Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46
47 == 1.2 Features ==
48
49
50 * LoRaWAN v1.0.3 Class A protocol
51 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
52 * AT Commands to change parameters
53 * Remote configure parameters via LoRaWAN Downlink
54 * Firmware upgradeable via program port
55 * Built-in 2400mAh battery for up to 10 years of use.
56 * Built-in Temperature & Humidity sensor
57 * Optional External Sensors
58 * Tri-color LED to indicate working status
59 * Datalog feature (Max 3328 records)
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.02 °C/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External Temperature Sensor:**
79
80 * Resolution: 0.0625 °C
81 * ±0.5°C accuracy from -10°C to +85°C
82 * ±2°C accuracy from -55°C to +125°C
83 * Operating Range: -55 °C ~~ 125 °C
84
85 = 2. Connect LHT65N to IoT Server =
86
87 == 2.1 How does LHT65N work? ==
88
89
90 (((
91 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
92 )))
93
94 (((
95 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
96 )))
97
98
99 == 2.2 How to Activate LHT65N? ==
100
101
102 (((
103 The LHT65N has two working modes:
104 )))
105
106 * (((
107 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
108 )))
109 * (((
110 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
111 )))
112
113 (((
114 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
115 )))
116
117
118 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
119
120 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
121 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
123 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
126 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
127 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
128 )))
129 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
130
131 == 2.3 Example to join LoRaWAN network ==
132
133
134 (% class="wikigeneratedid" %)
135 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
136
137
138 (% class="wikigeneratedid" %)
139 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
140
141
142 (((
143 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
144 )))
145
146
147 === 2.3.1 Step 1: Create Device n TTN ===
148
149
150 (((
151 Create a device in TTN V3 with the OTAA keys from LHT65N.
152 )))
153
154 (((
155 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
156 )))
157
158 [[image:image-20230426083319-1.png]]
159
160 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
161
162 Add APP EUI in the application.
163
164
165 [[image:image-20220522232916-3.png||_mstalt="430495"]]
166
167
168 [[image:image-20220522232932-4.png||_mstalt="430157"]]
169
170
171 [[image:image-20220522232954-5.png||_mstalt="431847"]]
172
173
174
175 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
176
177
178 [[image:image-20220522233026-6.png||_mstalt="429403"]]
179
180
181 Input APP EUI,  APP KEY and DEV EUI:
182
183
184 [[image:image-20220522233118-7.png||_mstalt="430430"]]
185
186
187 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
188
189
190 (((
191 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
192 )))
193
194 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
195
196
197 == 2.4 Uplink Payload   ( Fport~=2) ==
198
199
200 (((
201 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
202 )))
203
204 (((
205 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
206 )))
207
208 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
209 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
210 **Size(bytes)**
211 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
212 **2**
213 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
214 **2**
215 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
216 **2**
217 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
218 **1**
219 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
220 **4**
221 )))
222 |(% style="width:97px" %)(((
223 **Value**
224 )))|(% style="width:39px" %)(((
225 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
226 )))|(% style="width:100px" %)(((
227 (((
228 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
229 )))
230 )))|(% style="width:77px" %)(((
231 (((
232 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
233 )))
234 )))|(% style="width:47px" %)(((
235 [[Ext>>||anchor="H2.4.5Ext23"]] #
236 )))|(% style="width:51px" %)(((
237 [[Ext value>>||anchor="H2.4.6Extvalue"]]
238 )))
239
240 * The First 6 bytes: has fix meanings for every LHT65N.
241
242 * The 7th byte (EXT #): defines the external sensor model.
243
244 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
245
246 === 2.4.1 Decoder in TTN V3 ===
247
248
249 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
250
251 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
252
253
254 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
255
256
257 === 2.4.2 BAT-Battery Info ===
258
259
260 These two bytes of BAT include the battery state and the actually voltage.
261
262 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
263 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
264 **Bit(bit)**
265 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
266 |(% style="width:66px" %)(((
267 **Value**
268 )))|(% style="width:250px" %)(((
269 BAT Status
270 00(b): Ultra Low ( BAT <= 2.50v)
271 01(b): Low (2.50v <=BAT <= 2.55v)
272 10(b): OK (2.55v <= BAT <=2.65v)
273 11(b): Good (BAT >= 2.65v)
274 )))|(% style="width:152px" %)Actually BAT voltage
275
276 **(b)stands for binary**
277
278
279 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
280
281
282 Check the battery voltage for LHT65N.
283
284 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
285
286 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
287
288 === 2.4.3 Built-in Temperature ===
289
290
291 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
292
293 * Temperature:  0x0ABB/100=27.47℃
294
295 [[image:image-20220522235639-3.png||_mstalt="432120"]]
296
297 * Temperature:  (0xF5C6-65536)/100=-26.18℃
298
299 === 2.4.4 Built-in Humidity ===
300
301
302 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
303
304 * Humidity:    0x025C/10=60.4%
305
306 === 2.4.5 Ext # ===
307
308
309 Bytes for External Sensor:
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
312 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Value**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)**External Sensor Type**
313 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
314 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
315
316 === 2.4.6 Ext value ===
317
318 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
319
320
321 [[image:image-20220522235639-5.png||_mstalt="432848"]]
322
323
324 * DS18B20 temp=0x0ADD/100=27.81℃
325
326 The last 2 bytes of data are meaningless
327
328
329
330 [[image:image-20220522235639-6.png||_mstalt="433212"]]
331
332
333 * External temperature= (0xF54F-65536)/100=-27.37℃
334
335 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
336
337 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
338
339 The last 2 bytes of data are meaningless
340
341 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
342
343
344
345 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
346
347
348 (((
349 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
350 )))
351
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
354 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
355 **Size(bytes)**
356 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
357 **2**
358 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
359 **2**
360 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
361 **2**
362 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
363 **1**
364 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
365 **4**
366 )))
367 |(% style="width:110px" %)(((
368 **Value**
369 )))|(% style="width:71px" %)(((
370 External temperature
371 )))|(% style="width:99px" %)(((
372 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
373 )))|(% style="width:132px" %)(((
374 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
375 )))|(% style="width:54px" %)(((
376 Status & Ext
377 )))|(% style="width:64px" %)(((
378 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
379 )))
380
381 * **Battery status & Built-in Humidity**
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
384 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
385 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
386 BAT Status
387 00(b): Ultra Low ( BAT <= 2.50v)
388 01(b): Low  (2.50v <=BAT <= 2.55v)
389 10(b): OK   (2.55v <= BAT <=2.65v)
390 11(b): Good   (BAT >= 2.65v)
391 )))|(% style="width:132px" %)(((
392 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
393 )))
394
395 * **Status & Ext Byte**
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
398 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
399 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
400
401 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
402 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
403 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
404
405 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
406
407
408 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
409
410 be used to power the external ADC sensor; user can control the power on time for this
411
412 (% style="color:blue" %)**sensor by setting:**
413
414 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
415
416 **For example:**
417
418 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
419
420
421 Or use **downlink command A2** to set the same.
422
423 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
424
425 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
426
427 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
428
429
430 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
431
432 [[image:image-20220628150714-4.png||_mstalt="431054"]]
433
434
435 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
436
437
438 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
439
440 [[image:image-20220628151005-5.png||_mstalt="429546"]]
441
442
443 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
444
445 [[image:image-20220628151056-6.png||_mstalt="431873"]]
446
447
448 3) Within range
449
450 [[image:image-20220628151143-7.png||_mstalt="431210"]]
451
452
453
454 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (Since Firmware v1.3) ====
455
456
457 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
458
459
460 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
461
462 [[image:image-20220906102307-7.png||_mstalt="430443"]]
463
464
465 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
466
467 The external cable NE2 can be use for MOD4 and MOD8
468
469
470 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.3) ====
471
472
473 [[image:65N-E31F.jpg||height="454" width="459"]]
474
475
476 (% style="color:blue" %)**Ext=11,Temperature Sensor(SHT31):**
477
478 [[image:SHT31.png]]
479
480
481 ==== 2.4.6.5 Ext~=4 Interrupt Mode (Since Firmware v1.3) ====
482
483
484 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
485
486
487 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
488
489 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
490
491 In Open State, the power consumption is the same as if there is no probe
492
493 In Close state, the power consumption will be 3uA higher than normal.
494
495 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
496
497
498 Ext=4,Interrupt Sensor:
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
501 |(% style="width:101px" %)(((
502 **AT+EXT=4,1**
503 )))|(% style="width:395px" %)(((
504 **Sent uplink packet in both rising and falling interrupt**
505 )))
506 |(% style="width:101px" %)(((
507 **AT+EXT=4,2**
508 )))|(% style="width:395px" %)(((
509 **Sent uplink packet only in falling interrupt**
510 )))
511 |(% style="width:101px" %)(((
512 **AT+EXT=4,3**
513 )))|(% style="width:395px" %)(((
514 **Sent uplink packet only in rising interrupt**
515 )))
516
517 Trigger by falling edge:
518
519 [[image:image-20220906101145-2.png||_mstalt="428324"]]
520
521
522 Trigger by raising edge:
523
524 [[image:image-20220906101145-3.png||_mstalt="428688"]]
525
526
527
528 ==== 2.4.6.6 Ext~=8 Counting Mode(Since Firmware v1.3) ====
529
530
531 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
532
533
534 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
535
536 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
537
538
539 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
540
541 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
542
543
544 Ext=8, Counting Sensor ( 4 bytes):
545
546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
547 |(% style="width:131px" %)(((
548 **AT+EXT=8,0**
549 )))|(% style="width:195px" %)(((
550 **Count at falling interrupt**
551 )))
552 |(% style="width:131px" %)(((
553 **AT+EXT=8,1**
554 )))|(% style="width:195px" %)(((
555 **Count at rising interrupt**
556 )))
557 |(% style="width:131px" %)(((
558 **AT+SETCNT=60**
559 )))|(% style="width:195px" %)(((
560 **Sent current count to 60**
561 )))
562
563 [[image:image-20220906101320-6.png||_mstalt="428064"]]
564
565
566 (% style="color:blue" %)**A2 downlink Command:**
567
568 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
569
570 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
571
572 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
573
574 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
575
576 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
577
578
579 == 2.5 Show data on Datacake ==
580
581
582 (((
583 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
584 )))
585
586
587 (((
588 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
589 )))
590
591 (((
592 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
593 )))
594
595
596 (((
597 Add Datacake:
598 )))
599
600
601 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
602
603
604
605 Select default key as Access Key:
606
607
608 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
609
610
611 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
612
613
614 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
615
616
617 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
618
619
620 == 2.6 Datalog Feature ==
621
622
623 (((
624 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
625 )))
626
627
628 === 2.6.1 Ways to get datalog via LoRaWAN ===
629
630
631 There are two methods:
632
633 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
634
635
636 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
637
638
639 (% style="color:red" %)**Note for method 2:**
640
641 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
642 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
643
644 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
645
646
647 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
648
649
650 === 2.6.2 Unix TimeStamp ===
651
652
653 LHT65N uses Unix TimeStamp format based on
654
655
656 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
657
658
659
660 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
661
662 Below is the converter example
663
664 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
665
666
667 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
668
669
670 === 2.6.3 Set Device Time ===
671
672
673 (((
674 (% style="color:blue" %)**There are two ways to set device's time:**
675 )))
676
677 (((
678 **1.  Through LoRaWAN MAC Command (Default settings)**
679 )))
680
681 (((
682 User need to set SYNCMOD=1 to enable sync time via MAC command.
683 )))
684
685 (((
686 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
687 )))
688
689 (((
690 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
691 )))
692
693
694 (((
695 **2. Manually Set Time**
696 )))
697
698 (((
699 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
700 )))
701
702
703 === 2.6.4 Poll sensor value ===
704
705
706 User can poll sensor value based on timestamps from the server. Below is the downlink command.
707
708 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
709 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
710 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
711
712 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
713
714 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
715
716 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
717
718 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
719
720
721 === 2.6.5 Datalog Uplink payload ===
722
723
724 The Datalog poll reply uplink will use below payload format.
725
726 **Retrieval data payload:**
727
728 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
729 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
730 **Size(bytes)**
731 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
732 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
733
734 **Poll message flag & Ext:**
735
736 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
737
738 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
739
740 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
741
742 * Poll Message Flag is set to 1.
743
744 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
745
746 For example, in US915 band, the max payload for different DR is:
747
748 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
749
750 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
751
752 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
753
754 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
755
756 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
757
758
759 **Example:**
760
761 If LHT65N has below data inside Flash:
762
763 [[image:image-20230426171833-4.png]]
764
765
766 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
767
768 Where : Start time: 60065F97 = time 21/1/19 04:27:03
769
770 Stop time: 60066DA7= time 21/1/19 05:27:03
771
772
773 **LHT65N will uplink this payload.**
774
775 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
776
777
778 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
779
780 Where the first 11 bytes is for the first entry:
781
782 7FFF089801464160065F97
783
784 Ext sensor data=0x7FFF/100=327.67
785
786 Temp=0x088E/100=22.00
787
788 Hum=0x014B/10=32.6
789
790 poll message flag & Ext=0x41,means reply data,Ext=1
791
792 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
793
794
795 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
796
797
798 (((
799 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
800 )))
801
802 (((
803 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
804
805
806 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
807
808
809 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
810
811 (((
812 (% class="box infomessage" %)
813 (((
814 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
815
816 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
817
818 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
819
820 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
821
822 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
823
824 **AT+LEDALARM=1** :       Enable LED visual Alarm.
825 )))
826 )))
827
828 (% style="color:#4f81bd" %)**Downlink Command:**
829
830 AT+WMOD=1:  A501  ,  AT+WMOD=0 :  A600
831
832 AT+CITEMP=1 : A60001
833
834 AT+ARTEMP=1,60  :  A70001003C
835
836 AT+ARTEMP=-16,60 :  A7FFF0003C
837
838 AT+LEDALARM=1  :  3601
839
840
841 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
842
843 Total bytes: 8 bytes
844
845 **Example: **AA0100010001003C
846
847 WMOD=01
848
849 CITEMP=0001
850
851 TEMPlow=0001
852
853 TEMPhigh=003C
854
855
856 **DS18B20 and TMP117 Threshold Alarm**
857
858 **~ AT+WMOD=1,60,-10,20**
859
860 (% style="color:#4f81bd" %)**Downlink Command:**
861
862 **Example: **A5013CFC180014
863
864 MOD=01
865
866 CITEMP=3C(S)
867
868 TEMPlow=FC18
869
870 TEMPhigh=0014
871
872
873 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
874
875 **AT+WMOD=2,60,5** 
876
877 (% style="color:#4f81bd" %)**Downlink Command:**
878
879 **Example: **A5023C05
880
881 MOD=02
882
883 CITEMP=3C(S)
884
885 temperature fluctuation=05
886
887
888 **Sampling multiple times and uplink together**
889
890 **AT+WMOD=3,1,60,20,-16,32,1**   
891
892 Explain:
893
894 * (% style="color:#037691" %)**parameter1:**(%%)Set Working Mode to **Mode 3**
895 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
896 * (% style="color:#037691" %)**parameter3:**(%%)Sampling Interval is **60**s.
897 * (% style="color:#037691" %)**parameter4:**(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
898 * (% style="color:#037691" %)**parameter5 & parameter6:**(%%)Temperature alarm range is **-16** to **32**°C,
899 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
900
901 (% style="color:#4f81bd" %)**Downlink Command:**
902
903 **Example: **A50301003C14FFF0002001
904
905 MOD=03
906
907 TEMP=DS18B20
908
909 CITEMP=003C(S)
910
911 Total number of acquisitions=14
912
913 TEMPlow=FFF0
914
915 TEMPhigh=0020
916
917 ARTEMP=01
918
919 **Uplink payload( Fport=3)**
920
921 **Example: CBEA**01**0992**//0A41//**09C4**
922
923 BatV=CBEA
924
925 TEMP=DS18B20
926
927 Temp1=0992  ~/~/ 24.50℃
928
929 Temp2=0A41  ~/~/ 26.25℃
930
931 Temp3=09C4  ~/~/ 25.00℃
932
933 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
934
935 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
936 )))
937
938
939 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
940
941
942 (% class="box infomessage" %)
943 (((
944 (((
945 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
946 )))
947
948 (((
949 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
950 )))
951
952 (((
953 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
954 )))
955
956 (((
957 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
958 )))
959
960 (((
961 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
962 )))
963 )))
964
965 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
966
967 Total bytes: 8 bytes
968
969 **Example:**AA0100010001003C
970
971 WMOD=01
972
973 CITEMP=0001
974
975 TEMPlow=0001
976
977 TEMPhigh=003C
978
979
980 == 2.8 LED Indicator ==
981
982
983 The LHT65 has a triple color LED which for easy showing different stage .
984
985 While user press ACT button, the LED will work as per LED status with ACT button.
986
987 In a normal working state:
988
989 * For each uplink, the BLUE LED or RED LED will blink once.
990 BLUE LED when external sensor is connected.
991 * RED LED when external sensor is not connected
992 * For each success downlink, the PURPLE LED will blink once
993
994 == 2.9 installation ==
995
996
997 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
998
999
1000 = 3. Sensors and Accessories =
1001
1002 == 3.1 E2 Extension Cable ==
1003
1004
1005 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1006
1007
1008 **1m long breakout cable for LHT65N. Features:**
1009
1010 * (((
1011 Use for AT Command, works for both LHT52/LHT65N
1012 )))
1013 * (((
1014 Update firmware for LHT65N, works for both LHT52/LHT65N
1015 )))
1016 * (((
1017 Supports ADC mode to monitor external ADC
1018 )))
1019 * (((
1020 Supports Interrupt mode
1021 )))
1022 * (((
1023 Exposed All pins from the LHT65N Type-C connector.
1024
1025
1026
1027 )))
1028
1029 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1030
1031
1032 == 3.2 E3 Temperature Probe ==
1033
1034
1035 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1036
1037
1038 Temperature sensor with 2 meters cable long
1039
1040 * Resolution: 0.0625 °C
1041 * ±0.5°C accuracy from -10°C to +85°C
1042 * ±2°C accuracy from -55°C to +125°C
1043 * Operating Range: -40 ~~ 125 °C
1044 * Working voltage 2.35v ~~ 5v
1045
1046 == 3.3 E31F Temperature Probe ==
1047
1048
1049 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1050
1051
1052 Temperature sensor with 1 meters cable long
1053
1054 **Built-in Temperature Sensor:**
1055
1056 * Resolution: 0.01 °C
1057 * Accuracy Tolerance : Typ ±0.3 °C
1058 * Long Term Drift: < 0.02 °C/yr
1059 * Operating Range: -40 ~~ 80 °C
1060
1061 **Built-in Humidity Sensor:**
1062
1063 * Resolution: 0.04 %RH
1064 * Accuracy Tolerance : Typ ±3 %RH
1065 * Long Term Drift: < 0.02 °C/yr
1066 * Operating Range: 0 ~~ 96 %RH
1067
1068 **External Temperature Sensor :**
1069
1070 * Resolution: 0.01 °C
1071 * Accuracy Tolerance : Typical ±0.3 °C
1072 * Long Term Drift: < 0.02 °C/yr
1073 * Operating Range: -40 ~~ 125 °C
1074
1075 **External Humidity Sensor :**
1076
1077 * Resolution: 0.04 %RH
1078 * Accuracy Tolerance : Typ ±3 %RH
1079 * Long Term Drift: < 0.02 °C/yr
1080 * Operating Range: 0 ~~ 96 %RH
1081
1082
1083 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1084
1085
1086 (((
1087 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1088 )))
1089
1090 * (((
1091 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1092 )))
1093
1094 * (((
1095 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1096 )))
1097
1098 (((
1099 There are two kinds of commands to configure LHT65N, they are:
1100 )))
1101
1102 * (((
1103 (% style="color:#4f81bd" %)**General Commands**.
1104 )))
1105
1106 (((
1107 These commands are to configure:
1108 )))
1109
1110 1. (((
1111 General system settings like: uplink interval.
1112 )))
1113 1. (((
1114 LoRaWAN protocol & radio-related commands.
1115 )))
1116
1117 (((
1118 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1119 )))
1120
1121 * (((
1122 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1123 )))
1124
1125 (((
1126 These commands are only valid for LHT65N, as below:
1127 )))
1128
1129
1130 == 4.1 Set Transmit Interval Time ==
1131
1132
1133 Feature: Change LoRaWAN End Node Transmit Interval.
1134
1135
1136 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1137
1138 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1139 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1140 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1141 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1142
1143 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1144
1145 Format: Command Code (0x01) followed by 3 bytes time value.
1146
1147 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1148
1149 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1150
1151 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1152
1153 == 4.2 Set External Sensor Mode ==
1154
1155
1156 Feature: Change External Sensor Mode.
1157
1158
1159 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1160
1161
1162 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1163 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1164 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1165 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1166 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1167
1168 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1169
1170 Total bytes: 2 ~~ 5 bytes
1171
1172 **Example:**
1173
1174 * 0xA201: Set external sensor type to E1
1175
1176 * 0xA209: Same as AT+EXT=9
1177
1178 * 0xA20702003c: Same as AT+SETCNT=60
1179
1180 == 4.3 Enable/Disable uplink Temperature probe ID ==
1181
1182
1183 (((
1184 Feature: If PID is enabled, device will send the temperature probe ID on:
1185 )))
1186
1187 * (((
1188 First Packet after OTAA Join
1189 )))
1190 * (((
1191 Every 24 hours since the first packet.
1192 )))
1193
1194 (((
1195 PID is default set to disable (0)
1196
1197
1198 )))
1199
1200 (% style="color:#4f81bd" %)**AT Command:**
1201
1202 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1203 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1204 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1205
1206 (% style="color:#4f81bd" %)**Downlink Command:**
1207
1208 * **0xA800**  **~-~->** AT+PID=0
1209 * **0xA801**     **~-~->** AT+PID=1
1210
1211 == 4.4 Set Password ==
1212
1213
1214 Feature: Set device password, max 9 digits
1215
1216 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1217
1218 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1219 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1220 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1221 123456
1222
1223 OK
1224 )))
1225 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1226
1227 (% style="color:#4f81bd" %)**Downlink Command:**
1228
1229 No downlink command for this feature.
1230
1231
1232 == 4.5 Quit AT Command ==
1233
1234
1235 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1236
1237 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1238
1239 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1240 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1241 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1242
1243 (% style="color:#4f81bd" %)**Downlink Command:**
1244
1245 No downlink command for this feature.
1246
1247
1248 == 4.6 Set to sleep mode ==
1249
1250
1251 Feature: Set device to sleep mode
1252
1253 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1254 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1255
1256 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1257
1258 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1259 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1260 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1261 Clear all stored sensor data…
1262
1263 OK
1264 )))
1265
1266 (% style="color:#4f81bd" %)**Downlink Command:**
1267
1268 * There is no downlink command to set to Sleep mode.
1269
1270 == 4.7 Set system time ==
1271
1272
1273 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1274
1275 (% style="color:#4f81bd" %)**AT Command:**
1276
1277 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1278 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1279 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1280 OK
1281
1282 Set System time to 2021-01-20 00:59:12
1283 )))
1284
1285 (% style="color:#4f81bd" %)**Downlink Command:**
1286
1287 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1288
1289
1290 == 4.8 Set Time Sync Mode ==
1291
1292
1293 (((
1294 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1295 )))
1296
1297 (((
1298 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1299 )))
1300
1301 (% style="color:#4f81bd" %)**AT Command:**
1302
1303 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1304 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1305 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1306
1307 (% style="color:#4f81bd" %)**Downlink Command:**
1308
1309 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1310 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1311
1312
1313 == 4.9 Set Time Sync Interval ==
1314
1315
1316 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1317
1318 (% style="color:#4f81bd" %)**AT Command:**
1319
1320 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1321 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1322 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1323
1324 (% style="color:#4f81bd" %)**Downlink Command:**
1325
1326 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1327
1328
1329 == 4.10 Print data entries base on page. ==
1330
1331
1332 Feature: Print the sector data from start page to stop page (max is 416 pages).
1333
1334 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1335
1336 [[image:image-20230426164330-2.png]]
1337
1338
1339 (% style="color:#4f81bd" %)**Downlink Command:**
1340
1341 No downlink commands for feature
1342
1343
1344 == 4.11 Print last few data entries. ==
1345
1346
1347 Feature: Print the last few data entries
1348
1349 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1350
1351 [[image:image-20230426164932-3.png]]
1352
1353
1354 (% style="color:#4f81bd" %)**Downlink Command:**
1355
1356 No downlink commands for feature
1357
1358
1359 == 4.12 Clear Flash Record ==
1360
1361
1362 Feature: Clear flash storage for data log feature.
1363
1364
1365 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1366
1367
1368 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1369 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1370 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1371 Clear all stored sensor data…
1372
1373 OK
1374 )))
1375
1376 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1377
1378 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1379
1380 == 4.13 Auto Send None-ACK messages ==
1381
1382
1383 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1384
1385 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1386
1387 The default factory setting is 0
1388
1389 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1390 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1391 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1392
1393 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1394
1395 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1396
1397 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1398
1399
1400 Feature: Set internal and external temperature sensor alarms.
1401
1402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1403 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1404 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1405
1406 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1407
1408 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1409
1410 0): Cancel
1411
1412 1): Threshold alarm
1413
1414 2): Fluctuation alarm
1415
1416
1417 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1418
1419 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1420
1421
1422 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1423
1424 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1425
1426 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1427
1428
1429 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1430
1431 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1432
1433 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1434
1435
1436 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1437
1438 0xA5 00 ~-~- AT+WMOD=0.
1439
1440 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1441
1442 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1443
1444 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1445
1446 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1447
1448
1449 = 5. Battery & How to replace =
1450
1451 == 5.1 Battery Type ==
1452
1453
1454 (((
1455 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1456 )))
1457
1458 (((
1459 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1460
1461
1462 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1463 )))
1464
1465 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1466
1467
1468 == 5.2 Replace Battery ==
1469
1470
1471 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1472
1473 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1474
1475
1476 == 5.3 Battery Life Analyze ==
1477
1478
1479 (((
1480 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1481 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1482 )))
1483
1484
1485 (((
1486 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1487 )))
1488
1489
1490 = 6. FAQ =
1491
1492 == 6.1 How to use AT Command? ==
1493
1494
1495 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1496
1497 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1498
1499
1500 **Connection:**
1501
1502 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1503 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1504 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1505
1506 (((
1507 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1508 )))
1509
1510
1511 Input password and ATZ to activate LHT65N,As shown below:
1512
1513 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1514
1515
1516 AT Command List is as below:
1517
1518 AT+<CMD>? :  Help on <CMD>
1519
1520 AT+<CMD> :  Run <CMD>
1521
1522 AT+<CMD>=<value> :  Set the value
1523
1524 AT+<CMD>=? :  Get the value
1525
1526 AT+DEBUG:  Set more info output
1527
1528 ATZ:  Trig a reset of the MCU
1529
1530 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1531
1532 AT+DEUI:  Get or Set the Device EUI
1533
1534 AT+DADDR:  Get or Set the Device Address
1535
1536 AT+APPKEY:  Get or Set the Application Key
1537
1538 AT+NWKSKEY:  Get or Set the Network Session Key
1539
1540 AT+APPSKEY:  Get or Set the Application Session Key
1541
1542 AT+APPEUI:  Get or Set the Application EUI
1543
1544 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1545
1546 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1547
1548 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1549
1550 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1551
1552 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1553
1554 AT+RX2FQ:  Get or Set the Rx2 window frequency
1555
1556 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1557
1558 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1559
1560 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1561
1562 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1563
1564 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1565
1566 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1567
1568 AT+NWKID:  Get or Set the Network ID
1569
1570 AT+FCU:  Get or Set the Frame Counter Uplink
1571
1572 AT+FCD:  Get or Set the Frame Counter Downlink
1573
1574 AT+CLASS:  Get or Set the Device Class
1575
1576 AT+JOIN:  Join network
1577
1578 AT+NJS:  Get the join status
1579
1580 AT+SENDB:  Send hexadecimal data along with the application port
1581
1582 AT+SEND:  Send text data along with the application port
1583
1584 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1585
1586 AT+RECV:  Print last received data in raw format
1587
1588 AT+VER:  Get current image version and Frequency Band
1589
1590 AT+CFM:  Get or Set the confirmation mode (0-1)
1591
1592 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1593
1594 AT+SNR:  Get the SNR of the last received packet
1595
1596 AT+RSSI:  Get the RSSI of the last received packet
1597
1598 AT+TDC:  Get or set the application data transmission interval in ms
1599
1600 AT+PORT:  Get or set the application port
1601
1602 AT+DISAT:  Disable AT commands
1603
1604 AT+PWORD: Set password, max 9 digits
1605
1606 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1607
1608 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1609
1610 AT+PDTA:  Print the sector data from start page to stop page
1611
1612 AT+PLDTA:  Print the last few sets of data
1613
1614 AT+CLRDTA:  Clear the storage, record position back to 1st
1615
1616 AT+SLEEP:  Set sleep mode
1617
1618 AT+EXT:  Get or Set external sensor model
1619
1620 AT+BAT:  Get the current battery voltage in mV
1621
1622 AT+CFG:  Print all configurations
1623
1624 AT+WMOD:  Get or Set Work Mode
1625
1626 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1627
1628 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1629
1630 AT+SETCNT:  Set the count at present
1631
1632 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1633
1634 AT+RPL:  Get or set response level
1635
1636 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1637
1638 AT+LEAPSEC:  Get or Set Leap Second
1639
1640 AT+SYNCMOD:  Get or Set time synchronization method
1641
1642 AT+SYNCTDC:  Get or set time synchronization interval in day
1643
1644 AT+PID:  Get or set the PID
1645
1646
1647 == 6.2 Where to use AT commands and Downlink commands ==
1648
1649
1650 **AT commands:**
1651
1652 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1653
1654
1655 **Downlink commands:**
1656
1657
1658 (% style="color:blue" %)**TTN:**
1659
1660 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1661
1662
1663
1664 (% style="color:blue" %)**Helium:**
1665
1666 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1667
1668
1669
1670 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1671
1672
1673 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1674
1675
1676 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1677
1678
1679
1680 (% style="color:blue" %)**Aws:**
1681
1682 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1683
1684
1685 == 6.3 How to change the uplink interval? ==
1686
1687
1688 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1689
1690
1691 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1692
1693
1694 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1695
1696 [[image:1655802313617-381.png||_mstalt="293917"]]
1697
1698
1699 (((
1700 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1701 )))
1702
1703
1704 Input password and ATZ to activate LHT65N,As shown below:
1705
1706 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1707
1708
1709 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1710
1711
1712 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1713
1714
1715 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1716
1717 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1718
1719
1720
1721 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1722
1723 First connect the four lines;(% style="display:none" %)
1724
1725 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1726
1727
1728 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1729
1730 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1731
1732
1733
1734 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1735
1736 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1737
1738
1739 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1740
1741
1742 When this interface appears, it indicates that the download has been completed.
1743
1744 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1745
1746
1747 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1748
1749
1750 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1751
1752
1753 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1754
1755
1756 **UART Port of LHT65N:**
1757
1758 * (% class="mark" %)**PB0: RXD**
1759 * (% class="mark" %)**PB1: TXD**
1760 * (% class="mark" %)**GND**
1761
1762 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1763
1764
1765 (((
1766 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1767 )))
1768
1769
1770 Input password and ATZ to activate LHT65N,As shown below:
1771
1772 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1773
1774
1775 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1776
1777
1778 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1779
1780
1781 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1782
1783 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1784
1785
1786
1787 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1788
1789 First connect the four lines;
1790
1791 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1792
1793 Connect A8 and GND with Dupont wire for a while and then separate,enter reset mode
1794
1795
1796
1797 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1798
1799 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1800
1801
1802 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1803
1804
1805 When this interface appears, it indicates that the download has been completed.
1806
1807 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1808
1809
1810 Finally,Disconnect 3.3v,Connect A8 and GND with Dupont wire for a while and then separate,exit reset mode
1811
1812
1813 == 6.8 Why can't I see the datalog information ==
1814
1815
1816 ~1. The time is not aligned, and the correct query command is not used.
1817
1818 2. Decoder error, did not parse the datalog data, the data was filtered.
1819
1820
1821 = 7. Order Info =
1822
1823
1824 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1825
1826 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1827
1828 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1829 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1830 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1831 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1832 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1833 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1834 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1835 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1836
1837 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1838
1839 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1840
1841 = 8. Packing Info =
1842
1843
1844 **Package Includes**:
1845
1846 * LHT65N Temperature & Humidity Sensor x 1
1847 * Optional external sensor
1848
1849 **Dimension and weight**:
1850
1851 * Device Size:  10 x 10 x 3.5 mm
1852 * Device Weight: 120.5g
1853
1854 = 9. Reference material =
1855
1856
1857 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1858
1859 = 10. FCC Warning =
1860
1861
1862 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1863
1864 (1) This device may not cause harmful interference;
1865
1866 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0