Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46
47 == 1.2 Features ==
48
49
50 * LoRaWAN v1.0.3 Class A protocol
51 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
52 * AT Commands to change parameters
53 * Remote configure parameters via LoRaWAN Downlink
54 * Firmware upgradeable via program port
55 * Built-in 2400mAh battery for up to 10 years of use.
56 * Built-in Temperature & Humidity sensor
57 * Optional External Sensors
58 * Tri-color LED to indicate working status
59 * Datalog feature (Max 3328 records)
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.02 °C/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External Temperature Sensor:**
79
80 * Resolution: 0.0625 °C
81 * ±0.5°C accuracy from -10°C to +85°C
82 * ±2°C accuracy from -55°C to +125°C
83 * Operating Range: -55 °C ~~ 125 °C
84
85 = 2. Connect LHT65N to IoT Server =
86
87 == 2.1 How does LHT65N work? ==
88
89
90 (((
91 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
92 )))
93
94 (((
95 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
96 )))
97
98
99 == 2.2 How to Activate LHT65N? ==
100
101
102 (((
103 The LHT65N has two working modes:
104 )))
105
106 * (((
107 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
108 )))
109 * (((
110 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
111 )))
112
113 (((
114 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
115 )))
116
117
118 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
119
120 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
121 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
123 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
126 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
127 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
128 )))
129 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
130
131 == 2.3 Example to join LoRaWAN network ==
132
133
134 (% class="wikigeneratedid" %)
135 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
136
137
138 (% class="wikigeneratedid" %)
139 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
140
141
142 (((
143 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
144 )))
145
146
147 === 2.3.1 Step 1: Create Device n TTN ===
148
149
150 (((
151 Create a device in TTN V3 with the OTAA keys from LHT65N.
152 )))
153
154 (((
155 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
156 )))
157
158 [[image:image-20230426083319-1.png]]
159
160 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
161
162 Add APP EUI in the application.
163
164
165 [[image:image-20220522232916-3.png||_mstalt="430495"]]
166
167
168 [[image:image-20220522232932-4.png||_mstalt="430157"]]
169
170
171 [[image:image-20220522232954-5.png||_mstalt="431847"]]
172
173
174
175 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
176
177
178 [[image:image-20220522233026-6.png||_mstalt="429403"]]
179
180
181 Input APP EUI,  APP KEY and DEV EUI:
182
183
184 [[image:image-20220522233118-7.png||_mstalt="430430"]]
185
186
187 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
188
189
190 (((
191 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
192 )))
193
194 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
195
196
197 == 2.4 Uplink Payload   ( Fport~=2) ==
198
199
200 (((
201 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
202 )))
203
204 (((
205 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
206 )))
207
208 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
209 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
210 **Size(bytes)**
211 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
212 **2**
213 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
214 **2**
215 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
216 **2**
217 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
218 **1**
219 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
220 **4**
221 )))
222 |(% style="width:97px" %)(((
223 **Value**
224 )))|(% style="width:39px" %)(((
225 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
226 )))|(% style="width:100px" %)(((
227 (((
228 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
229 )))
230 )))|(% style="width:77px" %)(((
231 (((
232 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
233 )))
234 )))|(% style="width:47px" %)(((
235 [[Ext>>||anchor="H2.4.5Ext23"]] #
236 )))|(% style="width:51px" %)(((
237 [[Ext value>>||anchor="H2.4.6Extvalue"]]
238 )))
239
240 * The First 6 bytes: has fix meanings for every LHT65N.
241
242 * The 7th byte (EXT #): defines the external sensor model.
243
244 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
245
246 === 2.4.1 Decoder in TTN V3 ===
247
248
249 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
250
251 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
252
253
254 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
255
256
257 === 2.4.2 BAT-Battery Info ===
258
259
260 These two bytes of BAT include the battery state and the actually voltage.
261
262 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
263 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
264 **Bit(bit)**
265 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
266 |(% style="width:66px" %)(((
267 **Value**
268 )))|(% style="width:250px" %)(((
269 BAT Status
270 00(b): Ultra Low ( BAT <= 2.50v)
271 01(b): Low (2.50v <=BAT <= 2.55v)
272 10(b): OK (2.55v <= BAT <=2.65v)
273 11(b): Good (BAT >= 2.65v)
274 )))|(% style="width:152px" %)Actually BAT voltage
275
276 **(b)stands for binary**
277
278
279 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
280
281
282 Check the battery voltage for LHT65N.
283
284 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
285
286 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
287
288 === 2.4.3 Built-in Temperature ===
289
290
291 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
292
293 * Temperature:  0x0ABB/100=27.47℃
294
295 [[image:image-20220522235639-3.png||_mstalt="432120"]]
296
297 * Temperature:  (0xF5C6-65536)/100=-26.18℃
298
299 === 2.4.4 Built-in Humidity ===
300
301
302 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
303
304 * Humidity:    0x025C/10=60.4%
305
306 === 2.4.5 Ext # ===
307
308
309 Bytes for External Sensor:
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
312 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Value**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)**External Sensor Type**
313 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
314 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
315
316 === 2.4.6 Ext value ===
317
318 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
319
320
321 [[image:image-20220522235639-5.png||_mstalt="432848"]]
322
323
324 * DS18B20 temp=0x0ADD/100=27.81℃
325
326 The last 2 bytes of data are meaningless
327
328
329
330 [[image:image-20220522235639-6.png||_mstalt="433212"]]
331
332
333 * External temperature= (0xF54F-65536)/100=-27.37℃
334
335 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
336
337 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
338
339 The last 2 bytes of data are meaningless
340
341 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
342
343
344
345 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
346
347
348 (((
349 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
350 )))
351
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
354 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
355 **Size(bytes)**
356 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
357 **2**
358 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
359 **2**
360 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
361 **2**
362 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
363 **1**
364 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
365 **4**
366 )))
367 |(% style="width:110px" %)(((
368 **Value**
369 )))|(% style="width:71px" %)(((
370 External temperature
371 )))|(% style="width:99px" %)(((
372 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
373 )))|(% style="width:132px" %)(((
374 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
375 )))|(% style="width:54px" %)(((
376 Status & Ext
377 )))|(% style="width:64px" %)(((
378 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
379 )))
380
381 * **Battery status & Built-in Humidity**
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
384 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
385 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
386 BAT Status
387 00(b): Ultra Low ( BAT <= 2.50v)
388 01(b): Low  (2.50v <=BAT <= 2.55v)
389 10(b): OK   (2.55v <= BAT <=2.65v)
390 11(b): Good   (BAT >= 2.65v)
391 )))|(% style="width:132px" %)(((
392 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
393 )))
394
395 * **Status & Ext Byte**
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
398 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
399 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
400
401 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
402 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
403 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
404
405 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
406
407
408 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
409
410 be used to power the external ADC sensor; user can control the power on time for this
411
412 (% style="color:blue" %)**sensor by setting:**
413
414 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
415
416 **For example:**
417
418 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
419
420
421 Or use **downlink command A2** to set the same.
422
423 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
424
425 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
426
427 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
428
429
430 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
431
432 [[image:image-20220628150714-4.png||_mstalt="431054"]]
433
434
435 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
436
437
438 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
439
440 [[image:image-20220628151005-5.png||_mstalt="429546"]]
441
442
443 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
444
445 [[image:image-20220628151056-6.png||_mstalt="431873"]]
446
447
448 3) Within range
449
450 [[image:image-20220628151143-7.png||_mstalt="431210"]]
451
452
453
454 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (Since Firmware v1.3) ====
455
456
457 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
458
459
460 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
461
462 [[image:image-20220906102307-7.png||_mstalt="430443"]]
463
464
465 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
466
467 The external cable NE2 can be use for MOD4 and MOD8
468
469
470 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.3) ====
471
472
473 [[image:65N-E31F.jpg||height="454" width="459"]]
474
475
476 (% style="color:blue" %)**Ext=11,Temperature Sensor(SHT31):**
477
478 [[image:SHT31.png]]
479
480
481 ==== 2.4.6.6 Ext~=4 Interrupt Mode (Since Firmware v1.3) ====
482
483
484 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
485
486
487 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
488
489 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
490
491 In Open State, the power consumption is the same as if there is no probe
492
493 In Close state, the power consumption will be 3uA higher than normal.
494
495 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
496
497
498 Ext=4,Interrupt Sensor:
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
501 |(% style="width:101px" %)(((
502 **AT+EXT=4,1**
503 )))|(% style="width:395px" %)(((
504 **Sent uplink packet in both rising and falling interrupt**
505 )))
506 |(% style="width:101px" %)(((
507 **AT+EXT=4,2**
508 )))|(% style="width:395px" %)(((
509 **Sent uplink packet only in falling interrupt**
510 )))
511 |(% style="width:101px" %)(((
512 **AT+EXT=4,3**
513 )))|(% style="width:395px" %)(((
514 **Sent uplink packet only in rising interrupt**
515 )))
516
517 Trigger by falling edge:
518
519 [[image:image-20220906101145-2.png||_mstalt="428324"]]
520
521
522 Trigger by raising edge:
523
524 [[image:image-20220906101145-3.png||_mstalt="428688"]]
525
526
527
528 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
529
530
531 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
532
533
534 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
535
536 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
537
538
539 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
540
541 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
542
543
544 Ext=8, Counting Sensor ( 4 bytes):
545
546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
547 |(% style="width:131px" %)(((
548 **AT+EXT=8,0**
549 )))|(% style="width:195px" %)(((
550 **Count at falling interrupt**
551 )))
552 |(% style="width:131px" %)(((
553 **AT+EXT=8,1**
554 )))|(% style="width:195px" %)(((
555 **Count at rising interrupt**
556 )))
557 |(% style="width:131px" %)(((
558 **AT+SETCNT=60**
559 )))|(% style="width:195px" %)(((
560 **Sent current count to 60**
561 )))
562
563 [[image:image-20220906101320-6.png||_mstalt="428064"]]
564
565
566 (% style="color:blue" %)**A2 downlink Command:**
567
568 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
569
570 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
571
572 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
573
574 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
575
576 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
577
578
579 == 2.5 Show data on Datacake ==
580
581
582 (((
583 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
584 )))
585
586
587 (((
588 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
589 )))
590
591 (((
592 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
593 )))
594
595
596 (((
597 Add Datacake:
598 )))
599
600
601 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
602
603
604
605 Select default key as Access Key:
606
607
608 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
609
610
611 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
612
613
614 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
615
616
617 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
618
619
620 == 2.6 Datalog Feature ==
621
622
623 (((
624 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
625 )))
626
627
628 === 2.6.1 Ways to get datalog via LoRaWAN ===
629
630
631 There are two methods:
632
633 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
634
635
636 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
637
638
639 (% style="color:red" %)**Note for method 2:**
640
641 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
642 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
643
644 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
645
646
647 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
648
649
650 === 2.6.2 Unix TimeStamp ===
651
652
653 LHT65N uses Unix TimeStamp format based on
654
655
656 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
657
658
659
660 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
661
662 Below is the converter example
663
664 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
665
666
667 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
668
669
670 === 2.6.3 Set Device Time ===
671
672
673 (((
674 (% style="color:blue" %)**There are two ways to set device's time:**
675 )))
676
677 (((
678 **1.  Through LoRaWAN MAC Command (Default settings)**
679 )))
680
681 (((
682 User need to set SYNCMOD=1 to enable sync time via MAC command.
683 )))
684
685 (((
686 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
687 )))
688
689 (((
690 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
691 )))
692
693
694 (((
695 **2. Manually Set Time**
696 )))
697
698 (((
699 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
700 )))
701
702
703 === 2.6.4 Poll sensor value ===
704
705
706 User can poll sensor value based on timestamps from the server. Below is the downlink command.
707
708 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
709 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
710 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
711
712 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
713
714 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
715
716 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
717
718 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
719
720
721 === 2.6.5 Datalog Uplink payload ===
722
723
724 The Datalog poll reply uplink will use below payload format.
725
726 **Retrieval data payload:**
727
728 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
729 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
730 **Size(bytes)**
731 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
732 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
733
734 **Poll message flag & Ext:**
735
736 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
737
738 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
739
740 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
741
742 * Poll Message Flag is set to 1.
743
744 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
745
746 For example, in US915 band, the max payload for different DR is:
747
748 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
749
750 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
751
752 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
753
754 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
755
756 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
757
758
759 **Example:**
760
761 If LHT65N has below data inside Flash:
762
763 [[image:image-20230426171833-4.png]]
764
765
766 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
767
768 Where : Start time: 60065F97 = time 21/1/19 04:27:03
769
770 Stop time: 60066DA7= time 21/1/19 05:27:03
771
772
773 **LHT65N will uplink this payload.**
774
775 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
776
777
778 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
779
780 Where the first 11 bytes is for the first entry:
781
782 7FFF089801464160065F97
783
784 Ext sensor data=0x7FFF/100=327.67
785
786 Temp=0x088E/100=22.00
787
788 Hum=0x014B/10=32.6
789
790 poll message flag & Ext=0x41,means reply data,Ext=1
791
792 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
793
794
795 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
796
797
798 (((
799 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
800 )))
801
802 (((
803 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
804
805
806 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
807
808
809 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
810
811 (((
812 (% class="box infomessage" %)
813 (((
814 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
815
816 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
817
818 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
819
820 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
821
822 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
823
824 **AT+LEDALARM=1** :       Enable LED visual Alarm.
825 )))
826 )))
827
828 (% style="color:#4f81bd" %)**Downlink Command:**
829
830 AT+WMOD=1:  A501  ,  AT+WMOD=0 :  A600
831
832 AT+CITEMP=1 : A60001
833
834 AT+ARTEMP=1,60  :  A70001003C
835
836 AT+ARTEMP=-16,60 :  A7FFF0003C
837
838 AT+LEDALARM=1  :  3601
839
840
841 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
842
843 Total bytes: 8 bytes
844
845 **Example: **AA0100010001003C
846
847 WMOD=01
848
849 CITEMP=0001
850
851 TEMPlow=0001
852
853 TEMPhigh=003C
854
855
856 **DS18B20 and TMP117 Threshold Alarm**
857
858 **~ AT+WMOD=1,60,-10,20**
859
860 (% style="color:#4f81bd" %)**Downlink Command:**
861
862 **Example: **A5013CFC180014
863
864 MOD=01
865
866 CITEMP=3C(S)
867
868 TEMPlow=FC18
869
870 TEMPhigh=0014
871
872
873 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
874
875 **AT+WMOD=2,60,5** 
876
877 (% style="color:#4f81bd" %)**Downlink Command:**
878
879 **Example: **A5023C05
880
881 MOD=02
882
883 CITEMP=3C(S)
884
885 temperature fluctuation=05
886
887
888 **Sampling multiple times and uplink together**
889
890 **AT+WMOD=3,1,60,20,-16,32,1**   
891
892 Explain:
893
894 * (% style="color:#037691" %)**parameter1:**(%%)Set Working Mode to **Mode 3**
895 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
896 * (% style="color:#037691" %)**parameter3:**(%%)Sampling Interval is **60**s.
897 * (% style="color:#037691" %)**parameter4:**(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
898 * (% style="color:#037691" %)**parameter5 & parameter6:**(%%)Temperature alarm range is **-16** to **32**°C,
899 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
900
901 (% style="color:#4f81bd" %)**Downlink Command:**
902
903 **Example: **A50301003C14FFF0002001
904
905 MOD=03
906
907 TEMP=DS18B20
908
909 CITEMP=003C(S)
910
911 Total number of acquisitions=14
912
913 TEMPlow=FFF0
914
915 TEMPhigh=0020
916
917 ARTEMP=01
918
919 **Uplink payload( Fport=3)**
920
921 **Example: CBEA**01**0992**//0A41//**09C4**
922
923 BatV=CBEA
924
925 TEMP=DS18B20
926
927 Temp1=0992  ~/~/ 24.50℃
928
929 Temp2=0A41  ~/~/ 26.25℃
930
931 Temp3=09C4  ~/~/ 25.00℃
932
933 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
934
935 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
936 )))
937
938
939 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
940
941
942 (% class="box infomessage" %)
943 (((
944 (((
945 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
946 )))
947
948 (((
949 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
950 )))
951
952 (((
953 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
954 )))
955
956 (((
957 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
958 )))
959
960 (((
961 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
962 )))
963 )))
964
965 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
966
967 Total bytes: 8 bytes
968
969 **Example:**AA0100010001003C
970
971 WMOD=01
972
973 CITEMP=0001
974
975 TEMPlow=0001
976
977 TEMPhigh=003C
978
979
980 == 2.8 LED Indicator ==
981
982
983 The LHT65 has a triple color LED which for easy showing different stage .
984
985 While user press ACT button, the LED will work as per LED status with ACT button.
986
987 In a normal working state:
988
989 * For each uplink, the BLUE LED or RED LED will blink once.
990 BLUE LED when external sensor is connected.
991 * RED LED when external sensor is not connected
992 * For each success downlink, the PURPLE LED will blink once
993
994 == 2.9 installation ==
995
996
997 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
998
999
1000 = 3. Sensors and Accessories =
1001
1002 == 3.1 E2 Extension Cable ==
1003
1004
1005 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1006
1007
1008 **1m long breakout cable for LHT65N. Features:**
1009
1010 * (((
1011 Use for AT Command, works for both LHT52/LHT65N
1012 )))
1013 * (((
1014 Update firmware for LHT65N, works for both LHT52/LHT65N
1015 )))
1016 * (((
1017 Supports ADC mode to monitor external ADC
1018 )))
1019 * (((
1020 Supports Interrupt mode
1021 )))
1022 * (((
1023 Exposed All pins from the LHT65N Type-C connector.
1024
1025
1026
1027 )))
1028
1029 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1030
1031
1032 == 3.2 E3 Temperature Probe ==
1033
1034
1035 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1036
1037
1038 Temperature sensor with 2 meters cable long
1039
1040 * Resolution: 0.0625 °C
1041 * ±0.5°C accuracy from -10°C to +85°C
1042 * ±2°C accuracy from -55°C to +125°C
1043 * Operating Range: -40 ~~ 125 °C
1044 * Working voltage 2.35v ~~ 5v
1045
1046 == 3.3 E31F Temperature Probe ==
1047
1048
1049 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1050
1051
1052 Temperature sensor with 1 meters cable long
1053
1054 **Built-in Temperature Sensor:**
1055
1056 * Resolution: 0.01 °C
1057 * Accuracy Tolerance : Typ ±0.3 °C
1058 * Long Term Drift: < 0.02 °C/yr
1059 * Operating Range: -40 ~~ 80 °C
1060
1061 **Built-in Humidity Sensor:**
1062
1063 * Resolution: 0.04 %RH
1064 * Accuracy Tolerance : Typ ±3 %RH
1065 * Long Term Drift: < 0.02 °C/yr
1066 * Operating Range: 0 ~~ 96 %RH
1067
1068 **External Temperature Sensor :**
1069
1070 * Resolution: 0.01 °C
1071 * Accuracy Tolerance : Typical ±0.3 °C
1072 * Long Term Drift: < 0.02 °C/yr
1073 * Operating Range: -40 ~~ 125 °C
1074
1075 **External Humidity Sensor :**
1076
1077 * Resolution: 0.04 %RH
1078 * Accuracy Tolerance : Typ ±3 %RH
1079 * Long Term Drift: < 0.02 °C/yr
1080 * Operating Range: 0 ~~ 96 %RH
1081
1082
1083 (% class="wikigeneratedid" %)
1084 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1085
1086
1087 (((
1088 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1089 )))
1090
1091 * (((
1092 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1093 )))
1094
1095 * (((
1096 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1097 )))
1098
1099 (((
1100 There are two kinds of commands to configure LHT65N, they are:
1101 )))
1102
1103 * (((
1104 (% style="color:#4f81bd" %)**General Commands**.
1105 )))
1106
1107 (((
1108 These commands are to configure:
1109 )))
1110
1111 1. (((
1112 General system settings like: uplink interval.
1113 )))
1114 1. (((
1115 LoRaWAN protocol & radio-related commands.
1116 )))
1117
1118 (((
1119 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1120 )))
1121
1122 * (((
1123 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1124 )))
1125
1126 (((
1127 These commands are only valid for LHT65N, as below:
1128 )))
1129
1130
1131 == 4.1 Set Transmit Interval Time ==
1132
1133
1134 Feature: Change LoRaWAN End Node Transmit Interval.
1135
1136
1137 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1138
1139 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1140 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1141 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1142 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1143
1144 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1145
1146 Format: Command Code (0x01) followed by 3 bytes time value.
1147
1148 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1149
1150 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1151
1152 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1153
1154 == 4.2 Set External Sensor Mode ==
1155
1156
1157 Feature: Change External Sensor Mode.
1158
1159
1160 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1161
1162
1163 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1164 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1165 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1166 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1167 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1168
1169 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1170
1171 Total bytes: 2 ~~ 5 bytes
1172
1173 **Example:**
1174
1175 * 0xA201: Set external sensor type to E1
1176
1177 * 0xA209: Same as AT+EXT=9
1178
1179 * 0xA20702003c: Same as AT+SETCNT=60
1180
1181 == 4.3 Enable/Disable uplink Temperature probe ID ==
1182
1183
1184 (((
1185 Feature: If PID is enabled, device will send the temperature probe ID on:
1186 )))
1187
1188 * (((
1189 First Packet after OTAA Join
1190 )))
1191 * (((
1192 Every 24 hours since the first packet.
1193 )))
1194
1195 (((
1196 PID is default set to disable (0)
1197
1198
1199 )))
1200
1201 (% style="color:#4f81bd" %)**AT Command:**
1202
1203 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1204 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1205 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1206
1207 (% style="color:#4f81bd" %)**Downlink Command:**
1208
1209 * **0xA800**  **~-~->** AT+PID=0
1210 * **0xA801**     **~-~->** AT+PID=1
1211
1212 == 4.4 Set Password ==
1213
1214
1215 Feature: Set device password, max 9 digits
1216
1217 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1218
1219 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1220 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1221 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1222 123456
1223
1224 OK
1225 )))
1226 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1227
1228 (% style="color:#4f81bd" %)**Downlink Command:**
1229
1230 No downlink command for this feature.
1231
1232
1233 == 4.5 Quit AT Command ==
1234
1235
1236 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1237
1238 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1239
1240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1241 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1242 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1243
1244 (% style="color:#4f81bd" %)**Downlink Command:**
1245
1246 No downlink command for this feature.
1247
1248
1249 == 4.6 Set to sleep mode ==
1250
1251
1252 Feature: Set device to sleep mode
1253
1254 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1255 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1256
1257 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1258
1259 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1260 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1261 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1262 Clear all stored sensor data…
1263
1264 OK
1265 )))
1266
1267 (% style="color:#4f81bd" %)**Downlink Command:**
1268
1269 * There is no downlink command to set to Sleep mode.
1270
1271 == 4.7 Set system time ==
1272
1273
1274 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1275
1276 (% style="color:#4f81bd" %)**AT Command:**
1277
1278 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1279 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1280 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1281 OK
1282
1283 Set System time to 2021-01-20 00:59:12
1284 )))
1285
1286 (% style="color:#4f81bd" %)**Downlink Command:**
1287
1288 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1289
1290
1291 == 4.8 Set Time Sync Mode ==
1292
1293
1294 (((
1295 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1296 )))
1297
1298 (((
1299 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1300 )))
1301
1302 (% style="color:#4f81bd" %)**AT Command:**
1303
1304 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1305 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1306 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1307
1308 (% style="color:#4f81bd" %)**Downlink Command:**
1309
1310 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1311 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1312
1313
1314 == 4.9 Set Time Sync Interval ==
1315
1316
1317 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1318
1319 (% style="color:#4f81bd" %)**AT Command:**
1320
1321 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1322 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1323 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1324
1325 (% style="color:#4f81bd" %)**Downlink Command:**
1326
1327 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1328
1329
1330 == 4.10 Print data entries base on page. ==
1331
1332
1333 Feature: Print the sector data from start page to stop page (max is 416 pages).
1334
1335 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1336
1337 [[image:image-20230426164330-2.png]]
1338
1339
1340 (% style="color:#4f81bd" %)**Downlink Command:**
1341
1342 No downlink commands for feature
1343
1344
1345 == 4.11 Print last few data entries. ==
1346
1347
1348 Feature: Print the last few data entries
1349
1350 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1351
1352 [[image:image-20230426164932-3.png]]
1353
1354
1355 (% style="color:#4f81bd" %)**Downlink Command:**
1356
1357 No downlink commands for feature
1358
1359
1360 == 4.12 Clear Flash Record ==
1361
1362
1363 Feature: Clear flash storage for data log feature.
1364
1365
1366 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1367
1368
1369 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1370 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1371 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1372 Clear all stored sensor data…
1373
1374 OK
1375 )))
1376
1377 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1378
1379 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1380
1381 == 4.13 Auto Send None-ACK messages ==
1382
1383
1384 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1385
1386 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1387
1388 The default factory setting is 0
1389
1390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1391 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1392 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1393
1394 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1395
1396 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1397
1398 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1399
1400
1401 Feature: Set internal and external temperature sensor alarms.
1402
1403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1404 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1405 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1406
1407 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1408
1409 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1410
1411 0): Cancel
1412
1413 1): Threshold alarm
1414
1415 2): Fluctuation alarm
1416
1417
1418 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1419
1420 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1421
1422
1423 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1424
1425 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1426
1427 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1428
1429
1430 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1431
1432 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1433
1434 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1435
1436
1437 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1438
1439 0xA5 00 ~-~- AT+WMOD=0.
1440
1441 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1442
1443 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1444
1445 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1446
1447 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1448
1449
1450 = 5. Battery & How to replace =
1451
1452 == 5.1 Battery Type ==
1453
1454
1455 (((
1456 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1457 )))
1458
1459 (((
1460 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1461
1462
1463 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1464 )))
1465
1466 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1467
1468
1469 == 5.2 Replace Battery ==
1470
1471
1472 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1473
1474 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1475
1476
1477 == 5.3 Battery Life Analyze ==
1478
1479
1480 (((
1481 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1482 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1483 )))
1484
1485
1486 (((
1487 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1488 )))
1489
1490
1491 = 6. FAQ =
1492
1493 == 6.1 How to use AT Command? ==
1494
1495
1496 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1497
1498 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1499
1500
1501 **Connection:**
1502
1503 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1504 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1505 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1506
1507 (((
1508 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1509 )))
1510
1511
1512 Input password and ATZ to activate LHT65N,As shown below:
1513
1514 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1515
1516
1517 AT Command List is as below:
1518
1519 AT+<CMD>? :  Help on <CMD>
1520
1521 AT+<CMD> :  Run <CMD>
1522
1523 AT+<CMD>=<value> :  Set the value
1524
1525 AT+<CMD>=? :  Get the value
1526
1527 AT+DEBUG:  Set more info output
1528
1529 ATZ:  Trig a reset of the MCU
1530
1531 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1532
1533 AT+DEUI:  Get or Set the Device EUI
1534
1535 AT+DADDR:  Get or Set the Device Address
1536
1537 AT+APPKEY:  Get or Set the Application Key
1538
1539 AT+NWKSKEY:  Get or Set the Network Session Key
1540
1541 AT+APPSKEY:  Get or Set the Application Session Key
1542
1543 AT+APPEUI:  Get or Set the Application EUI
1544
1545 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1546
1547 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1548
1549 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1550
1551 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1552
1553 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1554
1555 AT+RX2FQ:  Get or Set the Rx2 window frequency
1556
1557 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1558
1559 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1560
1561 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1562
1563 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1564
1565 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1566
1567 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1568
1569 AT+NWKID:  Get or Set the Network ID
1570
1571 AT+FCU:  Get or Set the Frame Counter Uplink
1572
1573 AT+FCD:  Get or Set the Frame Counter Downlink
1574
1575 AT+CLASS:  Get or Set the Device Class
1576
1577 AT+JOIN:  Join network
1578
1579 AT+NJS:  Get the join status
1580
1581 AT+SENDB:  Send hexadecimal data along with the application port
1582
1583 AT+SEND:  Send text data along with the application port
1584
1585 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1586
1587 AT+RECV:  Print last received data in raw format
1588
1589 AT+VER:  Get current image version and Frequency Band
1590
1591 AT+CFM:  Get or Set the confirmation mode (0-1)
1592
1593 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1594
1595 AT+SNR:  Get the SNR of the last received packet
1596
1597 AT+RSSI:  Get the RSSI of the last received packet
1598
1599 AT+TDC:  Get or set the application data transmission interval in ms
1600
1601 AT+PORT:  Get or set the application port
1602
1603 AT+DISAT:  Disable AT commands
1604
1605 AT+PWORD: Set password, max 9 digits
1606
1607 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1608
1609 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1610
1611 AT+PDTA:  Print the sector data from start page to stop page
1612
1613 AT+PLDTA:  Print the last few sets of data
1614
1615 AT+CLRDTA:  Clear the storage, record position back to 1st
1616
1617 AT+SLEEP:  Set sleep mode
1618
1619 AT+EXT:  Get or Set external sensor model
1620
1621 AT+BAT:  Get the current battery voltage in mV
1622
1623 AT+CFG:  Print all configurations
1624
1625 AT+WMOD:  Get or Set Work Mode
1626
1627 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1628
1629 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1630
1631 AT+SETCNT:  Set the count at present
1632
1633 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1634
1635 AT+RPL:  Get or set response level
1636
1637 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1638
1639 AT+LEAPSEC:  Get or Set Leap Second
1640
1641 AT+SYNCMOD:  Get or Set time synchronization method
1642
1643 AT+SYNCTDC:  Get or set time synchronization interval in day
1644
1645 AT+PID:  Get or set the PID
1646
1647
1648 == 6.2 Where to use AT commands and Downlink commands ==
1649
1650
1651 **AT commands:**
1652
1653 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1654
1655
1656 **Downlink commands:**
1657
1658
1659 (% style="color:blue" %)**TTN:**
1660
1661 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1662
1663
1664
1665 (% style="color:blue" %)**Helium:**
1666
1667 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1668
1669
1670
1671 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1672
1673
1674 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1675
1676
1677 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1678
1679
1680
1681 (% style="color:blue" %)**Aws:**
1682
1683 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1684
1685
1686 == 6.3 How to change the uplink interval? ==
1687
1688
1689 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1690
1691
1692 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1693
1694
1695 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1696
1697 [[image:1655802313617-381.png||_mstalt="293917"]]
1698
1699
1700 (((
1701 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1702 )))
1703
1704
1705 Input password and ATZ to activate LHT65N,As shown below:
1706
1707 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1708
1709
1710 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1711
1712
1713 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1714
1715
1716 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1717
1718 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1719
1720
1721
1722 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1723
1724 First connect the four lines;(% style="display:none" %)
1725
1726 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1727
1728
1729 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1730
1731 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1732
1733
1734
1735 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1736
1737 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1738
1739
1740 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1741
1742
1743 When this interface appears, it indicates that the download has been completed.
1744
1745 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1746
1747
1748 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1749
1750
1751 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1752
1753
1754 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1755
1756
1757 **UART Port of LHT65N:**
1758
1759 * (% class="mark" %)**PB0: RXD**
1760 * (% class="mark" %)**PB1: TXD**
1761 * (% class="mark" %)**GND**
1762
1763 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1764
1765
1766 (((
1767 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1768 )))
1769
1770
1771 Input password and ATZ to activate LHT65N,As shown below:
1772
1773 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1774
1775
1776 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1777
1778
1779 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1780
1781
1782 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1783
1784 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1785
1786
1787
1788 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1789
1790 First connect the four lines;
1791
1792 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1793
1794 Connect A8 and GND with Dupont wire for a while and then separate,enter reset mode
1795
1796
1797
1798 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1799
1800 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1801
1802
1803 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1804
1805
1806 When this interface appears, it indicates that the download has been completed.
1807
1808 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1809
1810
1811 Finally,Disconnect 3.3v,Connect A8 and GND with Dupont wire for a while and then separate,exit reset mode
1812
1813
1814 == 6.8 Why can't I see the datalog information ==
1815
1816
1817 ~1. The time is not aligned, and the correct query command is not used.
1818
1819 2. Decoder error, did not parse the datalog data, the data was filtered.
1820
1821
1822 = 7. Order Info =
1823
1824
1825 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1826
1827 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1828
1829 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1830 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1831 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1832 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1833 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1834 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1835 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1836 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1837
1838 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1839
1840 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1841
1842 = 8. Packing Info =
1843
1844
1845 **Package Includes**:
1846
1847 * LHT65N Temperature & Humidity Sensor x 1
1848 * Optional external sensor
1849
1850 **Dimension and weight**:
1851
1852 * Device Size:  10 x 10 x 3.5 mm
1853 * Device Weight: 120.5g
1854
1855 = 9. Reference material =
1856
1857
1858 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1859
1860 = 10. FCC Warning =
1861
1862
1863 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1864
1865 (1) This device may not cause harmful interference;
1866
1867 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0