < 0.02 °C/yr
64 * Operating Range: -40 ~~ 85 °C
65
66 (% style="color:#037691" %)**Built-in Humidity Sensor:**
67
68 * Resolution: 0.04 %RH
69 * Accuracy Tolerance : Typ ±3 %RH
70 * Long Term Drift: < 0.02 °C/yr
71 * Operating Range: 0 ~~ 96 %RH
72
73 (% class="mark" style="color:#037691" %)**External PIR Sensor:**
74
75 * (% class="mark" %)Base on BH1750 Illumination Sensor
76 * (% class="mark" %)Cable Length : 50cm
77 * (% class="mark" %)Resolution: 1 lx
78 * (% class="mark" %)Range: 0-65535 lx
79 * (% class="mark" %)Operating Range: -40 °C ~~ 85 °C
80
81
82 = 2. Connect LHT65N-PIR to IoT Server =
83
84 == 2.1 How does LHT65N-PIR work? ==
85
86 LHT65N-PIR is configured as LoRaWAN OTAA Class A sensor by default. Each LHT65N-PIR is shipped with a worldwide unique set of OTAA keys. To use LHT65N-PIR in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N-PIR.
87
88 If LHT65N-PIR is within the coverage of this LoRaWAN network. LHT65N-PIR can join the LoRaWAN network automatically. After successfully joining, LHT65N-PIR will start to measure environment temperature, humidity & people activity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
89
90
91 == 2.2 How to Activate LHT65N-PIR? ==
92
93 The LHT65N-E5 has two working modes:
94
95 *
96 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N-E5 doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
97
98 *
99 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N-E5 works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N-E5 will be in STOP mode (IDLE mode), in STOP mode, LHT65N-E5 has the same power consumption as Deep Sleep mode. 
100
101 The LHT65N-E5 is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
102
103
104 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
105
106 [[image:image-20220525110604-2.png||_mstalt="427531"]]
107
108
109 == 2.3 Example to join LoRaWAN network ==
110
111
112 (% class="wikigeneratedid" %)
113 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
114
115
116 (% class="wikigeneratedid" %)
117 [[image:image-20221224101636-1.png||height="435" width="715"]]
118
119
120 (((
121 Assume the LPS8v2 is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N-E5. Next we need to add the LHT65N-E5 device in TTN V3:
122 )))
123
124
125 === 2.3.1 Step 1: Create Device n TTN ===
126
127
128 (((
129 Create a device in TTN V3 with the OTAA keys from LHT65N-E5.
130 )))
131
132 (((
133 Each LHT65N-E5 is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
134 )))
135
136 [[image:image-20220617150003-1.jpeg||_mstalt="5426434"]]
137
138 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
139
140 Add APP EUI in the application.
141
142
143 [[image:image-20220522232916-3.png||_mstalt="430495"]]
144
145
146 [[image:image-20220522232932-4.png||_mstalt="430157"]]
147
148
149 [[image:image-20220522232954-5.png||_mstalt="431847"]]
150
151
152
153 (% style="color:red" %)**Note: LHT65N-E5 use same payload decoder as LHT65.**
154
155
156 [[image:image-20220522233026-6.png||_mstalt="429403"]]
157
158
159 Input APP EUI,  APP KEY and DEV EUI:
160
161
162 [[image:image-20220522233118-7.png||_mstalt="430430"]]
163
164
165 === 2.3.2 Step 2: Activate LHT65N-E5 by pressing the ACT button for more than 5 seconds. ===
166
167
168 (((
169 Use ACT button to activate LHT65N-E5 and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
170 )))
171
172 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
173
174
175 == 2.4 Uplink Payload   ( Fport~=2) ==
176
177
178 (((
179 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
180 )))
181
182 (((
183 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
184 )))
185
186 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:390px" %)
187 |=(% style="width: 60px;" %)(((
188 **Size(bytes)**
189 )))|=(% style="width: 30px;" %)(((
190 **2**
191 )))|=(% style="width: 100px;" %)(((
192 **2**
193 )))|=(% style="width: 100px;" %)(((
194 **2**
195 )))|=(% style="width: 50px;" %)(((
196 **1**
197 )))|=(% style="width: 50px;" %)(((
198 **4**
199 )))
200 |(% style="width:97px" %)(((
201 **Value**
202 )))|(% style="width:39px" %)(((
203 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
204 )))|(% style="width:100px" %)(((
205 (((
206 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
207 )))
208 )))|(% style="width:77px" %)(((
209 (((
210 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
211 )))
212 )))|(% style="width:47px" %)(((
213 [[Ext>>||anchor="H2.4.5Ext23"]] #
214 )))|(% style="width:51px" %)(((
215 [[Ext value>>||anchor="H2.4.6Extvalue"]]
216 )))
217
218 * The First 6 bytes: has fix meanings for every LHT65N-E5.
219 * The 7th byte (EXT #): defines the external sensor model. It can be 0x05 or 0x09 for LHT65N-E5
220 * The 8^^th^^ ~~ 9^^th^^ byte: Illuminance. Range: 0-65535 lx.
221 * The 10th ~~ 11th byte: Reserve, always 0xFFFF
222
223 === 2.4.1 Decoder in TTN V3 ===
224
225
226 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N-E5 decoder in TTNv3 for friendly reading.
227
228 Below is the position to put the decoder and LHT65N-E5 decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
229
230
231 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
232
233
234 === 2.4.2 BAT-Battery Info ===
235
236
237 These two bytes of BAT include the battery state and the actually voltage
238
239 [[image:image-20220523152839-18.png||_mstalt="457613"]]
240
241
242 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
243
244
245 Check the battery voltage for LHT65N-E5.
246
247 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
248 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
249
250 === 2.4.3 Built-in Temperature ===
251
252
253 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
254
255 * Temperature:  0x0ABB/100=27.47℃
256
257 [[image:image-20220522235639-3.png||_mstalt="432120"]]
258
259 * Temperature:  (0xF5C6-65536)/100=-26.18℃
260
261 === 2.4.4 Built-in Humidity ===
262
263
264 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
265
266 * Humidity:    0x025C/10=60.4%
267
268 === 2.4.5 Ext value ===
269
270 ==== 2.4.5.1 Ext~=0x05, Illuminance Sensor ====
271
272
273 [[image:image-20221224161634-2.png||height="138" width="851"]]
274
275
276 * Illumination=0x005E=94 lux
277
278 The last 2 bytes of data are meaningless
279
280 [[image:image-20221224161725-3.png]]
281
282 * When the sensor is not connected or not connected properly, will show "NULL"
283
284 The last 2 bytes of data are meaningless
285
286
287
288 ==== 2.4.5.2 Ext~=0x85, E5 sensor with Unix Timestamp ====
289
290
291 (((
292 Timestamp mode is designed for LHT65N-E5 with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
293 )))
294
295 (((
296
297 )))
298
299 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:535px" %)
300 |=(% style="width: 88px;" %)(((
301 **Size(bytes)**
302 )))|=(% style="width: 93px;" %)(((
303 **2**
304 )))|=(% style="width: 94px;" %)(((
305 **2**
306 )))|=(% style="width: 117px;" %)(((
307 **2**
308 )))|=(% style="width: 54px;" %)(((
309 **1**
310 )))|=(% style="width: 79px;" %)(((
311 **4**
312 )))
313 |(% style="width:88px" %)(((
314 **Value**
315 )))|(% style="width:93px" %)(((
316 [[External temperature>>||anchor="H4.2SetExternalSensorMode"]]
317 )))|(% style="width:94px" %)(((
318 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
319 )))|(% style="width:117px" %)(((
320 BAT Status &
321 Illumination
322 )))|(% style="width:54px" %)(((
323 Status & Ext
324 )))|(% style="width:79px" %)(((
325 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
326 )))
327
328 * **Battery status & Built-in Humidity**
329
330 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:461px" %)
331 |=(% style="width: 67px;" %)Bit(bit)|=(% style="width: 256px;" %)[15:14]|=(% style="width: 132px;" %)[11:0]
332 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
333 BAT Status
334 00(b): Ultra Low ( BAT <= 2.50v)
335 01(b): Low  (2.50v <=BAT <= 2.55v)
336 10(b): OK   (2.55v <= BAT <=2.65v)
337 11(b): Good   (BAT >= 2.65v)
338 )))|(% style="width:132px" %)(((
339 Illumination
340 )))
341
342 * **Status & Ext Byte**
343
344 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:500px" %)
345 |=(% scope="row" style="width: 60px;" %)**Bits**|(% style="width:90px" %)**7**|(% style="width:100px" %)**6**|(% style="width:90px" %)**5**|(% style="width:100px" %)**4**|(% style="width:60px" %)**[3:0]**
346 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
347
348 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
349 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N-E5 will set this bit to 0 until got the time stamp from the application server.
350 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N-E5 will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
351
352 == 2.5 Show data on Datacake ==
353
354
355 (((
356 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
357 )))
358
359 (((
360
361 )))
362
363 (((
364 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
365 )))
366
367 (((
368 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
369 )))
370
371
372
373 (((
374 Add Datacake:
375 )))
376
377
378 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
379
380
381
382 Select default key as Access Key:
383
384
385 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
386
387
388 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
389
390
391 [[image:image-20221224161935-5.png||height="523" width="409"]]
392
393
394 [[image:image-20221224161957-6.png||height="306" width="852"]]
395
396
397 == 2.6 Datalog Feature ==
398
399
400 (((
401 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N-E5 will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N-E5.
402 )))
403
404
405 === 2.6.1 Ways to get datalog via LoRaWAN ===
406
407
408 There are two methods:
409
410 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
411
412
413 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N-E5 will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N-E5 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
414
415
416 (% style="color:red" %)**Note for method 2:**
417
418 * a) LHT65N-E5 will do an ACK check for data records sending to make sure every data arrive server.
419 * b) LHT65N-E5 will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N-E5 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N-E5 gets a ACK, LHT65N-E5 will consider there is a network connection and resend all NONE-ACK Message.
420
421 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
422
423
424 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
425
426
427 === 2.6.2 Unix TimeStamp ===
428
429
430 LHT65N-E5 uses Unix TimeStamp format based on
431
432
433 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
434
435
436
437 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
438
439 Below is the converter example
440
441 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
442
443
444 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
445
446
447 === 2.6.3 Set Device Time ===
448
449
450 (((
451 (% style="color:blue" %)**There are two ways to set device's time:**
452 )))
453
454 (((
455 **1.  Through LoRaWAN MAC Command (Default settings)**
456 )))
457
458 (((
459 User need to set SYNCMOD=1 to enable sync time via MAC command.
460 )))
461
462 (((
463 Once LHT65N-E5 Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N-E5. If LHT65N-E5 fails to get the time from the server, LHT65N-E5 will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
464 )))
465
466 (((
467 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
468 )))
469
470
471 (((
472 **2. Manually Set Time**
473 )))
474
475 (((
476 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
477 )))
478
479
480 === 2.6.4 Poll sensor value ===
481
482
483 User can poll sensor value based on timestamps from the server. Below is the downlink command.
484
485 [[image:image-20220523152302-15.png||_mstalt="451581"]]
486
487
488 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
489
490 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
491
492 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
493
494 Uplink Internal =5s,means LHT65N-E5 will send one packet every 5s. range 5~~255s.
495
496
497 === 2.6.5 Datalog Uplink payload ===
498
499
500 The Datalog poll reply uplink will use below payload format.
501
502 **Retrieval data payload:**
503
504 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:480px" %)
505 |=(% style="width: 60px;" %)(((
506 **Size(bytes)**
507 )))|=(% style="width: 90px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 70px;" %)**2**|=(% style="width: 100px;" %)**1**|=(% style="width: 70px;" %)**4**
508 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
509
510 **Poll message flag & Ext:**
511
512 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
513
514 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
515
516 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
517
518 * Poll Message Flag is set to 1.
519
520 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
521
522 For example, in US915 band, the max payload for different DR is:
523
524 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
525
526 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
527
528 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
529
530 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
531
532 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
533
534
535 **Example:**
536
537 If LHT65N-E5 has below data inside Flash:
538
539 [[image:image-20220523144455-1.png||_mstalt="430040" height="335" width="735"]]
540
541
542 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
543
544 Where : Start time: 60065F97 = time 21/1/19 04:27:03
545
546 Stop time: 60066DA7= time 21/1/19 05:27:03
547
548
549 **LHT65N-E5 will uplink this payload.**
550
551 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
552
553
554 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
555
556 Where the first 11 bytes is for the first entry:
557
558 7FFF089801464160065F97
559
560 Ext sensor data=0x7FFF/100=327.67
561
562 Temp=0x088E/100=22.00
563
564 Hum=0x014B/10=32.6
565
566 poll message flag & Ext=0x41,means reply data,Ext=1
567
568 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
569
570
571 == 2.7 Alarm Mode ==
572
573 (((
574
575
576 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
577 )))
578
579 (((
580 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
581
582
583 )))
584
585 === 2.7.1 ALARM MODE ===
586
587
588 (% class="box infomessage" %)
589 (((
590 (((
591 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
592 )))
593
594 (((
595 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
596 )))
597
598 (((
599 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
600 )))
601
602 (((
603 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
604 )))
605
606 (((
607 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
608 )))
609 )))
610
611 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
612
613 Total bytes: 8 bytes
614
615 **Example:**AA0100010001003C
616
617 WMOD=01
618
619 CITEMP=0001
620
621 TEMPlow=0001
622
623 TEMPhigh=003C
624
625
626 == 2.8 LED Indicator ==
627
628
629 The LHT65 has a triple color LED which for easy showing different stage .
630
631 While user press ACT button, the LED will work as per LED status with ACT button.
632
633 In a normal working state:
634
635 * For each uplink, the BLUE LED or RED LED will blink once.
636 BLUE LED when external sensor is connected.
637 * RED LED when external sensor is not connected
638 * For each success downlink, the PURPLE LED will blink once
639
640 == 2.9 installation ==
641
642
643 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
644
645
646 = 3. Sensors and Accessories =
647
648 == 3.1 E2 Extension Cable ==
649
650
651 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
652
653
654 **1m long breakout cable for LHT65N-E5. Features:**
655
656 * (((
657 Use for AT Command
658 )))
659 * (((
660 Update firmware for LHT65N-E5
661 )))
662 * (((
663 Exposed All pins from the LHT65N Type-C connector.
664
665
666
667 )))
668
669 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
670
671
672 = 4. Configure LHT65N-E5 via AT command or LoRaWAN downlink =
673
674
675 (((
676 Use can configure LHT65N-E5 via AT Command or LoRaWAN Downlink.
677 )))
678
679 * (((
680 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
681 )))
682
683 * (((
684 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
685 )))
686
687 (((
688 There are two kinds of commands to configure LHT65N-E5, they are:
689 )))
690
691 * (((
692 (% style="color:#4f81bd" %)**General Commands**.
693 )))
694
695 (((
696 These commands are to configure:
697 )))
698
699 1. (((
700 General system settings like: uplink interval.
701 )))
702 1. (((
703 LoRaWAN protocol & radio-related commands.
704 )))
705
706 (((
707 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
708 )))
709
710 * (((
711 (% style="color:#4f81bd" %)**Commands special design for LHT65N-E5**
712 )))
713
714 (((
715 These commands are only valid for LHT65N-E5, as below:
716 )))
717
718
719 == 4.1 Set Transmit Interval Time ==
720
721
722 Feature: Change LoRaWAN End Node Transmit Interval.
723
724
725 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
726
727 [[image:image-20220523150701-2.png||_mstalt="427453"]]
728
729
730 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
731
732 Format: Command Code (0x01) followed by 3 bytes time value.
733
734 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
735
736 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
737
738 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
739
740 == 4.2 Currently only supports E5 ==
741
742
743 Feature: Set device password, max 9 digits
744
745
746 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
747
748 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
749 |Command Example|Function|Response
750 |AT+EXT=?|Get or Set external sensor model|(((
751 5
752
753 OK
754 )))
755 |AT+EXT=5|(% colspan="2" %)Set external sensor mode to 5
756
757 (% style="color:#4f81bd" %)**Downlink Command:0xA2**
758
759
760 Total bytes: 2 bytes
761
762 **Example:**
763
764 * 0xA205: Set external sensor type to E5
765
766 == 4.3 Set to sleep mode ==
767
768
769 Feature: Set device to sleep mode
770
771 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
772 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
773
774 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
775
776 [[image:image-20220523151218-7.png||_mstalt="430703"]]
777
778
779 (% style="color:#4f81bd" %)**Downlink Command:**
780
781 * There is no downlink command to set to Sleep mode.
782
783 == 4.4 Set system time ==
784
785
786 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
787
788
789 (% style="color:#4f81bd" %)**AT Command:**
790
791 [[image:image-20220523151253-8.png||_mstalt="430677"]]
792
793
794 (% style="color:#4f81bd" %)**Downlink Command:**
795
796 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
797
798
799 == 4.5 Set Time Sync Mode ==
800
801
802 (((
803 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
804 )))
805
806 (((
807 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
808
809
810 )))
811
812 (% style="color:#4f81bd" %)**AT Command:**
813
814 [[image:image-20220523151336-9.png||_mstalt="431717"]]
815
816
817 (% style="color:#4f81bd" %)**Downlink Command:**
818
819 0x28 01  ~/~/  Same As AT+SYNCMOD=1
820 0x28 00  ~/~/  Same As AT+SYNCMOD=0
821
822
823 == 4.6 Set Time Sync Interval ==
824
825
826 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
827
828
829 (% style="color:#4f81bd" %)**AT Command:**
830
831 [[image:image-20220523151411-10.png||_mstalt="449696"]]
832
833
834 (% style="color:#4f81bd" %)**Downlink Command:**
835
836 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
837
838
839 == 4.7 Print data entries base on page. ==
840
841
842 Feature: Print the sector data from start page to stop page (max is 416 pages).
843
844
845 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
846
847 [[image:image-20220523151450-11.png||_mstalt="451035"]]
848
849
850 (% style="color:#4f81bd" %)**Downlink Command:**
851
852 No downlink commands for feature
853
854
855 == 4.8 Print last few data entries. ==
856
857
858 Feature: Print the last few data entries
859
860
861 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
862
863 [[image:image-20220523151524-12.png||_mstalt="452101"]]
864
865
866 (% style="color:#4f81bd" %)**Downlink Command:**
867
868 No downlink commands for feature
869
870
871 == 4.9 Clear Flash Record ==
872
873
874 Feature: Clear flash storage for data log feature.
875
876
877 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
878
879 [[image:image-20220523151556-13.png||_mstalt="454129"]]
880
881
882 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
883
884 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
885
886 == 4.10 Auto Send None-ACK messages ==
887
888
889 Feature: LHT65N-E5 will wait for ACK for each uplink, If LHT65N-E5 doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N-E5 keeps sending messages in normal periodically. Once LHT65N-E5 gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
890
891
892 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
893
894 The default factory setting is 0
895
896 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:367px" %)
897 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 118px;" %)**Function**|=(% style="width: 87px;" %)**Response**
898 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
899
900 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
901
902 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
903
904 = 5. Battery & How to replace =
905
906 == 5.1 Battery Type ==
907
908
909 (((
910 LHT65N-E5 is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
911 )))
912
913 (((
914 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
915
916
917 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
918 )))
919
920 The minimum Working Voltage for the LHT65N-E5 is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
921
922
923 == 5.2 Replace Battery ==
924
925
926 LHT65N-E5 has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery (3.0v). Any brand should be ok.
927
928 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
929
930
931 == 5.3 Battery Life Analyze ==
932
933
934 (((
935 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
936 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
937 )))
938
939
940 (((
941 A full detail test report for LHT65N-E5 on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
942 )))
943
944
945 = 6. FAQ =
946
947 == 6.1 How to use AT Command? ==
948
949
950 LHT65N-E5 supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
951
952
953 [[image:image-20220615153355-1.png||_mstalt="430222"]]
954
955
956
957 [[image:1655802313617-381.png||_mstalt="293917"]]
958
959
960
961 (((
962 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N-E5. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
963 )))
964
965 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
966
967 AT Command List is as below:
968
969 AT+<CMD>? :  Help on <CMD>
970
971 AT+<CMD> :  Run <CMD>
972
973 AT+<CMD>=<value> :  Set the value
974
975 AT+<CMD>=? :  Get the value
976
977 AT+DEBUG:  Set more info output
978
979 ATZ:  Trig a reset of the MCU
980
981 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
982
983 AT+DEUI:  Get or Set the Device EUI
984
985 AT+DADDR:  Get or Set the Device Address
986
987 AT+APPKEY:  Get or Set the Application Key
988
989 AT+NWKSKEY:  Get or Set the Network Session Key
990
991 AT+APPSKEY:  Get or Set the Application Session Key
992
993 AT+APPEUI:  Get or Set the Application EUI
994
995 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
996
997 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
998
999 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1000
1001 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1002
1003 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1004
1005 AT+RX2FQ:  Get or Set the Rx2 window frequency
1006
1007 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1008
1009 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1010
1011 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1012
1013 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1014
1015 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1016
1017 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1018
1019 AT+NWKID:  Get or Set the Network ID
1020
1021 AT+FCU:  Get or Set the Frame Counter Uplink
1022
1023 AT+FCD:  Get or Set the Frame Counter Downlink
1024
1025 AT+CLASS:  Get or Set the Device Class
1026
1027 AT+JOIN:  Join network
1028
1029 AT+NJS:  Get the join status
1030
1031 AT+SENDB:  Send hexadecimal data along with the application port
1032
1033 AT+SEND:  Send text data along with the application port
1034
1035 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1036
1037 AT+RECV:  Print last received data in raw format
1038
1039 AT+VER:  Get current image version and Frequency Band
1040
1041 AT+CFM:  Get or Set the confirmation mode (0-1)
1042
1043 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1044
1045 AT+SNR:  Get the SNR of the last received packet
1046
1047 AT+RSSI:  Get the RSSI of the last received packet
1048
1049 AT+TDC:  Get or set the application data transmission interval in ms
1050
1051 AT+PORT:  Get or set the application port
1052
1053 AT+DISAT:  Disable AT commands
1054
1055 AT+PWORD: Set password, max 9 digits
1056
1057 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1058
1059 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1060
1061 AT+PDTA:  Print the sector data from start page to stop page
1062
1063 AT+PLDTA:  Print the last few sets of data
1064
1065 AT+CLRDTA:  Clear the storage, record position back to 1st
1066
1067 AT+SLEEP:  Set sleep mode
1068
1069 AT+EXT:  Get or Set external sensor model
1070
1071 AT+BAT:  Get the current battery voltage in mV
1072
1073 AT+CFG:  Print all configurations
1074
1075 AT+WMOD:  Get or Set Work Mode
1076
1077 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1078
1079 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1080
1081 AT+SETCNT:  Set the count at present
1082
1083 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1084
1085 AT+RPL:  Get or set response level
1086
1087 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1088
1089 AT+LEAPSEC:  Get or Set Leap Second
1090
1091 AT+SYNCMOD:  Get or Set time synchronization method
1092
1093 AT+SYNCTDC:  Get or set time synchronization interval in day
1094
1095 AT+PID:  Get or set the PID
1096
1097
1098 == 6.2 Where to use AT commands and Downlink commands ==
1099
1100
1101 **AT commands:**
1102
1103 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1104
1105
1106 **Downlink commands:**
1107
1108
1109
1110 (% style="color:blue" %)**TTN:**
1111
1112 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1113
1114
1115
1116 (% style="color:blue" %)**Helium:**
1117
1118 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1119
1120
1121
1122 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1123
1124
1125 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1126
1127
1128 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1129
1130
1131
1132 (% style="color:blue" %)**Aws:**
1133
1134 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1135
1136
1137 == 6.3 How to change the uplink interval? ==
1138
1139
1140 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1141
1142
1143
1144 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1145
1146
1147 == 6.4 How to use TTL-USB to connect PC to upgrade firmware? ==
1148
1149
1150 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1151
1152
1153 (% style="color:blue" %)**Step1**(%%): Install TremoProgrammer  first.
1154
1155 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1156
1157
1158
1159 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1160
1161 First connect the four lines;(% style="display:none" %)
1162
1163 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1164
1165
1166 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1167
1168 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1169
1170
1171
1172 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1173
1174 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1175
1176
1177 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1178
1179
1180 When this interface appears, it indicates that the download has been completed.
1181
1182 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1183
1184
1185 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1186
1187
1188
1189 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1190
1191
1192 = 7. Order Info =
1193
1194
1195 Part Number: (% style="color:#4f81bd" %)** LHT65N-PIR-XX**
1196
1197 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1198
1199 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1200 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1201 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1202 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1203 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1204 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1205 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1206 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1207
1208 = 8. Packing Info =
1209
1210
1211 **Package Includes**:
1212
1213 * LHT65N-PIR Temperature/Humidity/PIR Sensor x 1
1214
1215 **Dimension and weight**:
1216
1217 * Device Size:  10 x 10 x 3.5 mm
1218 * Device Weight: 120.5g
1219
1220 = 9. Reference material =
1221
1222
1223 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1224
1225 = 10. FCC Warning =
1226
1227
1228 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1229
1230 (1) This device may not cause harmful interference;
1231
1232 (2) this device must accept any interference received, including interference that may cause undesired operation.