Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46 == 1.2 Features ==
47
48
49 * LoRaWAN v1.0.3 Class A protocol
50 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
51 * AT Commands to change parameters
52 * Remote configure parameters via LoRaWAN Downlink
53 * Firmware upgradeable via program port
54 * Built-in 2400mAh battery for up to 10 years of use.
55 * Built-in Temperature & Humidity sensor
56 * Optional External Sensors
57 * Tri-color LED to indicate working status
58 * Datalog feature (Max 3328 records)
59
60
61
62 == 1.3 Specification ==
63
64
65 (% style="color:#037691" %)**Built-in Temperature Sensor:**
66
67 * Resolution: 0.01 °C
68 * Accuracy Tolerance : Typ ±0.3 °C
69 * Long Term Drift: < 0.02 °C/yr
70 * Operating Range: -40 ~~ 85 °C
71
72 (% style="color:#037691" %)**Built-in Humidity Sensor:**
73
74 * Resolution: 0.04 %RH
75 * Accuracy Tolerance : Typ ±3 %RH
76 * Long Term Drift: < 0.02 °C/yr
77 * Operating Range: 0 ~~ 96 %RH
78
79 (% style="color:#037691" %)**External Temperature Sensor:**
80
81 * Resolution: 0.0625 °C
82 * ±0.5°C accuracy from -10°C to +85°C
83 * ±2°C accuracy from -55°C to +125°C
84 * Operating Range: -55 °C ~~ 125 °C
85
86
87
88 = 2. Connect LHT65N to IoT Server =
89
90 == 2.1 How does LHT65N work? ==
91
92
93 (((
94 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
95 )))
96
97 (((
98 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
99 )))
100
101
102 == 2.2 How to Activate LHT65N? ==
103
104
105 (((
106 The LHT65N has two working modes:
107 )))
108
109 * (((
110 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
111 )))
112 * (((
113 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
114 )))
115
116 (((
117 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
118 )))
119
120
121 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
122
123 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
124 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
126 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
127 )))
128 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
129 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
130 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
131 )))
132 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
133
134
135
136 == 2.3 Example to join LoRaWAN network ==
137
138
139 (% class="wikigeneratedid" %)
140 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
141
142
143 (% class="wikigeneratedid" %)
144 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
145
146
147 (((
148 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
149 )))
150
151
152 === 2.3.1 Step 1: Create Device n TTN ===
153
154
155 (((
156 Create a device in TTN V3 with the OTAA keys from LHT65N.
157 )))
158
159 (((
160 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
161 )))
162
163 [[image:image-20230426083319-1.png||height="258" width="556"]]
164
165 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
166
167 Add APP EUI in the application.
168
169
170 [[image:image-20220522232916-3.png||_mstalt="430495"]]
171
172
173 [[image:image-20220522232932-4.png||_mstalt="430157"]]
174
175
176 [[image:image-20220522232954-5.png||_mstalt="431847"]]
177
178
179
180 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
181
182
183 [[image:image-20220522233026-6.png||_mstalt="429403"]]
184
185
186 Input APP EUI,  APP KEY and DEV EUI:
187
188
189 [[image:image-20220522233118-7.png||_mstalt="430430"]]
190
191
192 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
193
194
195 (((
196 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
197 )))
198
199 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
200
201
202 == 2.4 Uplink Payload (Fport~=2) ==
203
204
205 (((
206 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
207 )))
208
209 (((
210 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
211 )))
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
214 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
215 **Size(bytes)**
216 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
217 **2**
218 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
219 **2**
220 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
221 **2**
222 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
223 **1**
224 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
225 **4**
226 )))
227 |(% style="width:97px" %)(((
228 **Value**
229 )))|(% style="width:39px" %)(((
230 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
231 )))|(% style="width:100px" %)(((
232 (((
233 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
234 )))
235 )))|(% style="width:77px" %)(((
236 (((
237 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
238 )))
239 )))|(% style="width:47px" %)(((
240 [[Ext>>||anchor="H2.4.5Ext23"]] #
241 )))|(% style="width:51px" %)(((
242 [[Ext value>>||anchor="H2.4.6Extvalue"]]
243 )))
244
245 * The First 6 bytes: has fix meanings for every LHT65N.
246
247 * The 7th byte (EXT #): defines the external sensor model.
248
249 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
250
251
252
253 === 2.4.1 Decoder in TTN V3 ===
254
255
256 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
257
258 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
259
260
261 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
262
263
264 === 2.4.2 BAT-Battery Info ===
265
266
267 These two bytes of BAT include the battery state and the actually voltage.
268
269 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
270 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
271 **Bit(bit)**
272 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
273 |(% style="width:66px" %)(((
274 **Value**
275 )))|(% style="width:250px" %)(((
276 BAT Status
277 00(b): Ultra Low ( BAT <= 2.50v)
278 01(b): Low (2.50v <=BAT <= 2.55v)
279 10(b): OK (2.55v <= BAT <=2.65v)
280 11(b): Good (BAT >= 2.65v)
281 )))|(% style="width:152px" %)Actually BAT voltage
282
283 **(b)stands for binary**
284
285
286 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
287
288
289 Check the battery voltage for LHT65N.
290
291 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
292
293 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
294
295
296
297 === 2.4.3 Built-in Temperature ===
298
299
300 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
301
302 * Temperature:  0x0ABB/100=27.47℃
303
304 [[image:image-20220522235639-3.png||_mstalt="432120"]]
305
306 * Temperature:  (0xF5C6-65536)/100=-26.18℃
307
308
309 (% style="display:none" %)
310
311 === 2.4.4 Built-in Humidity ===
312
313
314 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
315
316 * Humidity:    0x025C/10=60.4%
317
318
319 ​​​​​​​(% style="display:none" %)
320
321 === 2.4.5 Ext # ===
322
323
324 Bytes for External Sensor:
325
326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
327 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
328 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
329 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
330
331
332
333 === 2.4.6 Ext value ===
334
335 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
336
337
338 [[image:image-20220522235639-5.png||_mstalt="432848"]]
339
340
341 * DS18B20 temp=0x0ADD/100=27.81℃
342
343 The last 2 bytes of data are meaningless
344
345
346
347 [[image:image-20220522235639-6.png||_mstalt="433212"]]
348
349
350 * External temperature= (0xF54F-65536)/100=-27.37℃
351
352 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
353
354 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
355
356 The last 2 bytes of data are meaningless
357
358 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
359
360
361
362 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
363
364
365 (((
366 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
367 )))
368
369
370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
371 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
372 **Size(bytes)**
373 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
374 **2**
375 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
376 **2**
377 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
378 **2**
379 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 **1**
381 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
382 **4**
383 )))
384 |(% style="width:110px" %)(((
385 **Value**
386 )))|(% style="width:71px" %)(((
387 External temperature
388 )))|(% style="width:99px" %)(((
389 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
390 )))|(% style="width:132px" %)(((
391 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
392 )))|(% style="width:54px" %)(((
393 Status & Ext
394 )))|(% style="width:64px" %)(((
395 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
396 )))
397
398 * **Battery status & Built-in Humidity**
399
400 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
401 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
402 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
403 BAT Status
404 00(b): Ultra Low ( BAT <= 2.50v)
405 01(b): Low  (2.50v <=BAT <= 2.55v)
406 10(b): OK   (2.55v <= BAT <=2.65v)
407 11(b): Good   (BAT >= 2.65v)
408 )))|(% style="width:132px" %)(((
409 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
410 )))
411
412 * **Status & Ext Byte**
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
415 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
416 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
417
418 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
419 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
420 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
421
422
423
424 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
425
426
427 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
428
429 be used to power the external ADC sensor; user can control the power on time for this
430
431 (% style="color:blue" %)**sensor by setting:**
432
433 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
434
435 **For example:**
436
437 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
438
439
440 Or use **downlink command A2** to set the same.
441
442 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
443
444 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
445
446 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
447
448
449 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
450
451 [[image:image-20220628150714-4.png||_mstalt="431054"]]
452
453
454 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
455
456
457 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
458
459 [[image:image-20220628151005-5.png||_mstalt="429546"]]
460
461
462 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
463
464 [[image:image-20220628151056-6.png||_mstalt="431873"]]
465
466
467 3) Within range
468
469 [[image:image-20220628151143-7.png||_mstalt="431210"]]
470
471
472
473 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
474
475
476 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
477
478
479 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
480
481 [[image:image-20220906102307-7.png||_mstalt="430443"]]
482
483
484 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
485
486 The external cable NE2 can be use for MOD4 and MOD8
487
488
489
490 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
491
492
493 [[image:65N-E31F.jpg||height="454" width="459"]]
494
495
496 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
497
498 [[image:SHT31.png]]
499
500
501
502 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
503
504
505 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
506
507
508 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
509
510 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
511
512 In Open State, the power consumption is the same as if there is no probe
513
514 In Close state, the power consumption will be 3uA higher than normal.
515
516 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
517
518
519 Ext=4,Interrupt Sensor:
520
521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
522 |(% style="width:101px" %)(((
523 **AT+EXT=4,1**
524 )))|(% style="width:395px" %)(((
525 **Sent uplink packet in both rising and falling interrupt**
526 )))
527 |(% style="width:101px" %)(((
528 **AT+EXT=4,2**
529 )))|(% style="width:395px" %)(((
530 **Sent uplink packet only in falling interrupt**
531 )))
532 |(% style="width:101px" %)(((
533 **AT+EXT=4,3**
534 )))|(% style="width:395px" %)(((
535 **Sent uplink packet only in rising interrupt**
536 )))
537
538 Trigger by falling edge:
539
540 [[image:image-20220906101145-2.png||_mstalt="428324"]]
541
542
543 Trigger by raising edge:
544
545 [[image:image-20220906101145-3.png||_mstalt="428688"]]
546
547
548
549 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
550
551
552 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
553
554
555 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
556
557 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
558
559
560 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
561
562 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
563
564
565 Ext=8, Counting Sensor ( 4 bytes):
566
567 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
568 |(% style="width:131px" %)(((
569 **AT+EXT=8,0**
570 )))|(% style="width:195px" %)(((
571 **Count at falling interrupt**
572 )))
573 |(% style="width:131px" %)(((
574 **AT+EXT=8,1**
575 )))|(% style="width:195px" %)(((
576 **Count at rising interrupt**
577 )))
578 |(% style="width:131px" %)(((
579 **AT+SETCNT=60**
580 )))|(% style="width:195px" %)(((
581 **Sent current count to 60**
582 )))
583
584 [[image:image-20220906101320-6.png||_mstalt="428064"]]
585
586
587 (% style="color:blue" %)**A2 downlink Command:**
588
589 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
590
591 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
592
593 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
594
595 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
596
597 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
598
599
600 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
601
602
603 (((
604 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
605 )))
606
607
608 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
609 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
610 **Size(bytes)**
611 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
612 **2**
613 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
614 **2**
615 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
616 **2**
617 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
618 **1**
619 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
620 **4**
621 )))
622 |(% style="width:110px" %)(((
623 **Value**
624 )))|(% style="width:71px" %)(((
625 External temperature
626 )))|(% style="width:99px" %)(((
627 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
628 )))|(% style="width:132px" %)(((
629 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
630 )))|(% style="width:54px" %)(((
631 Status & Ext
632 )))|(% style="width:64px" %)(((
633 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
634 )))
635
636 * **Battery status & Built-in Humidity**
637
638 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
639 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
640 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
641 BAT Status
642 00(b): Ultra Low ( BAT <= 2.50v)
643 01(b): Low  (2.50v <=BAT <= 2.55v)
644 10(b): OK   (2.55v <= BAT <=2.65v)
645 11(b): Good   (BAT >= 2.65v)
646 )))|(% style="width:132px" %)(((
647 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
648 )))
649
650 * **Status & Ext Byte**
651
652 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
653 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
654 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
655
656 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
657 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
658 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
659
660
661
662 == 2.5 Show data on Datacake ==
663
664
665 (((
666 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
667 )))
668
669
670 (((
671 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
672 )))
673
674 (((
675 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
676 )))
677
678
679 (((
680 Add Datacake:
681 )))
682
683
684 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
685
686
687
688 Select default key as Access Key:
689
690
691 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
692
693
694 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
695
696
697 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
698
699
700 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
701
702
703 == 2.6 Datalog Feature ==
704
705
706 (((
707 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
708 )))
709
710
711 === 2.6.1 Ways to get datalog via LoRaWAN ===
712
713
714 There are two methods:
715
716 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
717
718
719 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
720
721
722 (% style="color:red" %)**Note for method 2:**
723
724 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
725 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
726
727 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
728
729
730 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
731
732
733 === 2.6.2 Unix TimeStamp ===
734
735
736 LHT65N uses Unix TimeStamp format based on
737
738
739 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
740
741
742
743 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
744
745 Below is the converter example
746
747 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
748
749
750 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
751
752
753 === 2.6.3 Set Device Time ===
754
755
756 (((
757 (% style="color:blue" %)**There are two ways to set device's time:**
758 )))
759
760 (((
761 **1.  Through LoRaWAN MAC Command (Default settings)**
762 )))
763
764 (((
765 User need to set SYNCMOD=1 to enable sync time via MAC command.
766 )))
767
768 (((
769 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
770 )))
771
772 (((
773 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
774 )))
775
776
777 (((
778 **2. Manually Set Time**
779 )))
780
781 (((
782 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
783 )))
784
785
786 === 2.6.4 Poll sensor value ===
787
788
789 User can poll sensor value based on timestamps from the server. Below is the downlink command.
790
791 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
792 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
793 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
794
795 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
796
797 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
798
799 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
800
801 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
802
803
804 === 2.6.5 Datalog Uplink payload ===
805
806
807 The Datalog poll reply uplink will use below payload format.
808
809 **Retrieval data payload:**
810
811 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
812 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
813 **Size(bytes)**
814 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
815 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
816
817 **Poll message flag & Ext:**
818
819 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
820
821 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
822
823 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
824
825 * Poll Message Flag is set to 1.
826
827 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
828
829 For example, in US915 band, the max payload for different DR is:
830
831 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
832
833 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
834
835 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
836
837 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
838
839 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
840
841
842 **Example:**
843
844 If LHT65N has below data inside Flash:
845
846 [[image:image-20230426171833-4.png]]
847
848
849 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
850
851 Where : Start time: 60065F97 = time 21/1/19 04:27:03
852
853 Stop time: 60066DA7= time 21/1/19 05:27:03
854
855
856 **LHT65N will uplink this payload.**
857
858 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
859
860
861 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
862
863 Where the first 11 bytes is for the first entry:
864
865 7FFF089801464160065F97
866
867 Ext sensor data=0x7FFF/100=327.67
868
869 Temp=0x088E/100=22.00
870
871 Hum=0x014B/10=32.6
872
873 poll message flag & Ext=0x41,means reply data,Ext=1
874
875 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
876
877
878 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
879
880
881 (((
882 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
883 )))
884
885 (((
886 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
887
888
889 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
890
891
892 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
893
894 (((
895 (% class="box infomessage" %)
896 (((
897 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
898
899 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
900
901 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
902
903 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
904
905 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
906
907 **AT+LEDALARM=1** :       Enable LED visual Alarm.
908 )))
909 )))
910
911 (% style="color:#4f81bd" %)**Downlink Command:**
912
913 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
914
915 AT+CITEMP=1 : A60001
916
917 AT+ARTEMP=1,60  :  A70001003C
918
919 AT+ARTEMP=-16,60 :  A7FFF0003C
920
921 AT+LEDALARM=1  :  3601
922
923
924 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
925
926 Total bytes: 8 bytes
927
928 **Example: **AA0100010001003C
929
930 WMOD=01
931
932 CITEMP=0001
933
934 TEMPlow=0001
935
936 TEMPhigh=003C
937
938
939 **DS18B20 and TMP117 Threshold Alarm**
940
941 **~ AT+WMOD=1,60,-10,20**
942
943 (% style="color:#4f81bd" %)**Downlink Command:**
944
945 **Example: **A5013CFC180014
946
947 MOD=01
948
949 CITEMP=3C(S)
950
951 TEMPlow=FC18
952
953 TEMPhigh=0014
954
955
956 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
957
958 **AT+WMOD=2,60,5** 
959
960 (% style="color:#4f81bd" %)**Downlink Command:**
961
962 **Example: **A5023C05
963
964 MOD=02
965
966 CITEMP=3C(S)
967
968 temperature fluctuation=05
969
970
971 **Sampling multiple times and uplink together**
972
973 **AT+WMOD=3,1,60,20,-16,32,1**   
974
975 Explain:
976
977 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
978 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
979 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
980 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
981 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
982 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
983
984 (% style="color:#4f81bd" %)**Downlink Command:**
985
986 **Example: **A50301003C14FFF0002001
987
988 MOD=03
989
990 TEMP=DS18B20
991
992 CITEMP=003C(S)
993
994 Total number of acquisitions=14
995
996 TEMPlow=FFF0
997
998 TEMPhigh=0020
999
1000 ARTEMP=01
1001
1002
1003 **Uplink payload( Fport=3)**
1004
1005 **Example: CBEA**01**0992**//0A41//**09C4**
1006
1007 BatV=CBEA
1008
1009 TEMP=DS18B20
1010
1011 Temp1=0992  ~/~/ 24.50℃
1012
1013 Temp2=0A41  ~/~/ 26.25℃
1014
1015 Temp3=09C4  ~/~/ 25.00℃
1016
1017 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1018
1019 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1020 )))
1021
1022
1023 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1024
1025
1026 (% class="box infomessage" %)
1027 (((
1028 (((
1029 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1030 )))
1031
1032 (((
1033 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1034 )))
1035
1036 (((
1037 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1038 )))
1039
1040 (((
1041 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1042 )))
1043
1044 (((
1045 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1046 )))
1047 )))
1048
1049 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1050
1051 Total bytes: 8 bytes
1052
1053 **Example:**AA0100010001003C
1054
1055 WMOD=01
1056
1057 CITEMP=0001
1058
1059 TEMPlow=0001
1060
1061 TEMPhigh=003C
1062
1063
1064 == 2.8 LED Indicator ==
1065
1066
1067 The LHT65 has a triple color LED which for easy showing different stage .
1068
1069 While user press ACT button, the LED will work as per LED status with ACT button.
1070
1071 In a normal working state:
1072
1073 * For each uplink, the BLUE LED or RED LED will blink once.
1074 BLUE LED when external sensor is connected.
1075 * RED LED when external sensor is not connected
1076 * For each success downlink, the PURPLE LED will blink once
1077
1078
1079
1080 == 2.9 installation ==
1081
1082
1083 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1084
1085
1086 = 3. Sensors and Accessories =
1087
1088 == 3.1 E2 Extension Cable ==
1089
1090
1091 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1092
1093
1094 **1m long breakout cable for LHT65N. Features:**
1095
1096 * (((
1097 Use for AT Command, works for both LHT52/LHT65N
1098 )))
1099 * (((
1100 Update firmware for LHT65N, works for both LHT52/LHT65N
1101 )))
1102 * (((
1103 Supports ADC mode to monitor external ADC
1104 )))
1105 * (((
1106 Supports Interrupt mode
1107 )))
1108 * (((
1109 Exposed All pins from the LHT65N Type-C connector.
1110
1111
1112
1113 )))
1114
1115 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1116
1117
1118 == 3.2 E3 Temperature Probe ==
1119
1120
1121 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1122
1123
1124 Temperature sensor with 2 meters cable long
1125
1126 * Resolution: 0.0625 °C
1127 * ±0.5°C accuracy from -10°C to +85°C
1128 * ±2°C accuracy from -55°C to +125°C
1129 * Operating Range: -40 ~~ 125 °C
1130 * Working voltage 2.35v ~~ 5v
1131
1132
1133
1134 == 3.3 E31F Temperature Probe ==
1135
1136
1137 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1138
1139
1140 Temperature sensor with 1 meters cable long
1141
1142 **Built-in Temperature Sensor:**
1143
1144 * Resolution: 0.01 °C
1145 * Accuracy Tolerance : Typ ±0.3 °C
1146 * Long Term Drift: < 0.02 °C/yr
1147 * Operating Range: -40 ~~ 80 °C
1148
1149 **Built-in Humidity Sensor:**
1150
1151 * Resolution: 0.04 % RH
1152 * Accuracy Tolerance : Typ ±3 % RH
1153 * Long Term Drift: < 0.02 °C/yr
1154 * Operating Range: 0 ~~ 96 % RH
1155
1156 **External Temperature Sensor :**
1157
1158 * Resolution: 0.01 °C
1159 * Accuracy Tolerance : Typical ±0.3 °C
1160 * Long Term Drift: < 0.02 °C/yr
1161 * Operating Range: -40 ~~ 125 °C
1162
1163 **External Humidity Sensor :**
1164
1165 * Resolution: 0.04 % RH
1166 * Accuracy Tolerance : Typ ±3 % RH
1167 * Long Term Drift: < 0.02 °C/yr
1168 * Operating Range: 0 ~~ 96 % RH
1169
1170
1171
1172 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1173
1174
1175 (((
1176 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1177 )))
1178
1179 * (((
1180 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1181 )))
1182
1183 * (((
1184 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1185 )))
1186
1187 (((
1188 There are two kinds of commands to configure LHT65N, they are:
1189 )))
1190
1191 * (((
1192 (% style="color:#4f81bd" %)**General Commands**.
1193 )))
1194
1195 (((
1196 These commands are to configure:
1197 )))
1198
1199 1. (((
1200 General system settings like: uplink interval.
1201 )))
1202 1. (((
1203 LoRaWAN protocol & radio-related commands.
1204 )))
1205
1206 (((
1207 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1208 )))
1209
1210 * (((
1211 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1212 )))
1213
1214 (((
1215 These commands are only valid for LHT65N, as below:
1216 )))
1217
1218
1219 == 4.1 Set Transmit Interval Time ==
1220
1221
1222 Feature: Change LoRaWAN End Node Transmit Interval.
1223
1224
1225 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1226
1227 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1228 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1229 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1230 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1231
1232 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1233
1234 Format: Command Code (0x01) followed by 3 bytes time value.
1235
1236 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1237
1238 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1239
1240 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1241
1242
1243
1244 == 4.2 Set External Sensor Mode ==
1245
1246
1247 Feature: Change External Sensor Mode.
1248
1249
1250 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1251
1252
1253 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1254 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1255 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1256 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1257 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1258
1259 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1260
1261 Total bytes: 2 ~~ 5 bytes
1262
1263 **Example:**
1264
1265 * 0xA201: Set external sensor type to E1
1266
1267 * 0xA209: Same as AT+EXT=9
1268
1269 * 0xA20702003c: Same as AT+SETCNT=60
1270
1271
1272
1273 == 4.3 Enable/Disable uplink Temperature probe ID ==
1274
1275
1276 (((
1277 Feature: If PID is enabled, device will send the temperature probe ID on:
1278 )))
1279
1280 * (((
1281 First Packet after OTAA Join
1282 )))
1283 * (((
1284 Every 24 hours since the first packet.
1285 )))
1286
1287 (((
1288 PID is default set to disable (0)
1289
1290
1291 )))
1292
1293 (% style="color:#4f81bd" %)**AT Command:**
1294
1295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1296 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1297 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1298
1299 (% style="color:#4f81bd" %)**Downlink Command:**
1300
1301 * **0xA800**  **~-~->** AT+PID=0
1302 * **0xA801**     **~-~->** AT+PID=1
1303
1304
1305
1306 == 4.4 Set Password ==
1307
1308
1309 Feature: Set device password, max 9 digits
1310
1311 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1312
1313 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1314 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1315 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1316 123456
1317
1318 OK
1319 )))
1320 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1321
1322 (% style="color:#4f81bd" %)**Downlink Command:**
1323
1324 No downlink command for this feature.
1325
1326
1327 == 4.5 Quit AT Command ==
1328
1329
1330 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1331
1332 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1333
1334 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1335 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1336 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1337
1338 (% style="color:#4f81bd" %)**Downlink Command:**
1339
1340 No downlink command for this feature.
1341
1342
1343 == 4.6 Set to sleep mode ==
1344
1345
1346 Feature: Set device to sleep mode
1347
1348 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1349 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1350
1351 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1352
1353 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1354 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1355 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1356 Clear all stored sensor data…
1357
1358 OK
1359 )))
1360
1361 (% style="color:#4f81bd" %)**Downlink Command:**
1362
1363 * There is no downlink command to set to Sleep mode.
1364
1365
1366
1367 == 4.7 Set system time ==
1368
1369
1370 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1371
1372 (% style="color:#4f81bd" %)**AT Command:**
1373
1374 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1375 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1376 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1377 OK
1378
1379 Set System time to 2021-01-20 00:59:12
1380 )))
1381
1382 (% style="color:#4f81bd" %)**Downlink Command:**
1383
1384 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1385
1386
1387 == 4.8 Set Time Sync Mode ==
1388
1389
1390 (((
1391 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1392 )))
1393
1394 (((
1395 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1396 )))
1397
1398 (% style="color:#4f81bd" %)**AT Command:**
1399
1400 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1401 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1402 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1403
1404 (% style="color:#4f81bd" %)**Downlink Command:**
1405
1406 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1407 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1408
1409
1410 == 4.9 Set Time Sync Interval ==
1411
1412
1413 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1414
1415 (% style="color:#4f81bd" %)**AT Command:**
1416
1417 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1418 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1419 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1420
1421 (% style="color:#4f81bd" %)**Downlink Command:**
1422
1423 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1424
1425
1426 == 4.10 Print data entries base on page. ==
1427
1428
1429 Feature: Print the sector data from start page to stop page (max is 416 pages).
1430
1431 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1432
1433 [[image:image-20230426164330-2.png]]
1434
1435
1436 (% style="color:#4f81bd" %)**Downlink Command:**
1437
1438 No downlink commands for feature
1439
1440
1441 == 4.11 Print last few data entries. ==
1442
1443
1444 Feature: Print the last few data entries
1445
1446 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1447
1448 [[image:image-20230426164932-3.png]]
1449
1450
1451 (% style="color:#4f81bd" %)**Downlink Command:**
1452
1453 No downlink commands for feature
1454
1455
1456 == 4.12 Clear Flash Record ==
1457
1458
1459 Feature: Clear flash storage for data log feature.
1460
1461
1462 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1463
1464
1465 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1466 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1467 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1468 Clear all stored sensor data…
1469
1470 OK
1471 )))
1472
1473 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1474
1475 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1476
1477
1478
1479 == 4.13 Auto Send None-ACK messages ==
1480
1481
1482 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1483
1484 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1485
1486 The default factory setting is 0
1487
1488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1489 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1490 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1491
1492 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1493
1494 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1495
1496
1497
1498 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1499
1500
1501 Feature: Set internal and external temperature sensor alarms.
1502
1503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1504 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1505 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1506
1507 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1508
1509 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1510
1511 0): Cancel
1512
1513 1): Threshold alarm
1514
1515 2): Fluctuation alarm
1516
1517
1518 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1519
1520 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1521
1522
1523 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1524
1525 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1526
1527 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1528
1529
1530 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1531
1532 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1533
1534 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1535
1536
1537 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1538
1539 0xA5 00 ~-~- AT+WMOD=0.
1540
1541 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1542
1543 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1544
1545 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1546
1547 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1548
1549
1550 = 5. Battery & How to replace =
1551
1552 == 5.1 Battery Type ==
1553
1554
1555 (((
1556 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1557 )))
1558
1559 (((
1560 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1561
1562
1563 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1564 )))
1565
1566 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1567
1568
1569 == 5.2 Replace Battery ==
1570
1571
1572 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1573
1574 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1575
1576
1577 == 5.3 Battery Life Analyze ==
1578
1579
1580 (((
1581 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1582 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1583 )))
1584
1585
1586 (((
1587 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1588 )))
1589
1590
1591 = 6. FAQ =
1592
1593 == 6.1 How to use AT Command? ==
1594
1595
1596 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1597
1598 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1599
1600
1601 **Connection:**
1602
1603 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1604 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1605 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1606
1607 (((
1608 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1609 )))
1610
1611
1612 Input password and ATZ to activate LHT65N,As shown below:
1613
1614 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1615
1616
1617 AT Command List is as below:
1618
1619 AT+<CMD>? :  Help on <CMD>
1620
1621 AT+<CMD> :  Run <CMD>
1622
1623 AT+<CMD>=<value> :  Set the value
1624
1625 AT+<CMD>=? :  Get the value
1626
1627 AT+DEBUG:  Set more info output
1628
1629 ATZ:  Trig a reset of the MCU
1630
1631 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1632
1633 AT+DEUI:  Get or Set the Device EUI
1634
1635 AT+DADDR:  Get or Set the Device Address
1636
1637 AT+APPKEY:  Get or Set the Application Key
1638
1639 AT+NWKSKEY:  Get or Set the Network Session Key
1640
1641 AT+APPSKEY:  Get or Set the Application Session Key
1642
1643 AT+APPEUI:  Get or Set the Application EUI
1644
1645 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1646
1647 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1648
1649 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1650
1651 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1652
1653 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1654
1655 AT+RX2FQ:  Get or Set the Rx2 window frequency
1656
1657 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1658
1659 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1660
1661 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1662
1663 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1664
1665 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1666
1667 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1668
1669 AT+NWKID:  Get or Set the Network ID
1670
1671 AT+FCU:  Get or Set the Frame Counter Uplink
1672
1673 AT+FCD:  Get or Set the Frame Counter Downlink
1674
1675 AT+CLASS:  Get or Set the Device Class
1676
1677 AT+JOIN:  Join network
1678
1679 AT+NJS:  Get the join status
1680
1681 AT+SENDB:  Send hexadecimal data along with the application port
1682
1683 AT+SEND:  Send text data along with the application port
1684
1685 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1686
1687 AT+RECV:  Print last received data in raw format
1688
1689 AT+VER:  Get current image version and Frequency Band
1690
1691 AT+CFM:  Get or Set the confirmation mode (0-1)
1692
1693 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1694
1695 AT+SNR:  Get the SNR of the last received packet
1696
1697 AT+RSSI:  Get the RSSI of the last received packet
1698
1699 AT+TDC:  Get or set the application data transmission interval in ms
1700
1701 AT+PORT:  Get or set the application port
1702
1703 AT+DISAT:  Disable AT commands
1704
1705 AT+PWORD: Set password, max 9 digits
1706
1707 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1708
1709 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1710
1711 AT+PDTA:  Print the sector data from start page to stop page
1712
1713 AT+PLDTA:  Print the last few sets of data
1714
1715 AT+CLRDTA:  Clear the storage, record position back to 1st
1716
1717 AT+SLEEP:  Set sleep mode
1718
1719 AT+EXT:  Get or Set external sensor model
1720
1721 AT+BAT:  Get the current battery voltage in mV
1722
1723 AT+CFG:  Print all configurations
1724
1725 AT+WMOD:  Get or Set Work Mode
1726
1727 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1728
1729 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1730
1731 AT+SETCNT:  Set the count at present
1732
1733 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1734
1735 AT+RPL:  Get or set response level
1736
1737 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1738
1739 AT+LEAPSEC:  Get or Set Leap Second
1740
1741 AT+SYNCMOD:  Get or Set time synchronization method
1742
1743 AT+SYNCTDC:  Get or set time synchronization interval in day
1744
1745 AT+PID:  Get or set the PID
1746
1747
1748 == 6.2 Where to use AT commands and Downlink commands ==
1749
1750
1751 **AT commands: **
1752
1753 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1754
1755
1756 **Downlink commands:**
1757
1758
1759 (% style="color:blue" %)**TTN:**
1760
1761 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1762
1763
1764
1765 (% style="color:blue" %)**Helium: **
1766
1767 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1768
1769
1770
1771 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1772
1773
1774 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1775
1776
1777 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1778
1779
1780
1781 (% style="color:blue" %)**Aws:**
1782
1783 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1784
1785
1786 == 6.3 How to change the uplink interval? ==
1787
1788
1789 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1790
1791
1792 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1793
1794
1795 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1796
1797 [[image:1655802313617-381.png||_mstalt="293917"]]
1798
1799
1800 (((
1801 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1802 )))
1803
1804
1805 Input password and ATZ to activate LHT65N, As shown below:
1806
1807 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1808
1809
1810 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1811
1812
1813 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1814
1815
1816 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1817
1818 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1819
1820
1821
1822 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1823
1824 First connect the four lines;(% style="display:none" %)
1825
1826 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1827
1828
1829 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1830
1831 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1832
1833
1834
1835 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1836
1837 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1838
1839
1840 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1841
1842
1843 When this interface appears, it indicates that the download has been completed.
1844
1845 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1846
1847
1848 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1849
1850
1851 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1852
1853
1854 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1855
1856
1857 **UART Port of LHT65N:**
1858
1859 * (% class="mark" %)**PB0: RXD**
1860 * (% class="mark" %)**PB1: TXD**
1861 * (% class="mark" %)**GND**
1862
1863 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1864
1865
1866 (((
1867 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1868 )))
1869
1870
1871 Input password and ATZ to activate LHT65N,As shown below:
1872
1873 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1874
1875
1876 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1877
1878
1879 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1880
1881
1882 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1883
1884 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1885
1886
1887
1888 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1889
1890 First connect the four lines;
1891
1892 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1893
1894 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1895
1896
1897
1898 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1899
1900 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1901
1902
1903 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1904
1905
1906 When this interface appears, it indicates that the download has been completed.
1907
1908 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1909
1910
1911 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1912
1913
1914 == 6.8 Why can't I see the datalog information ==
1915
1916
1917 ~1. The time is not aligned, and the correct query command is not used.
1918
1919 2. Decoder error, did not parse the datalog data, the data was filtered.
1920
1921
1922 = 7. Order Info =
1923
1924
1925 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1926
1927 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1928
1929 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1930 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1931 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1932 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1933 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1934 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1935 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1936 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1937
1938 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1939
1940 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1941
1942
1943
1944 = 8. Packing Info =
1945
1946
1947 **Package Includes**:
1948
1949 * LHT65N Temperature & Humidity Sensor x 1
1950 * Optional external sensor
1951
1952 **Dimension and weight**:
1953
1954 * Device Size:  10 x 10 x 3.5 mm
1955 * Device Weight: 120.5g
1956
1957
1958
1959 = 9. Reference material =
1960
1961
1962 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1963
1964
1965
1966 = 10. FCC Warning =
1967
1968
1969 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1970
1971 (1) This device may not cause harmful interference;
1972
1973 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0