Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46 == 1.2 Features ==
47
48
49 * LoRaWAN v1.0.3 Class A protocol
50 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
51 * AT Commands to change parameters
52 * Remote configure parameters via LoRaWAN Downlink
53 * Firmware upgradeable via program port
54 * Built-in 2400mAh battery for up to 10 years of use.
55 * Built-in Temperature & Humidity sensor
56 * Optional External Sensors
57 * Tri-color LED to indicate working status
58 * Datalog feature (Max 3328 records)
59
60
61
62 == 1.3 Specification ==
63
64
65 (% style="color:#037691" %)**Built-in Temperature Sensor:**
66
67 * Resolution: 0.01 °C
68 * Accuracy Tolerance : Typ ±0.3 °C
69 * Long Term Drift: < 0.02 °C/yr
70 * Operating Range: -40 ~~ 85 °C
71
72 (% style="color:#037691" %)**Built-in Humidity Sensor:**
73
74 * Resolution: 0.04 %RH
75 * Accuracy Tolerance : Typ ±3 %RH
76 * Long Term Drift: < 0.02 °C/yr
77 * Operating Range: 0 ~~ 96 %RH
78
79 (% style="color:#037691" %)**External Temperature Sensor:**
80
81 * Resolution: 0.0625 °C
82 * ±0.5°C accuracy from -10°C to +85°C
83 * ±2°C accuracy from -55°C to +125°C
84 * Operating Range: -55 °C ~~ 125 °C
85
86
87
88 = 2. Connect LHT65N to IoT Server =
89
90 == 2.1 How does LHT65N work? ==
91
92
93 (((
94 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
95 )))
96
97 (((
98 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
99 )))
100
101
102 == 2.2 How to Activate LHT65N? ==
103
104
105 (((
106 The LHT65N has two working modes:
107 )))
108
109 * (((
110 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
111 )))
112 * (((
113 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
114 )))
115
116 (((
117 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
118 )))
119
120
121 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
122
123 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
124 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
126 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
127 )))
128 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
129 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
130 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
131 )))
132 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
133
134
135
136 == 2.3 Example to join LoRaWAN network ==
137
138
139 (% class="wikigeneratedid" %)
140 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
141
142
143 (% class="wikigeneratedid" %)
144 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
145
146
147 (((
148 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
149 )))
150
151
152 === 2.3.1 Step 1: Create Device n TTN ===
153
154
155 (((
156 Create a device in TTN V3 with the OTAA keys from LHT65N.
157 )))
158
159 (((
160 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
161 )))
162
163 [[image:image-20230426083319-1.png||height="258" width="556"]]
164
165 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
166
167 Add APP EUI in the application.
168
169
170 [[image:image-20220522232916-3.png||_mstalt="430495"]]
171
172
173 [[image:image-20220522232932-4.png||_mstalt="430157"]]
174
175
176 [[image:image-20220522232954-5.png||_mstalt="431847"]]
177
178
179
180 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
181
182
183 [[image:image-20220522233026-6.png||_mstalt="429403"]]
184
185
186 Input APP EUI,  APP KEY and DEV EUI:
187
188
189 [[image:image-20220522233118-7.png||_mstalt="430430"]]
190
191
192 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
193
194
195 (((
196 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
197 )))
198
199 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
200
201
202 == 2.4 Uplink Payload   ( Fport~=2) ==
203
204
205 (((
206 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
207 )))
208
209 (((
210 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
211 )))
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
214 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
215 **Size(bytes)**
216 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
217 **2**
218 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
219 **2**
220 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
221 **2**
222 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
223 **1**
224 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
225 **4**
226 )))
227 |(% style="width:97px" %)(((
228 **Value**
229 )))|(% style="width:39px" %)(((
230 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
231 )))|(% style="width:100px" %)(((
232 (((
233 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
234 )))
235 )))|(% style="width:77px" %)(((
236 (((
237 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
238 )))
239 )))|(% style="width:47px" %)(((
240 [[Ext>>||anchor="H2.4.5Ext23"]] #
241 )))|(% style="width:51px" %)(((
242 [[Ext value>>||anchor="H2.4.6Extvalue"]]
243 )))
244
245 * The First 6 bytes: has fix meanings for every LHT65N.
246
247 * The 7th byte (EXT #): defines the external sensor model.
248
249 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
250
251
252
253 === 2.4.1 Decoder in TTN V3 ===
254
255
256 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
257
258 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
259
260
261 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
262
263
264 === 2.4.2 BAT-Battery Info ===
265
266
267 These two bytes of BAT include the battery state and the actually voltage.
268
269 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
270 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
271 **Bit(bit)**
272 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
273 |(% style="width:66px" %)(((
274 **Value**
275 )))|(% style="width:250px" %)(((
276 BAT Status
277 00(b): Ultra Low ( BAT <= 2.50v)
278 01(b): Low (2.50v <=BAT <= 2.55v)
279 10(b): OK (2.55v <= BAT <=2.65v)
280 11(b): Good (BAT >= 2.65v)
281 )))|(% style="width:152px" %)Actually BAT voltage
282
283 **(b)stands for binary**
284
285
286 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
287
288
289 Check the battery voltage for LHT65N.
290
291 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
292
293 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
294
295
296
297 === 2.4.3 Built-in Temperature ===
298
299
300 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
301
302 * Temperature:  0x0ABB/100=27.47℃
303
304 [[image:image-20220522235639-3.png||_mstalt="432120"]]
305
306 * Temperature:  (0xF5C6-65536)/100=-26.18℃(% style="display:none" %)
307
308
309
310 === 2.4.4 Built-in Humidity ===
311
312
313 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
314
315 * Humidity:    0x025C/10=60.4%(% style="display:none" %)
316
317
318
319 === 2.4.5 Ext # ===
320
321
322 Bytes for External Sensor:
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
325 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
326 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
327 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
328
329
330
331 === 2.4.6 Ext value ===
332
333 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
334
335
336 [[image:image-20220522235639-5.png||_mstalt="432848"]]
337
338
339 * DS18B20 temp=0x0ADD/100=27.81℃
340
341 The last 2 bytes of data are meaningless
342
343
344
345 [[image:image-20220522235639-6.png||_mstalt="433212"]]
346
347
348 * External temperature= (0xF54F-65536)/100=-27.37℃
349
350 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
351
352 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
353
354 The last 2 bytes of data are meaningless
355
356 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
357
358
359
360 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
361
362
363 (((
364 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
365 )))
366
367
368 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
369 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
370 **Size(bytes)**
371 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
372 **2**
373 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
374 **2**
375 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
376 **2**
377 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
378 **1**
379 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
380 **4**
381 )))
382 |(% style="width:110px" %)(((
383 **Value**
384 )))|(% style="width:71px" %)(((
385 External temperature
386 )))|(% style="width:99px" %)(((
387 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
388 )))|(% style="width:132px" %)(((
389 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
390 )))|(% style="width:54px" %)(((
391 Status & Ext
392 )))|(% style="width:64px" %)(((
393 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
394 )))
395
396 * **Battery status & Built-in Humidity**
397
398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
399 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
400 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
401 BAT Status
402 00(b): Ultra Low ( BAT <= 2.50v)
403 01(b): Low  (2.50v <=BAT <= 2.55v)
404 10(b): OK   (2.55v <= BAT <=2.65v)
405 11(b): Good   (BAT >= 2.65v)
406 )))|(% style="width:132px" %)(((
407 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
408 )))
409
410 * **Status & Ext Byte**
411
412 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
413 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
414 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
415
416 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
417 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
418 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
419
420
421
422 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
423
424
425 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
426
427 be used to power the external ADC sensor; user can control the power on time for this
428
429 (% style="color:blue" %)**sensor by setting:**
430
431 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
432
433 **For example:**
434
435 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
436
437
438 Or use **downlink command A2** to set the same.
439
440 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
441
442 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
443
444 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
445
446
447 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
448
449 [[image:image-20220628150714-4.png||_mstalt="431054"]]
450
451
452 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
453
454
455 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
456
457 [[image:image-20220628151005-5.png||_mstalt="429546"]]
458
459
460 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
461
462 [[image:image-20220628151056-6.png||_mstalt="431873"]]
463
464
465 3) Within range
466
467 [[image:image-20220628151143-7.png||_mstalt="431210"]]
468
469
470
471 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (Since Firmware v1.3) ====
472
473
474 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
475
476
477 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
478
479 [[image:image-20220906102307-7.png||_mstalt="430443"]]
480
481
482 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
483
484 The external cable NE2 can be use for MOD4 and MOD8
485
486
487
488 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
489
490
491 [[image:65N-E31F.jpg||height="454" width="459"]]
492
493
494 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
495
496 [[image:SHT31.png]]
497
498
499
500 ==== 2.4.6.6 Ext~=4 Interrupt Mode (Since Firmware v1.3) ====
501
502
503 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
504
505
506 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
507
508 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
509
510 In Open State, the power consumption is the same as if there is no probe
511
512 In Close state, the power consumption will be 3uA higher than normal.
513
514 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
515
516
517 Ext=4,Interrupt Sensor:
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
520 |(% style="width:101px" %)(((
521 **AT+EXT=4,1**
522 )))|(% style="width:395px" %)(((
523 **Sent uplink packet in both rising and falling interrupt**
524 )))
525 |(% style="width:101px" %)(((
526 **AT+EXT=4,2**
527 )))|(% style="width:395px" %)(((
528 **Sent uplink packet only in falling interrupt**
529 )))
530 |(% style="width:101px" %)(((
531 **AT+EXT=4,3**
532 )))|(% style="width:395px" %)(((
533 **Sent uplink packet only in rising interrupt**
534 )))
535
536 Trigger by falling edge:
537
538 [[image:image-20220906101145-2.png||_mstalt="428324"]]
539
540
541 Trigger by raising edge:
542
543 [[image:image-20220906101145-3.png||_mstalt="428688"]]
544
545
546
547 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
548
549
550 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
551
552
553 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
554
555 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
556
557
558 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
559
560 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
561
562
563 Ext=8, Counting Sensor ( 4 bytes):
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
566 |(% style="width:131px" %)(((
567 **AT+EXT=8,0**
568 )))|(% style="width:195px" %)(((
569 **Count at falling interrupt**
570 )))
571 |(% style="width:131px" %)(((
572 **AT+EXT=8,1**
573 )))|(% style="width:195px" %)(((
574 **Count at rising interrupt**
575 )))
576 |(% style="width:131px" %)(((
577 **AT+SETCNT=60**
578 )))|(% style="width:195px" %)(((
579 **Sent current count to 60**
580 )))
581
582 [[image:image-20220906101320-6.png||_mstalt="428064"]]
583
584
585 (% style="color:blue" %)**A2 downlink Command:**
586
587 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
588
589 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
590
591 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
592
593 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
594
595 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
596
597
598 == 2.5 Show data on Datacake ==
599
600
601 (((
602 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
603 )))
604
605
606 (((
607 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
608 )))
609
610 (((
611 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
612 )))
613
614
615 (((
616 Add Datacake:
617 )))
618
619
620 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
621
622
623
624 Select default key as Access Key:
625
626
627 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
628
629
630 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
631
632
633 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
634
635
636 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
637
638
639 == 2.6 Datalog Feature ==
640
641
642 (((
643 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
644 )))
645
646
647 === 2.6.1 Ways to get datalog via LoRaWAN ===
648
649
650 There are two methods:
651
652 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
653
654
655 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
656
657
658 (% style="color:red" %)**Note for method 2:**
659
660 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
661 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
662
663 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
664
665
666 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
667
668
669 === 2.6.2 Unix TimeStamp ===
670
671
672 LHT65N uses Unix TimeStamp format based on
673
674
675 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
676
677
678
679 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
680
681 Below is the converter example
682
683 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
684
685
686 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
687
688
689 === 2.6.3 Set Device Time ===
690
691
692 (((
693 (% style="color:blue" %)**There are two ways to set device's time:**
694 )))
695
696 (((
697 **1.  Through LoRaWAN MAC Command (Default settings)**
698 )))
699
700 (((
701 User need to set SYNCMOD=1 to enable sync time via MAC command.
702 )))
703
704 (((
705 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
706 )))
707
708 (((
709 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
710 )))
711
712
713 (((
714 **2. Manually Set Time**
715 )))
716
717 (((
718 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
719 )))
720
721
722 === 2.6.4 Poll sensor value ===
723
724
725 User can poll sensor value based on timestamps from the server. Below is the downlink command.
726
727 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
728 |(% style="width:58px" %)**1byte**|(% style="width:128px" %)**4bytes**|(% style="width:123px" %)**4bytes**|(% style="width:116px" %)**1byte**
729 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
730
731 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
732
733 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
734
735 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
736
737 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
738
739
740 === 2.6.5 Datalog Uplink payload ===
741
742
743 The Datalog poll reply uplink will use below payload format.
744
745 **Retrieval data payload:**
746
747 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
748 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
749 **Size(bytes)**
750 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
751 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
752
753 **Poll message flag & Ext:**
754
755 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
756
757 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
758
759 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
760
761 * Poll Message Flag is set to 1.
762
763 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
764
765 For example, in US915 band, the max payload for different DR is:
766
767 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
768
769 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
770
771 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
772
773 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
774
775 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
776
777
778 **Example:**
779
780 If LHT65N has below data inside Flash:
781
782 [[image:image-20230426171833-4.png]]
783
784
785 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
786
787 Where : Start time: 60065F97 = time 21/1/19 04:27:03
788
789 Stop time: 60066DA7= time 21/1/19 05:27:03
790
791
792 **LHT65N will uplink this payload.**
793
794 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
795
796
797 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
798
799 Where the first 11 bytes is for the first entry:
800
801 7FFF089801464160065F97
802
803 Ext sensor data=0x7FFF/100=327.67
804
805 Temp=0x088E/100=22.00
806
807 Hum=0x014B/10=32.6
808
809 poll message flag & Ext=0x41,means reply data,Ext=1
810
811 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
812
813
814 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
815
816
817 (((
818 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
819 )))
820
821 (((
822 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
823
824
825 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
826
827
828 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
829
830 (((
831 (% class="box infomessage" %)
832 (((
833 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
834
835 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
836
837 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
838
839 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
840
841 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
842
843 **AT+LEDALARM=1** :       Enable LED visual Alarm.
844 )))
845 )))
846
847 (% style="color:#4f81bd" %)**Downlink Command:**
848
849 AT+WMOD=1:  A501  ,  AT+WMOD=0 :  A600
850
851 AT+CITEMP=1 : A60001
852
853 AT+ARTEMP=1,60  :  A70001003C
854
855 AT+ARTEMP=-16,60 :  A7FFF0003C
856
857 AT+LEDALARM=1  :  3601
858
859
860 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
861
862 Total bytes: 8 bytes
863
864 **Example: **AA0100010001003C
865
866 WMOD=01
867
868 CITEMP=0001
869
870 TEMPlow=0001
871
872 TEMPhigh=003C
873
874
875 **DS18B20 and TMP117 Threshold Alarm**
876
877 **~ AT+WMOD=1,60,-10,20**
878
879 (% style="color:#4f81bd" %)**Downlink Command:**
880
881 **Example: **A5013CFC180014
882
883 MOD=01
884
885 CITEMP=3C(S)
886
887 TEMPlow=FC18
888
889 TEMPhigh=0014
890
891
892 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
893
894 **AT+WMOD=2,60,5** 
895
896 (% style="color:#4f81bd" %)**Downlink Command:**
897
898 **Example: **A5023C05
899
900 MOD=02
901
902 CITEMP=3C(S)
903
904 temperature fluctuation=05
905
906
907 **Sampling multiple times and uplink together**
908
909 **AT+WMOD=3,1,60,20,-16,32,1**   
910
911 Explain:
912
913 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
914 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
915 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
916 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
917 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
918 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
919
920 (% style="color:#4f81bd" %)**Downlink Command:**
921
922 **Example: **A50301003C14FFF0002001
923
924 MOD=03
925
926 TEMP=DS18B20
927
928 CITEMP=003C(S)
929
930 Total number of acquisitions=14
931
932 TEMPlow=FFF0
933
934 TEMPhigh=0020
935
936 ARTEMP=01
937
938
939 **Uplink payload( Fport=3)**
940
941 **Example: CBEA**01**0992**//0A41//**09C4**
942
943 BatV=CBEA
944
945 TEMP=DS18B20
946
947 Temp1=0992  ~/~/ 24.50℃
948
949 Temp2=0A41  ~/~/ 26.25℃
950
951 Temp3=09C4  ~/~/ 25.00℃
952
953 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
954
955 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
956 )))
957
958
959 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
960
961
962 (% class="box infomessage" %)
963 (((
964 (((
965 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
966 )))
967
968 (((
969 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
970 )))
971
972 (((
973 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
974 )))
975
976 (((
977 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
978 )))
979
980 (((
981 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
982 )))
983 )))
984
985 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
986
987 Total bytes: 8 bytes
988
989 **Example:**AA0100010001003C
990
991 WMOD=01
992
993 CITEMP=0001
994
995 TEMPlow=0001
996
997 TEMPhigh=003C
998
999
1000 == 2.8 LED Indicator ==
1001
1002
1003 The LHT65 has a triple color LED which for easy showing different stage .
1004
1005 While user press ACT button, the LED will work as per LED status with ACT button.
1006
1007 In a normal working state:
1008
1009 * For each uplink, the BLUE LED or RED LED will blink once.
1010 BLUE LED when external sensor is connected.
1011 * RED LED when external sensor is not connected
1012 * For each success downlink, the PURPLE LED will blink once
1013
1014
1015
1016 == 2.9 installation ==
1017
1018
1019 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1020
1021
1022 = 3. Sensors and Accessories =
1023
1024 == 3.1 E2 Extension Cable ==
1025
1026
1027 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1028
1029
1030 **1m long breakout cable for LHT65N. Features:**
1031
1032 * (((
1033 Use for AT Command, works for both LHT52/LHT65N
1034 )))
1035 * (((
1036 Update firmware for LHT65N, works for both LHT52/LHT65N
1037 )))
1038 * (((
1039 Supports ADC mode to monitor external ADC
1040 )))
1041 * (((
1042 Supports Interrupt mode
1043 )))
1044 * (((
1045 Exposed All pins from the LHT65N Type-C connector.
1046
1047
1048
1049 )))
1050
1051 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1052
1053
1054 == 3.2 E3 Temperature Probe ==
1055
1056
1057 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1058
1059
1060 Temperature sensor with 2 meters cable long
1061
1062 * Resolution: 0.0625 °C
1063 * ±0.5°C accuracy from -10°C to +85°C
1064 * ±2°C accuracy from -55°C to +125°C
1065 * Operating Range: -40 ~~ 125 °C
1066 * Working voltage 2.35v ~~ 5v
1067
1068
1069
1070 == 3.3 E31F Temperature Probe ==
1071
1072
1073 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1074
1075
1076 Temperature sensor with 1 meters cable long
1077
1078 **Built-in Temperature Sensor:**
1079
1080 * Resolution: 0.01 °C
1081 * Accuracy Tolerance : Typ ±0.3 °C
1082 * Long Term Drift: < 0.02 °C/yr
1083 * Operating Range: -40 ~~ 80 °C
1084
1085 **Built-in Humidity Sensor:**
1086
1087 * Resolution: 0.04 % RH
1088 * Accuracy Tolerance : Typ ±3 % RH
1089 * Long Term Drift: < 0.02 °C/yr
1090 * Operating Range: 0 ~~ 96 % RH
1091
1092 **External Temperature Sensor :**
1093
1094 * Resolution: 0.01 °C
1095 * Accuracy Tolerance : Typical ±0.3 °C
1096 * Long Term Drift: < 0.02 °C/yr
1097 * Operating Range: -40 ~~ 125 °C
1098
1099 **External Humidity Sensor :**
1100
1101 * Resolution: 0.04 % RH
1102 * Accuracy Tolerance : Typ ±3 % RH
1103 * Long Term Drift: < 0.02 °C/yr
1104 * Operating Range: 0 ~~ 96 % RH
1105
1106
1107
1108 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1109
1110
1111 (((
1112 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1113 )))
1114
1115 * (((
1116 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1117 )))
1118
1119 * (((
1120 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1121 )))
1122
1123 (((
1124 There are two kinds of commands to configure LHT65N, they are:
1125 )))
1126
1127 * (((
1128 (% style="color:#4f81bd" %)**General Commands**.
1129 )))
1130
1131 (((
1132 These commands are to configure:
1133 )))
1134
1135 1. (((
1136 General system settings like: uplink interval.
1137 )))
1138 1. (((
1139 LoRaWAN protocol & radio-related commands.
1140 )))
1141
1142 (((
1143 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1144 )))
1145
1146 * (((
1147 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1148 )))
1149
1150 (((
1151 These commands are only valid for LHT65N, as below:
1152 )))
1153
1154
1155 == 4.1 Set Transmit Interval Time ==
1156
1157
1158 Feature: Change LoRaWAN End Node Transmit Interval.
1159
1160
1161 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1162
1163 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1164 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1165 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1166 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1167
1168 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1169
1170 Format: Command Code (0x01) followed by 3 bytes time value.
1171
1172 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1173
1174 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1175
1176 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1177
1178
1179
1180 == 4.2 Set External Sensor Mode ==
1181
1182
1183 Feature: Change External Sensor Mode.
1184
1185
1186 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1187
1188
1189 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1190 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1191 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1192 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1193 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1194
1195 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1196
1197 Total bytes: 2 ~~ 5 bytes
1198
1199 **Example:**
1200
1201 * 0xA201: Set external sensor type to E1
1202
1203 * 0xA209: Same as AT+EXT=9
1204
1205 * 0xA20702003c: Same as AT+SETCNT=60
1206
1207
1208
1209 == 4.3 Enable/Disable uplink Temperature probe ID ==
1210
1211
1212 (((
1213 Feature: If PID is enabled, device will send the temperature probe ID on:
1214 )))
1215
1216 * (((
1217 First Packet after OTAA Join
1218 )))
1219 * (((
1220 Every 24 hours since the first packet.
1221 )))
1222
1223 (((
1224 PID is default set to disable (0)
1225
1226
1227 )))
1228
1229 (% style="color:#4f81bd" %)**AT Command:**
1230
1231 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1232 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1233 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1234
1235 (% style="color:#4f81bd" %)**Downlink Command:**
1236
1237 * **0xA800**  **~-~->** AT+PID=0
1238 * **0xA801**     **~-~->** AT+PID=1
1239
1240
1241
1242 == 4.4 Set Password ==
1243
1244
1245 Feature: Set device password, max 9 digits
1246
1247 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1248
1249 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1250 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1251 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1252 123456
1253
1254 OK
1255 )))
1256 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1257
1258 (% style="color:#4f81bd" %)**Downlink Command:**
1259
1260 No downlink command for this feature.
1261
1262
1263 == 4.5 Quit AT Command ==
1264
1265
1266 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1267
1268 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1269
1270 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1271 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1272 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1273
1274 (% style="color:#4f81bd" %)**Downlink Command:**
1275
1276 No downlink command for this feature.
1277
1278
1279 == 4.6 Set to sleep mode ==
1280
1281
1282 Feature: Set device to sleep mode
1283
1284 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1285 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1286
1287 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1288
1289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1290 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1291 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1292 Clear all stored sensor data…
1293
1294 OK
1295 )))
1296
1297 (% style="color:#4f81bd" %)**Downlink Command:**
1298
1299 * There is no downlink command to set to Sleep mode.
1300
1301
1302
1303 == 4.7 Set system time ==
1304
1305
1306 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1307
1308 (% style="color:#4f81bd" %)**AT Command:**
1309
1310 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1311 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1312 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1313 OK
1314
1315 Set System time to 2021-01-20 00:59:12
1316 )))
1317
1318 (% style="color:#4f81bd" %)**Downlink Command:**
1319
1320 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1321
1322
1323 == 4.8 Set Time Sync Mode ==
1324
1325
1326 (((
1327 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1328 )))
1329
1330 (((
1331 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1332 )))
1333
1334 (% style="color:#4f81bd" %)**AT Command:**
1335
1336 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1337 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1338 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1339
1340 (% style="color:#4f81bd" %)**Downlink Command:**
1341
1342 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1343 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1344
1345
1346 == 4.9 Set Time Sync Interval ==
1347
1348
1349 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1350
1351 (% style="color:#4f81bd" %)**AT Command:**
1352
1353 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1354 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1355 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1356
1357 (% style="color:#4f81bd" %)**Downlink Command:**
1358
1359 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1360
1361
1362 == 4.10 Print data entries base on page. ==
1363
1364
1365 Feature: Print the sector data from start page to stop page (max is 416 pages).
1366
1367 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1368
1369 [[image:image-20230426164330-2.png]]
1370
1371
1372 (% style="color:#4f81bd" %)**Downlink Command:**
1373
1374 No downlink commands for feature
1375
1376
1377 == 4.11 Print last few data entries. ==
1378
1379
1380 Feature: Print the last few data entries
1381
1382 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1383
1384 [[image:image-20230426164932-3.png]]
1385
1386
1387 (% style="color:#4f81bd" %)**Downlink Command:**
1388
1389 No downlink commands for feature
1390
1391
1392 == 4.12 Clear Flash Record ==
1393
1394
1395 Feature: Clear flash storage for data log feature.
1396
1397
1398 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1399
1400
1401 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1402 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1403 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1404 Clear all stored sensor data…
1405
1406 OK
1407 )))
1408
1409 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1410
1411 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1412
1413
1414
1415 == 4.13 Auto Send None-ACK messages ==
1416
1417
1418 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1419
1420 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1421
1422 The default factory setting is 0
1423
1424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1425 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1426 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1427
1428 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1429
1430 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1431
1432
1433
1434 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1435
1436
1437 Feature: Set internal and external temperature sensor alarms.
1438
1439 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1440 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1441 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1442
1443 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1444
1445 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1446
1447 0): Cancel
1448
1449 1): Threshold alarm
1450
1451 2): Fluctuation alarm
1452
1453
1454 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1455
1456 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1457
1458
1459 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1460
1461 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1462
1463 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1464
1465
1466 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1467
1468 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1469
1470 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1471
1472
1473 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1474
1475 0xA5 00 ~-~- AT+WMOD=0.
1476
1477 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1478
1479 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1480
1481 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1482
1483 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1484
1485
1486 = 5. Battery & How to replace =
1487
1488 == 5.1 Battery Type ==
1489
1490
1491 (((
1492 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1493 )))
1494
1495 (((
1496 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1497
1498
1499 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1500 )))
1501
1502 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1503
1504
1505 == 5.2 Replace Battery ==
1506
1507
1508 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1509
1510 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1511
1512
1513 == 5.3 Battery Life Analyze ==
1514
1515
1516 (((
1517 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1518 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1519 )))
1520
1521
1522 (((
1523 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1524 )))
1525
1526
1527 = 6. FAQ =
1528
1529 == 6.1 How to use AT Command? ==
1530
1531
1532 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1533
1534 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1535
1536
1537 **Connection:**
1538
1539 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1540 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1541 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1542
1543 (((
1544 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1545 )))
1546
1547
1548 Input password and ATZ to activate LHT65N,As shown below:
1549
1550 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1551
1552
1553 AT Command List is as below:
1554
1555 AT+<CMD>? :  Help on <CMD>
1556
1557 AT+<CMD> :  Run <CMD>
1558
1559 AT+<CMD>=<value> :  Set the value
1560
1561 AT+<CMD>=? :  Get the value
1562
1563 AT+DEBUG:  Set more info output
1564
1565 ATZ:  Trig a reset of the MCU
1566
1567 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1568
1569 AT+DEUI:  Get or Set the Device EUI
1570
1571 AT+DADDR:  Get or Set the Device Address
1572
1573 AT+APPKEY:  Get or Set the Application Key
1574
1575 AT+NWKSKEY:  Get or Set the Network Session Key
1576
1577 AT+APPSKEY:  Get or Set the Application Session Key
1578
1579 AT+APPEUI:  Get or Set the Application EUI
1580
1581 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1582
1583 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1584
1585 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1586
1587 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1588
1589 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1590
1591 AT+RX2FQ:  Get or Set the Rx2 window frequency
1592
1593 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1594
1595 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1596
1597 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1598
1599 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1600
1601 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1602
1603 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1604
1605 AT+NWKID:  Get or Set the Network ID
1606
1607 AT+FCU:  Get or Set the Frame Counter Uplink
1608
1609 AT+FCD:  Get or Set the Frame Counter Downlink
1610
1611 AT+CLASS:  Get or Set the Device Class
1612
1613 AT+JOIN:  Join network
1614
1615 AT+NJS:  Get the join status
1616
1617 AT+SENDB:  Send hexadecimal data along with the application port
1618
1619 AT+SEND:  Send text data along with the application port
1620
1621 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1622
1623 AT+RECV:  Print last received data in raw format
1624
1625 AT+VER:  Get current image version and Frequency Band
1626
1627 AT+CFM:  Get or Set the confirmation mode (0-1)
1628
1629 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1630
1631 AT+SNR:  Get the SNR of the last received packet
1632
1633 AT+RSSI:  Get the RSSI of the last received packet
1634
1635 AT+TDC:  Get or set the application data transmission interval in ms
1636
1637 AT+PORT:  Get or set the application port
1638
1639 AT+DISAT:  Disable AT commands
1640
1641 AT+PWORD: Set password, max 9 digits
1642
1643 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1644
1645 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1646
1647 AT+PDTA:  Print the sector data from start page to stop page
1648
1649 AT+PLDTA:  Print the last few sets of data
1650
1651 AT+CLRDTA:  Clear the storage, record position back to 1st
1652
1653 AT+SLEEP:  Set sleep mode
1654
1655 AT+EXT:  Get or Set external sensor model
1656
1657 AT+BAT:  Get the current battery voltage in mV
1658
1659 AT+CFG:  Print all configurations
1660
1661 AT+WMOD:  Get or Set Work Mode
1662
1663 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1664
1665 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1666
1667 AT+SETCNT:  Set the count at present
1668
1669 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1670
1671 AT+RPL:  Get or set response level
1672
1673 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1674
1675 AT+LEAPSEC:  Get or Set Leap Second
1676
1677 AT+SYNCMOD:  Get or Set time synchronization method
1678
1679 AT+SYNCTDC:  Get or set time synchronization interval in day
1680
1681 AT+PID:  Get or set the PID
1682
1683
1684 == 6.2 Where to use AT commands and Downlink commands ==
1685
1686
1687 **AT commands:**
1688
1689 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1690
1691
1692 **Downlink commands:**
1693
1694
1695 (% style="color:blue" %)**TTN:**
1696
1697 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1698
1699
1700
1701 (% style="color:blue" %)**Helium:**
1702
1703 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1704
1705
1706
1707 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1708
1709
1710 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1711
1712
1713 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1714
1715
1716
1717 (% style="color:blue" %)**Aws:**
1718
1719 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1720
1721
1722 == 6.3 How to change the uplink interval? ==
1723
1724
1725 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1726
1727
1728 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1729
1730
1731 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1732
1733 [[image:1655802313617-381.png||_mstalt="293917"]]
1734
1735
1736 (((
1737 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1738 )))
1739
1740
1741 Input password and ATZ to activate LHT65N,As shown below:
1742
1743 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1744
1745
1746 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1747
1748
1749 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1750
1751
1752 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1753
1754 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1755
1756
1757
1758 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1759
1760 First connect the four lines;(% style="display:none" %)
1761
1762 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1763
1764
1765 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1766
1767 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1768
1769
1770
1771 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1772
1773 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1774
1775
1776 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1777
1778
1779 When this interface appears, it indicates that the download has been completed.
1780
1781 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1782
1783
1784 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1785
1786
1787 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1788
1789
1790 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1791
1792
1793 **UART Port of LHT65N:**
1794
1795 * (% class="mark" %)**PB0: RXD**
1796 * (% class="mark" %)**PB1: TXD**
1797 * (% class="mark" %)**GND**
1798
1799 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1800
1801
1802 (((
1803 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1804 )))
1805
1806
1807 Input password and ATZ to activate LHT65N,As shown below:
1808
1809 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1810
1811
1812 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1813
1814
1815 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1816
1817
1818 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1819
1820 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1821
1822
1823
1824 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1825
1826 First connect the four lines;
1827
1828 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1829
1830 Connect A8 and GND with Dupont wire for a while and then separate,enter reset mode
1831
1832
1833
1834 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1835
1836 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1837
1838
1839 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1840
1841
1842 When this interface appears, it indicates that the download has been completed.
1843
1844 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1845
1846
1847 Finally,Disconnect 3.3v,Connect A8 and GND with Dupont wire for a while and then separate,exit reset mode
1848
1849
1850 == 6.8 Why can't I see the datalog information ==
1851
1852
1853 ~1. The time is not aligned, and the correct query command is not used.
1854
1855 2. Decoder error, did not parse the datalog data, the data was filtered.
1856
1857
1858 = 7. Order Info =
1859
1860
1861 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1862
1863 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1864
1865 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1866 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1867 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1868 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1869 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1870 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1871 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1872 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1873
1874 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1875
1876 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1877
1878
1879
1880 = 8. Packing Info =
1881
1882
1883 **Package Includes**:
1884
1885 * LHT65N Temperature & Humidity Sensor x 1
1886 * Optional external sensor
1887
1888 **Dimension and weight**:
1889
1890 * Device Size:  10 x 10 x 3.5 mm
1891 * Device Weight: 120.5g
1892
1893
1894
1895 = 9. Reference material =
1896
1897
1898 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1899
1900
1901
1902 = 10. FCC Warning =
1903
1904
1905 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1906
1907 (1) This device may not cause harmful interference;
1908
1909 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0