Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46 == 1.2 Features ==
47
48
49 * LoRaWAN v1.0.3 Class A protocol
50 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
51 * AT Commands to change parameters
52 * Remote configure parameters via LoRaWAN Downlink
53 * Firmware upgradeable via program port
54 * Built-in 2400mAh battery for up to 10 years of use.
55 * Built-in Temperature & Humidity sensor
56 * Optional External Sensors
57 * Tri-color LED to indicate working status
58 * Datalog feature (Max 3328 records)
59
60 == 1.3 Specification ==
61
62
63 (% style="color:#037691" %)**Built-in Temperature Sensor:**
64
65 * Resolution: 0.01 °C
66 * Accuracy Tolerance : Typ ±0.3 °C
67 * Long Term Drift: < 0.02 °C/yr
68 * Operating Range: -40 ~~ 85 °C
69
70 (% style="color:#037691" %)**Built-in Humidity Sensor:**
71
72 * Resolution: 0.04 %RH
73 * Accuracy Tolerance : Typ ±3 %RH
74 * Long Term Drift: < 0.02 °C/yr
75 * Operating Range: 0 ~~ 96 %RH
76
77 (% style="color:#037691" %)**External Temperature Sensor:**
78
79 * Resolution: 0.0625 °C
80 * ±0.5°C accuracy from -10°C to +85°C
81 * ±2°C accuracy from -55°C to +125°C
82 * Operating Range: -55 °C ~~ 125 °C
83
84 = 2. Connect LHT65N to IoT Server =
85
86 == 2.1 How does LHT65N work? ==
87
88
89 (((
90 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
91 )))
92
93 (((
94 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
95 )))
96
97
98 == 2.2 How to Activate LHT65N? ==
99
100
101 (((
102 The LHT65N has two working modes:
103 )))
104
105 * (((
106 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
107 )))
108 * (((
109 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
110 )))
111
112 (((
113 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
114 )))
115
116
117 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
118
119 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
120 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
122 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
123 )))
124 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
125 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
126 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
127 )))
128 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
129
130 == 2.3 Example to join LoRaWAN network ==
131
132
133 (% class="wikigeneratedid" %)
134 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
135
136
137 (% class="wikigeneratedid" %)
138 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
139
140
141 (((
142 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
143 )))
144
145
146 === 2.3.1 Step 1: Create Device n TTN ===
147
148
149 (((
150 Create a device in TTN V3 with the OTAA keys from LHT65N.
151 )))
152
153 (((
154 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
155 )))
156
157 [[image:image-20230426083319-1.png]]
158
159 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
160
161 Add APP EUI in the application.
162
163
164 [[image:image-20220522232916-3.png||_mstalt="430495"]]
165
166
167 [[image:image-20220522232932-4.png||_mstalt="430157"]]
168
169
170 [[image:image-20220522232954-5.png||_mstalt="431847"]]
171
172
173
174 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
175
176
177 [[image:image-20220522233026-6.png||_mstalt="429403"]]
178
179
180 Input APP EUI,  APP KEY and DEV EUI:
181
182
183 [[image:image-20220522233118-7.png||_mstalt="430430"]]
184
185
186 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
187
188
189 (((
190 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
191 )))
192
193 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
194
195
196 == 2.4 Uplink Payload   ( Fport~=2) ==
197
198
199 (((
200 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
201 )))
202
203 (((
204 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
205 )))
206
207 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
208 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
209 **Size(bytes)**
210 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
213 **2**
214 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
215 **2**
216 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
217 **1**
218 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
219 **4**
220 )))
221 |(% style="width:97px" %)(((
222 **Value**
223 )))|(% style="width:39px" %)(((
224 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
225 )))|(% style="width:100px" %)(((
226 (((
227 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
228 )))
229 )))|(% style="width:77px" %)(((
230 (((
231 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
232 )))
233 )))|(% style="width:47px" %)(((
234 [[Ext>>||anchor="H2.4.5Ext23"]] #
235 )))|(% style="width:51px" %)(((
236 [[Ext value>>||anchor="H2.4.6Extvalue"]]
237 )))
238
239 * The First 6 bytes: has fix meanings for every LHT65N.
240
241 * The 7th byte (EXT #): defines the external sensor model.
242
243 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
244
245 === 2.4.1 Decoder in TTN V3 ===
246
247
248 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
249
250 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
251
252
253 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
254
255
256 === 2.4.2 BAT-Battery Info ===
257
258
259 These two bytes of BAT include the battery state and the actually voltage.
260
261 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
262 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
263 **Bit(bit)**
264 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
265 |(% style="width:66px" %)(((
266 **Value**
267 )))|(% style="width:250px" %)(((
268 BAT Status
269 00(b): Ultra Low ( BAT <= 2.50v)
270 01(b): Low (2.50v <=BAT <= 2.55v)
271 10(b): OK (2.55v <= BAT <=2.65v)
272 11(b): Good (BAT >= 2.65v)
273 )))|(% style="width:152px" %)Actually BAT voltage
274
275 **(b)stands for binary**
276
277
278 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
279
280
281 Check the battery voltage for LHT65N.
282
283 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
284
285 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
286
287 === 2.4.3 Built-in Temperature ===
288
289
290 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
291
292 * Temperature:  0x0ABB/100=27.47℃
293
294 [[image:image-20220522235639-3.png||_mstalt="432120"]]
295
296 * Temperature:  (0xF5C6-65536)/100=-26.18℃
297
298 === 2.4.4 Built-in Humidity ===
299
300
301 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
302
303 * Humidity:    0x025C/10=60.4%
304
305 === 2.4.5 Ext # ===
306
307
308 Bytes for External Sensor:
309
310 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
311 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Value**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)**External Sensor Type**
312 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
313 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
314
315 === 2.4.6 Ext value ===
316
317 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
318
319
320 [[image:image-20220522235639-5.png||_mstalt="432848"]]
321
322
323 * DS18B20 temp=0x0ADD/100=27.81℃
324
325 The last 2 bytes of data are meaningless
326
327
328
329 [[image:image-20220522235639-6.png||_mstalt="433212"]]
330
331
332 * External temperature= (0xF54F-65536)/100=-27.37℃
333
334 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
335
336 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
337
338 The last 2 bytes of data are meaningless
339
340 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
341
342
343
344 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
345
346
347 (((
348 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
349 )))
350
351
352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
353 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
354 **Size(bytes)**
355 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
356 **2**
357 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
358 **2**
359 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
360 **2**
361 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
362 **1**
363 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
364 **4**
365 )))
366 |(% style="width:110px" %)(((
367 **Value**
368 )))|(% style="width:71px" %)(((
369 [[External temperature>>||anchor="H4.2SetExternalSensorMode"]]
370 )))|(% style="width:99px" %)(((
371 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
372 )))|(% style="width:132px" %)(((
373 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
374 )))|(% style="width:54px" %)(((
375 Status & Ext
376 )))|(% style="width:64px" %)(((
377 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
378 )))
379
380 * **Battery status & Built-in Humidity**
381
382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
383 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
384 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
385 BAT Status
386 00(b): Ultra Low ( BAT <= 2.50v)
387 01(b): Low  (2.50v <=BAT <= 2.55v)
388 10(b): OK   (2.55v <= BAT <=2.65v)
389 11(b): Good   (BAT >= 2.65v)
390 )))|(% style="width:132px" %)(((
391 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
392 )))
393
394 * **Status & Ext Byte**
395
396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
397 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
398 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
399
400 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
401 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
402 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
403
404 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
405
406
407 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
408
409 be used to power the external ADC sensor; user can control the power on time for this
410
411 (% style="color:blue" %)**sensor by setting:**
412
413 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
414
415 **For example:**
416
417 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
418
419
420 Or use **downlink command A2** to set the same.
421
422 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
423
424 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
425
426 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
427
428
429 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
430
431 [[image:image-20220628150714-4.png||_mstalt="431054"]]
432
433
434 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
435
436
437 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
438
439 [[image:image-20220628151005-5.png||_mstalt="429546"]]
440
441
442 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
443
444 [[image:image-20220628151056-6.png||_mstalt="431873"]]
445
446
447 3) Within range
448
449 [[image:image-20220628151143-7.png||_mstalt="431210"]]
450
451
452
453 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (Since Firmware v1.3) ====
454
455
456 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
457
458
459 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
460
461 [[image:image-20220906102307-7.png||_mstalt="430443"]]
462
463
464 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
465
466 The external cable NE2 can be use for MOD4 and MOD8
467
468
469
470 ==== 2.4.6.5 Ext~=4 Interrupt Mode (Since Firmware v1.3) ====
471
472
473 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
474
475
476 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
477
478 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
479
480 In Open State, the power consumption is the same as if there is no probe
481
482 In Close state, the power consumption will be 3uA higher than normal.
483
484 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
485
486
487 Ext=4,Interrupt Sensor:
488
489 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
490 |(% style="width:101px" %)(((
491 **AT+EXT=4,1**
492 )))|(% style="width:395px" %)(((
493 **Sent uplink packet in both rising and falling interrupt**
494 )))
495 |(% style="width:101px" %)(((
496 **AT+EXT=4,2**
497 )))|(% style="width:395px" %)(((
498 **Sent uplink packet only in falling interrupt**
499 )))
500 |(% style="width:101px" %)(((
501 **AT+EXT=4,3**
502 )))|(% style="width:395px" %)(((
503 **Sent uplink packet only in rising interrupt**
504 )))
505
506 Trigger by falling edge:
507
508 [[image:image-20220906101145-2.png||_mstalt="428324"]]
509
510
511 Trigger by raising edge:
512
513 [[image:image-20220906101145-3.png||_mstalt="428688"]]
514
515
516
517 ==== 2.4.6.6 Ext~=8 Counting Mode(Since Firmware v1.3) ====
518
519
520 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
521
522
523 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
524
525 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
526
527
528 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
529
530 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
531
532
533 Ext=8, Counting Sensor ( 4 bytes):
534
535 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
536 |(% style="width:131px" %)(((
537 **AT+EXT=8,0**
538 )))|(% style="width:195px" %)(((
539 **Count at falling interrupt**
540 )))
541 |(% style="width:131px" %)(((
542 **AT+EXT=8,1**
543 )))|(% style="width:195px" %)(((
544 **Count at rising interrupt**
545 )))
546 |(% style="width:131px" %)(((
547 **AT+SETCNT=60**
548 )))|(% style="width:195px" %)(((
549 **Sent current count to 60**
550 )))
551
552 [[image:image-20220906101320-6.png||_mstalt="428064"]]
553
554
555 (% style="color:blue" %)**A2 downlink Command:**
556
557 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
558
559 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
560
561 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
562
563 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
564
565 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
566
567
568 == 2.5 Show data on Datacake ==
569
570
571 (((
572 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
573 )))
574
575
576 (((
577 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
578 )))
579
580 (((
581 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
582 )))
583
584
585 (((
586 Add Datacake:
587 )))
588
589
590 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
591
592
593
594 Select default key as Access Key:
595
596
597 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
598
599
600 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
601
602
603 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
604
605
606 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
607
608
609 == 2.6 Datalog Feature ==
610
611
612 (((
613 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
614 )))
615
616
617 === 2.6.1 Ways to get datalog via LoRaWAN ===
618
619
620 There are two methods:
621
622 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
623
624
625 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
626
627
628 (% style="color:red" %)**Note for method 2:**
629
630 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
631 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
632
633 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
634
635
636 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
637
638
639 === 2.6.2 Unix TimeStamp ===
640
641
642 LHT65N uses Unix TimeStamp format based on
643
644
645 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
646
647
648
649 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
650
651 Below is the converter example
652
653 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
654
655
656 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
657
658
659 === 2.6.3 Set Device Time ===
660
661
662 (((
663 (% style="color:blue" %)**There are two ways to set device's time:**
664 )))
665
666 (((
667 **1.  Through LoRaWAN MAC Command (Default settings)**
668 )))
669
670 (((
671 User need to set SYNCMOD=1 to enable sync time via MAC command.
672 )))
673
674 (((
675 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
676 )))
677
678 (((
679 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
680 )))
681
682
683 (((
684 **2. Manually Set Time**
685 )))
686
687 (((
688 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
689 )))
690
691
692 === 2.6.4 Poll sensor value ===
693
694
695 User can poll sensor value based on timestamps from the server. Below is the downlink command.
696
697 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
698 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
699 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
700
701
702 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
703
704 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
705
706 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
707
708 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
709
710
711 === 2.6.5 Datalog Uplink payload ===
712
713
714 The Datalog poll reply uplink will use below payload format.
715
716 **Retrieval data payload:**
717
718 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
719 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
720 **Size(bytes)**
721 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
722 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
723
724 **Poll message flag & Ext:**
725
726 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
727
728 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
729
730 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
731
732 * Poll Message Flag is set to 1.
733
734 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
735
736 For example, in US915 band, the max payload for different DR is:
737
738 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
739
740 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
741
742 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
743
744 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
745
746 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
747
748
749 **Example:**
750
751 If LHT65N has below data inside Flash:
752
753 [[image:image-20220523144455-1.png||_mstalt="430040" height="335" width="735"]]
754
755
756 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
757
758 Where : Start time: 60065F97 = time 21/1/19 04:27:03
759
760 Stop time: 60066DA7= time 21/1/19 05:27:03
761
762
763 **LHT65N will uplink this payload.**
764
765 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
766
767
768 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
769
770 Where the first 11 bytes is for the first entry:
771
772 7FFF089801464160065F97
773
774 Ext sensor data=0x7FFF/100=327.67
775
776 Temp=0x088E/100=22.00
777
778 Hum=0x014B/10=32.6
779
780 poll message flag & Ext=0x41,means reply data,Ext=1
781
782 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
783
784
785 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
786
787
788 (((
789 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
790 )))
791
792 (((
793 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
794
795
796 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
797
798
799 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
800
801 (((
802 (% class="box infomessage" %)
803 (((
804 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
805
806 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
807
808 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
809
810 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
811
812 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
813
814 **AT+LEDALARM=1** :       Enable LED visual Alarm.
815 )))
816 )))
817
818 (% style="color:#4f81bd" %)**Downlink Command:**
819
820 AT+WMOD=1:  A501  ,  AT+WMOD=0 :  A600
821
822 AT+CITEMP=1 : A60001
823
824 AT+ARTEMP=1,60  :  A70001003C
825
826 AT+ARTEMP=-16,60 :  A7FFF0003C
827
828 AT+LEDALARM=1  :  3601
829
830
831 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
832
833 Total bytes: 8 bytes
834
835 **Example: **AA0100010001003C
836
837 WMOD=01
838
839 CITEMP=0001
840
841 TEMPlow=0001
842
843 TEMPhigh=003C
844
845
846 **DS18B20 and TMP117 Threshold Alarm**
847
848 **~ AT+WMOD=1,60,-10,20**
849
850 (% style="color:#4f81bd" %)**Downlink Command:**
851
852 **Example: **A5013CFC180014
853
854 MOD=01
855
856 CITEMP=3C(S)
857
858 TEMPlow=FC18
859
860 TEMPhigh=0014
861
862
863 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
864
865 **AT+WMOD=2,60,5** 
866
867 (% style="color:#4f81bd" %)**Downlink Command:**
868
869 **Example: **A5023C05
870
871 MOD=02
872
873 CITEMP=3C(S)
874
875 temperature fluctuation=05
876
877
878 **Sampling multiple times and uplink together**
879
880 **AT+WMOD=3,1,60,20,-16,32,1**   
881
882 Explain:
883
884 * (% style="color:#037691" %)**parameter1:**(%%)Set Working Mode to **Mode 3**
885 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
886 * (% style="color:#037691" %)**parameter3:**(%%)Sampling Interval is **60**s.
887 * (% style="color:#037691" %)**parameter4:**(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
888 * (% style="color:#037691" %)**parameter5 & parameter6:**(%%)Temperature alarm range is **-16** to **32**°C,
889 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
890
891 (% style="color:#4f81bd" %)**Downlink Command:**
892
893 **Example: **A50301003C14FFF0002001
894
895 MOD=03
896
897 TEMP=DS18B20
898
899 CITEMP=003C(S)
900
901 Total number of acquisitions=14
902
903 TEMPlow=FFF0
904
905 TEMPhigh=0020
906
907 ARTEMP=01
908
909 **Uplink payload( Fport=3)**
910
911 **Example: CBEA**01**0992**//0A41//**09C4**
912
913 BatV=CBEA
914
915 TEMP=DS18B20
916
917 Temp1=0992  ~/~/ 24.50℃
918
919 Temp2=0A41  ~/~/ 26.25℃
920
921 Temp3=09C4  ~/~/ 25.00℃
922
923 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
924
925 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
926 )))
927
928
929 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
930
931
932 (% class="box infomessage" %)
933 (((
934 (((
935 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
936 )))
937
938 (((
939 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
940 )))
941
942 (((
943 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
944 )))
945
946 (((
947 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
948 )))
949
950 (((
951 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
952 )))
953 )))
954
955 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
956
957 Total bytes: 8 bytes
958
959 **Example:**AA0100010001003C
960
961 WMOD=01
962
963 CITEMP=0001
964
965 TEMPlow=0001
966
967 TEMPhigh=003C
968
969
970 == 2.8 LED Indicator ==
971
972
973 The LHT65 has a triple color LED which for easy showing different stage .
974
975 While user press ACT button, the LED will work as per LED status with ACT button.
976
977 In a normal working state:
978
979 * For each uplink, the BLUE LED or RED LED will blink once.
980 BLUE LED when external sensor is connected.
981 * RED LED when external sensor is not connected
982 * For each success downlink, the PURPLE LED will blink once
983
984 == 2.9 installation ==
985
986
987 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
988
989
990 = 3. Sensors and Accessories =
991
992 == 3.1 E2 Extension Cable ==
993
994
995 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
996
997
998 **1m long breakout cable for LHT65N. Features:**
999
1000 * (((
1001 Use for AT Command, works for both LHT52/LHT65N
1002 )))
1003 * (((
1004 Update firmware for LHT65N, works for both LHT52/LHT65N
1005 )))
1006 * (((
1007 Supports ADC mode to monitor external ADC
1008 )))
1009 * (((
1010 Supports Interrupt mode
1011 )))
1012 * (((
1013 Exposed All pins from the LHT65N Type-C connector.
1014
1015
1016
1017 )))
1018
1019 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1020
1021
1022 == 3.2 E3 Temperature Probe ==
1023
1024
1025 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1026
1027
1028 Temperature sensor with 2 meters cable long
1029
1030 * Resolution: 0.0625 °C
1031 * ±0.5°C accuracy from -10°C to +85°C
1032 * ±2°C accuracy from -55°C to +125°C
1033 * Operating Range: -40 ~~ 125 °C
1034 * Working voltage 2.35v ~~ 5v
1035
1036 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1037
1038
1039 (((
1040 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1041 )))
1042
1043 * (((
1044 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1045 )))
1046
1047 * (((
1048 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1049 )))
1050
1051 (((
1052 There are two kinds of commands to configure LHT65N, they are:
1053 )))
1054
1055 * (((
1056 (% style="color:#4f81bd" %)**General Commands**.
1057 )))
1058
1059 (((
1060 These commands are to configure:
1061 )))
1062
1063 1. (((
1064 General system settings like: uplink interval.
1065 )))
1066 1. (((
1067 LoRaWAN protocol & radio-related commands.
1068 )))
1069
1070 (((
1071 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1072 )))
1073
1074 * (((
1075 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1076 )))
1077
1078 (((
1079 These commands are only valid for LHT65N, as below:
1080 )))
1081
1082
1083 == 4.1 Set Transmit Interval Time ==
1084
1085
1086 Feature: Change LoRaWAN End Node Transmit Interval.
1087
1088
1089 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1090
1091 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1092 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1093 |(% style="width:155px" %)AT+TDC?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1094 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1095
1096
1097
1098 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1099
1100 Format: Command Code (0x01) followed by 3 bytes time value.
1101
1102 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1103
1104 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1105
1106 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1107
1108 == 4.2 Set External Sensor Mode ==
1109
1110
1111 Feature: Change External Sensor Mode.
1112
1113
1114 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1115
1116
1117 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1118 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:151px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Response**
1119 |(% style="width:155px" %)AT+EXT?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1120 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1121 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1122
1123
1124
1125 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1126
1127 Total bytes: 2 ~~ 5 bytes
1128
1129 **Example:**
1130
1131 * 0xA201: Set external sensor type to E1
1132
1133 * 0xA209: Same as AT+EXT=9
1134
1135 * 0xA20702003c: Same as AT+SETCNT=60
1136
1137 == 4.3 Enable/Disable uplink Temperature probe ID ==
1138
1139
1140 (((
1141 Feature: If PID is enabled, device will send the temperature probe ID on:
1142 )))
1143
1144 * (((
1145 First Packet after OTAA Join
1146 )))
1147 * (((
1148 Every 24 hours since the first packet.
1149 )))
1150
1151 (((
1152 PID is default set to disable (0)
1153
1154
1155 )))
1156
1157 (% style="color:#4f81bd" %)**AT Command:**
1158
1159
1160 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1161 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:136px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1162 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1163
1164
1165
1166 (% style="color:#4f81bd" %)**Downlink Command:**
1167
1168 * **0xA800**  **~-~->** AT+PID=0
1169 * **0xA801**     **~-~->** AT+PID=1
1170
1171 == 4.4 Set Password ==
1172
1173
1174 Feature: Set device password, max 9 digits
1175
1176
1177 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1178
1179 [[image:image-20220523151052-5.png||_mstalt="428623"]]
1180
1181
1182 (% style="color:#4f81bd" %)**Downlink Command:**
1183
1184 No downlink command for this feature.
1185
1186
1187 == 4.5 Quit AT Command ==
1188
1189
1190 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1191
1192
1193 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1194
1195 [[image:image-20220523151132-6.png||_mstalt="428649"]]
1196
1197
1198 (% style="color:#4f81bd" %)**Downlink Command:**
1199
1200 No downlink command for this feature.
1201
1202
1203 == 4.6 Set to sleep mode ==
1204
1205
1206 Feature: Set device to sleep mode
1207
1208 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1209 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1210
1211 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1212
1213 [[image:image-20220523151218-7.png||_mstalt="430703"]]
1214
1215
1216 (% style="color:#4f81bd" %)**Downlink Command:**
1217
1218 * There is no downlink command to set to Sleep mode.
1219
1220 == 4.7 Set system time ==
1221
1222
1223 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1224
1225
1226 (% style="color:#4f81bd" %)**AT Command:**
1227
1228 [[image:image-20220523151253-8.png||_mstalt="430677"]]
1229
1230
1231 (% style="color:#4f81bd" %)**Downlink Command:**
1232
1233 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1234
1235
1236 == 4.8 Set Time Sync Mode ==
1237
1238
1239 (((
1240 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1241 )))
1242
1243 (((
1244 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1245
1246
1247 )))
1248
1249 (% style="color:#4f81bd" %)**AT Command:**
1250
1251 [[image:image-20220523151336-9.png||_mstalt="431717"]]
1252
1253
1254 (% style="color:#4f81bd" %)**Downlink Command:**
1255
1256 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1257 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1258
1259
1260 == 4.9 Set Time Sync Interval ==
1261
1262
1263 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1264
1265
1266 (% style="color:#4f81bd" %)**AT Command:**
1267
1268 [[image:image-20220523151411-10.png||_mstalt="449696"]]
1269
1270
1271 (% style="color:#4f81bd" %)**Downlink Command:**
1272
1273 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1274
1275
1276 == 4.10 Print data entries base on page. ==
1277
1278
1279 Feature: Print the sector data from start page to stop page (max is 416 pages).
1280
1281
1282 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1283
1284 [[image:image-20220523151450-11.png||_mstalt="451035"]]
1285
1286
1287 (% style="color:#4f81bd" %)**Downlink Command:**
1288
1289 No downlink commands for feature
1290
1291
1292 == 4.11 Print last few data entries. ==
1293
1294
1295 Feature: Print the last few data entries
1296
1297
1298 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1299
1300 [[image:image-20220523151524-12.png||_mstalt="452101"]]
1301
1302
1303 (% style="color:#4f81bd" %)**Downlink Command:**
1304
1305 No downlink commands for feature
1306
1307
1308 == 4.12 Clear Flash Record ==
1309
1310
1311 Feature: Clear flash storage for data log feature.
1312
1313
1314 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1315
1316 [[image:image-20220523151556-13.png||_mstalt="454129"]]
1317
1318
1319 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1320
1321 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1322
1323 == 4.13 Auto Send None-ACK messages ==
1324
1325
1326 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1327
1328
1329 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1330
1331 The default factory setting is 0
1332
1333 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:367px" %)
1334 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 118px;" %)**Function**|=(% style="width: 87px;" %)**Response**
1335 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1336
1337 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1338
1339 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1340
1341 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1342
1343
1344 Feature: Set internal and external temperature sensor alarms.
1345
1346 (% border="1" cellspacing="4" style="background-color:#ffffcc; color:green; width:500px" %)
1347 |=(% style="width: 250px;" %)**Command Example**|=(% style="width: 200px;" %)**Function**|=(% style="width: 50px;" %)**Response**
1348 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1349
1350 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1351
1352 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1353
1354 0): Cancel
1355
1356 1): Threshold alarm
1357
1358 2): Fluctuation alarm
1359
1360
1361 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1362
1363 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1364
1365
1366 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1367
1368 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1369
1370 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1371
1372
1373 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1374
1375 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1376
1377 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1378
1379
1380 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1381
1382 0xA5 00 ~-~- AT+WMOD=0.
1383
1384 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1385
1386 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1387
1388 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1389
1390 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1391
1392
1393 = 5. Battery & How to replace =
1394
1395 == 5.1 Battery Type ==
1396
1397
1398 (((
1399 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1400 )))
1401
1402 (((
1403 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1404
1405
1406 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1407 )))
1408
1409 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1410
1411
1412 == 5.2 Replace Battery ==
1413
1414
1415 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1416
1417 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1418
1419
1420 == 5.3 Battery Life Analyze ==
1421
1422
1423 (((
1424 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1425 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1426 )))
1427
1428
1429 (((
1430 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1431 )))
1432
1433
1434 = 6. FAQ =
1435
1436 == 6.1 How to use AT Command? ==
1437
1438
1439 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1440
1441 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1442
1443
1444 **Connection:**
1445
1446 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1447 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1448 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1449
1450 (((
1451 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1452 )))
1453
1454
1455 Input password and ATZ to activate LHT65N,As shown below:
1456
1457 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1458
1459
1460 AT Command List is as below:
1461
1462 AT+<CMD>? :  Help on <CMD>
1463
1464 AT+<CMD> :  Run <CMD>
1465
1466 AT+<CMD>=<value> :  Set the value
1467
1468 AT+<CMD>=? :  Get the value
1469
1470 AT+DEBUG:  Set more info output
1471
1472 ATZ:  Trig a reset of the MCU
1473
1474 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1475
1476 AT+DEUI:  Get or Set the Device EUI
1477
1478 AT+DADDR:  Get or Set the Device Address
1479
1480 AT+APPKEY:  Get or Set the Application Key
1481
1482 AT+NWKSKEY:  Get or Set the Network Session Key
1483
1484 AT+APPSKEY:  Get or Set the Application Session Key
1485
1486 AT+APPEUI:  Get or Set the Application EUI
1487
1488 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1489
1490 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1491
1492 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1493
1494 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1495
1496 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1497
1498 AT+RX2FQ:  Get or Set the Rx2 window frequency
1499
1500 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1501
1502 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1503
1504 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1505
1506 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1507
1508 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1509
1510 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1511
1512 AT+NWKID:  Get or Set the Network ID
1513
1514 AT+FCU:  Get or Set the Frame Counter Uplink
1515
1516 AT+FCD:  Get or Set the Frame Counter Downlink
1517
1518 AT+CLASS:  Get or Set the Device Class
1519
1520 AT+JOIN:  Join network
1521
1522 AT+NJS:  Get the join status
1523
1524 AT+SENDB:  Send hexadecimal data along with the application port
1525
1526 AT+SEND:  Send text data along with the application port
1527
1528 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1529
1530 AT+RECV:  Print last received data in raw format
1531
1532 AT+VER:  Get current image version and Frequency Band
1533
1534 AT+CFM:  Get or Set the confirmation mode (0-1)
1535
1536 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1537
1538 AT+SNR:  Get the SNR of the last received packet
1539
1540 AT+RSSI:  Get the RSSI of the last received packet
1541
1542 AT+TDC:  Get or set the application data transmission interval in ms
1543
1544 AT+PORT:  Get or set the application port
1545
1546 AT+DISAT:  Disable AT commands
1547
1548 AT+PWORD: Set password, max 9 digits
1549
1550 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1551
1552 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1553
1554 AT+PDTA:  Print the sector data from start page to stop page
1555
1556 AT+PLDTA:  Print the last few sets of data
1557
1558 AT+CLRDTA:  Clear the storage, record position back to 1st
1559
1560 AT+SLEEP:  Set sleep mode
1561
1562 AT+EXT:  Get or Set external sensor model
1563
1564 AT+BAT:  Get the current battery voltage in mV
1565
1566 AT+CFG:  Print all configurations
1567
1568 AT+WMOD:  Get or Set Work Mode
1569
1570 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1571
1572 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1573
1574 AT+SETCNT:  Set the count at present
1575
1576 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1577
1578 AT+RPL:  Get or set response level
1579
1580 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1581
1582 AT+LEAPSEC:  Get or Set Leap Second
1583
1584 AT+SYNCMOD:  Get or Set time synchronization method
1585
1586 AT+SYNCTDC:  Get or set time synchronization interval in day
1587
1588 AT+PID:  Get or set the PID
1589
1590
1591 == 6.2 Where to use AT commands and Downlink commands ==
1592
1593
1594 **AT commands:**
1595
1596 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1597
1598
1599 **Downlink commands:**
1600
1601
1602 (% style="color:blue" %)**TTN:**
1603
1604 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1605
1606
1607
1608 (% style="color:blue" %)**Helium:**
1609
1610 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1611
1612
1613
1614 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1615
1616
1617 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1618
1619
1620 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1621
1622
1623
1624 (% style="color:blue" %)**Aws:**
1625
1626 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1627
1628
1629 == 6.3 How to change the uplink interval? ==
1630
1631
1632 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1633
1634
1635 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1636
1637
1638 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1639
1640 [[image:1655802313617-381.png||_mstalt="293917"]]
1641
1642
1643 (((
1644 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1645 )))
1646
1647
1648 Input password and ATZ to activate LHT65N,As shown below:
1649
1650 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1651
1652
1653 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1654
1655
1656 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1657
1658
1659 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1660
1661 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1662
1663
1664
1665 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1666
1667 First connect the four lines;(% style="display:none" %)
1668
1669 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1670
1671
1672 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1673
1674 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1675
1676
1677
1678 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1679
1680 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1681
1682
1683 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1684
1685
1686 When this interface appears, it indicates that the download has been completed.
1687
1688 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1689
1690
1691 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1692
1693
1694 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1695
1696
1697 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1698
1699
1700 **UART Port of LHT65N:**
1701
1702 * (% class="mark" %)**PB0: RXD**
1703 * (% class="mark" %)**PB1: TXD**
1704 * (% class="mark" %)**GND**
1705
1706 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1707
1708
1709 (((
1710 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1711 )))
1712
1713
1714 Input password and ATZ to activate LHT65N,As shown below:
1715
1716 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1717
1718
1719 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1720
1721
1722 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1723
1724
1725 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1726
1727 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1728
1729
1730
1731 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1732
1733 First connect the four lines;
1734
1735 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1736
1737 Connect A8 and GND with Dupont wire for a while and then separate,enter reset mode
1738
1739
1740
1741 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1742
1743 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1744
1745
1746 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1747
1748
1749 When this interface appears, it indicates that the download has been completed.
1750
1751 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1752
1753
1754 Finally,Disconnect 3.3v,Connect A8 and GND with Dupont wire for a while and then separate,exit reset mode
1755
1756
1757 == 6.8 Why can't I see the datalog information ==
1758
1759
1760 ~1. The time is not aligned, and the correct query command is not used.
1761
1762 2. Decoder error, did not parse the datalog data, the data was filtered.
1763
1764
1765 = 7. Order Info =
1766
1767
1768 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1769
1770 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1771
1772 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1773 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1774 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1775 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1776 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1777 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1778 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1779 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1780
1781 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1782
1783 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1784
1785 = 8. Packing Info =
1786
1787
1788 **Package Includes**:
1789
1790 * LHT65N Temperature & Humidity Sensor x 1
1791 * Optional external sensor
1792
1793 **Dimension and weight**:
1794
1795 * Device Size:  10 x 10 x 3.5 mm
1796 * Device Weight: 120.5g
1797
1798 = 9. Reference material =
1799
1800
1801 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1802
1803 = 10. FCC Warning =
1804
1805
1806 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1807
1808 (1) This device may not cause harmful interference;
1809
1810 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0