Last modified by Xiaoling on 2025/08/07 17:47

Show last authors
1 [[image:image-20250418112554-1.png||data-xwiki-image-style-alignment="center" height="428" width="342"]]
2
3 (% style="display:none" %) (%%)
4
5
6
7 (% style="display:none" %) (%%)
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
23
24
25 (((
26 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
27 )))
28
29 (((
30 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
31 )))
32
33 (((
34 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
35 )))
36
37 (((
38 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
39 )))
40
41 (((
42 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
43 )))
44
45 (((
46 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
47 )))
48
49
50 == 1.2 Features ==
51
52
53 * LoRaWAN v1.0.3 Class A protocol
54 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
55 * AT Commands to change parameters
56 * Remote configure parameters via LoRaWAN Downlink
57 * Firmware upgradeable via program port
58 * Built-in 2400mAh battery for up to 10 years of use.
59 * Built-in Temperature & Humidity sensor
60 * Optional External Sensors
61 * Tri-color LED to indicate working status
62 * Datalog feature (Max 3328 records)
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Built-in Temperature Sensor:**
68
69 * Resolution: 0.01 °C
70 * Accuracy Tolerance : Typ ±0.3 °C
71 * Long Term Drift: < 0.02 °C/yr
72 * Operating Range: -40 ~~ 85 °C
73
74 (% style="color:#037691" %)**Built-in Humidity Sensor:**
75
76 * Resolution: 0.04 %RH
77 * Accuracy Tolerance : Typ ±3 %RH
78 * Long Term Drift: < 0.25 RH/yr
79 * Operating Range: 0 ~~ 96 %RH
80
81 (% style="color:#037691" %)**External Temperature Sensor:**
82
83 * Resolution: 0.0625 °C
84 * ±0.5°C accuracy from -10°C to +85°C
85 * ±2°C accuracy from -55°C to +125°C
86 * Operating Range: -55 °C ~~ 125 °C
87
88 == 1.4 Model Difference ==
89
90
91 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
92
93 (% style="color:#037691" %)**For antenna design: **
94
95 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
96 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
97
98 [[image:image-20250422095731-2.png]]
99
100
101 (% style="color:#037691" %)**For enclosure dimensions:**
102
103 * **LHT65N**
104
105 [[image:image-20250422165135-1.png]]
106
107
108
109 * **LHT65S (Unit: mm)**
110
111 [[image:image-20250422165216-2.png]]
112
113
114 = 2. Connect LHT65N/S to IoT Server =
115
116 == 2.1 How does LHT65N/S work? ==
117
118
119 (((
120 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
121 )))
122
123 (((
124 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
125 )))
126
127
128 == 2.2 How to Activate LHT65N/S? ==
129
130
131 (((
132 The LHT65N/S has two working modes:
133 )))
134
135 * (((
136 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
137 )))
138 * (((
139 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
140 )))
141
142 (((
143 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
144 )))
145
146 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
147
148 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
149 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
150 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521886707-137.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
151 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
152 )))
153 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521908790-585.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
154 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
155 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
156 )))
157 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521952296-446.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
158
159 == 2.3 Example to join LoRaWAN network ==
160
161
162 (% class="wikigeneratedid" %)
163 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
164
165 (% class="wikigeneratedid" %)
166 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
167
168
169 (((
170 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
171 )))
172
173
174 === 2.3.1 Step 1: Create Device on TTN ===
175
176
177 (((
178 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
179 )))
180
181 (((
182 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
183 )))
184
185 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
186
187
188 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
189
190 (% style="color:blue" %)**1. Create application**
191
192
193 [[image:image-20250424091200-1.jpeg]]
194
195
196
197
198 [[image:image-20250424091207-2.jpeg]]
199
200
201 (% style="color:blue" %)**2. Add devices to the created Application.**
202
203 [[image:image-20250424091404-3.jpeg]]
204
205
206
207 [[image:image-20250424091412-4.jpeg]]
208
209
210 (% style="color:blue" %)**3. Enter end device specifics manually.**
211
212
213 [[image:image-20250424091458-5.jpeg]]
214
215 [[image:image-20250424091509-6.jpeg]]
216
217
218
219 === 2.3.2 Step 2: Add decoder ===
220
221
222 In TTN, user can add a custom payload so it shows friendly reading.
223
224 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
225
226 Below is TTN screen shot
227
228 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
229
230 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
231
232
233 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
234
235
236 (((
237 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
238 )))
239
240 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
241
242
243 == 2.4 Uplink Payload (Fport~=2) ==
244
245
246 (((
247 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
248 )))
249
250 (((
251 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
252 )))
253
254 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
255 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
256 **Size(bytes)**
257 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
258 **2**
259 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
260 **2**
261 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
262 **2**
263 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
264 **1**
265 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
266 **4**
267 )))
268 |(% style="width:97px" %)(((
269 Value
270 )))|(% style="width:39px" %)(((
271 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
272 )))|(% style="width:100px" %)(((
273 (((
274 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
275 )))
276 )))|(% style="width:77px" %)(((
277 (((
278 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
279 )))
280 )))|(% style="width:47px" %)(((
281 [[Ext>>||anchor="H2.4.5Ext23"]] #
282 )))|(% style="width:51px" %)(((
283 [[Ext value>>||anchor="H2.4.6Extvalue"]]
284 )))
285
286 * The First 6 bytes: has fix meanings for every LHT65N/S.
287
288 * The 7th byte (EXT #): defines the external sensor model.
289
290 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
291
292 === 2.4.1 Decoder in TTN V3 ===
293
294
295 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
296
297 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
298
299 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
300
301
302 === 2.4.2 BAT-Battery Info ===
303
304
305 These two bytes of BAT include the battery state and the actually voltage.
306
307 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
308 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
309 **Bit(bit)**
310 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
311 |(% style="width:66px" %)(((
312 Value
313 )))|(% style="width:250px" %)(((
314 BAT Status
315 00(b): Ultra Low ( BAT <= 2.50v)
316 01(b): Low (2.50v <=BAT <= 2.55v)
317 10(b): OK (2.55v <= BAT <=2.65v)
318 11(b): Good (BAT >= 2.65v)
319 )))|(% style="width:152px" %)Actually BAT voltage
320
321 **(b)stands for binary**
322
323
324 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
325
326
327 Check the battery voltage for LHT65N/S.
328
329 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
330
331 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
332
333 === 2.4.3 Built-in Temperature ===
334
335
336 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
337
338 * Temperature:  0x0ABB/100=27.47℃
339
340 [[image:image-20220522235639-3.png||_mstalt="432120"]]
341
342 * Temperature:  (0xF5C6-65536)/100=-26.18℃
343
344 === 2.4.4 Built-in Humidity ===
345
346
347 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
348
349 * Humidity:    0x025C/10=60.4%
350
351 === 2.4.5 Ext # ===
352
353
354 Bytes for External Sensor:
355
356 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
357 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
358 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
359 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
360 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
361 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
362 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
363 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
364 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
365 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
366
367 === 2.4.6 Ext value ===
368
369 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
370
371
372 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
373 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
374 **Size(bytes)**
375 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
376 **2**
377 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
378 2
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
382 1
383 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
384 2
385 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
386 2
387 )))
388 |(% style="width:110px" %)(((
389 Value
390 )))|(% style="width:71px" %)(((
391 BAT & BAT Status
392 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
393 Status & Ext
394 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
395
396 [[image:image-20220522235639-5.png||_mstalt="432848"]]
397
398
399 * DS18B20 temp=0x0ADD/100=27.81℃
400
401 The last 2 bytes of data are meaningless
402
403 [[image:image-20220522235639-6.png||_mstalt="433212"]]
404
405
406 * External temperature= (0xF54F-65536)/100=-27.37℃
407
408 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
409
410 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
411
412 The last 2 bytes of data are meaningless
413
414 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
415
416
417 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
418
419
420 (((
421 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
422 )))
423
424 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
425 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
426 **Size(bytes)**
427 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
428 **2**
429 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
430 **2**
431 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
432 **2**
433 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
434 **1**
435 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
436 **4**
437 )))
438 |(% style="width:110px" %)(((
439 Value
440 )))|(% style="width:71px" %)(((
441 External temperature
442 )))|(% style="width:99px" %)(((
443 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
444 )))|(% style="width:132px" %)(((
445 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
446 )))|(% style="width:54px" %)(((
447 Status & Ext
448 )))|(% style="width:64px" %)(((
449 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
450 )))
451
452 * **Battery status & Built-in Humidity**
453
454 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
455 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
456 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
457 BAT Status
458 00(b): Ultra Low ( BAT <= 2.50v)
459 01(b): Low  (2.50v <=BAT <= 2.55v)
460 10(b): OK   (2.55v <= BAT <=2.65v)
461 11(b): Good   (BAT >= 2.65v)
462 )))|(% style="width:132px" %)(((
463 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
464 )))
465
466 * **Status & Ext Byte**
467
468 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
469 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
470 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
471
472 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
473 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
474 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
475
476 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
477
478
479 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
480 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
481 **Size(bytes)**
482 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
483 **2**
484 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
485 2
486 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
487 **2**
488 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
489 1
490 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
491 2
492 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
493 2
494 )))
495 |(% style="width:110px" %)(((
496 Value
497 )))|(% style="width:71px" %)(((
498 BAT & BAT Status
499 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
500 Status & Ext
501 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
502
503 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
504
505 be used to power the external ADC sensor; user can control the power on time for this
506
507 (% style="color:blue" %)**sensor by setting:**
508
509 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
510
511 **For example:**
512
513 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
514
515
516 Or use **downlink command A2** to set the same.
517
518 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
519
520 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
521
522 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
523
524
525 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
526
527 [[image:image-20220628150714-4.png||_mstalt="431054"]]
528
529
530 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
531
532
533 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
534
535 [[image:image-20220628151005-5.png||_mstalt="429546"]]
536
537
538 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
539
540 [[image:image-20220628151056-6.png||_mstalt="431873"]]
541
542
543 3) Within range
544
545 [[image:image-20220628151143-7.png||_mstalt="431210"]]
546
547
548 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
549
550
551 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
552
553 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
554
555 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
556 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
557 **Size(bytes)**
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 **2**
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
563 **2**
564 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
565 1
566 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
567 2
568 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
569 2
570 )))
571 |(% style="width:110px" %)(((
572 Value
573 )))|(% style="width:71px" %)(((
574 BAT & BAT Status
575 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
576 Status & Ext
577 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
578
579 [[image:image-20220906102307-7.png||_mstalt="430443"]]
580
581 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
582
583 The external cable NE2 can be use for MOD4 and MOD8
584
585
586 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
587
588
589 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
590
591 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
592
593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
594 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
595 **Size(bytes)**
596 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
597 **2**
598 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
599 2
600 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
601 **2**
602 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
603 1
604 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
605 2
606 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
607 2
608 )))
609 |(% style="width:110px" %)(((
610 Value
611 )))|(% style="width:71px" %)(((
612 BAT & BAT Status
613 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
614 Status & Ext
615 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
616
617 [[image:SHT31.png||_mstalt="104715"]]
618
619
620 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
621
622
623 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
624
625
626 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
627
628 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
629
630 In Open State, the power consumption is the same as if there is no probe
631
632 In Close state, the power consumption will be 3uA higher than normal.
633
634 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
635
636
637 Ext=4,Interrupt Sensor:
638
639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
640 |(% style="width:101px" %)(((
641 **AT+EXT=4,1**
642 )))|(% style="width:395px" %)(((
643 **Sent uplink packet in both rising and falling interrupt**
644 )))
645 |(% style="width:101px" %)(((
646 **AT+EXT=4,2**
647 )))|(% style="width:395px" %)(((
648 **Sent uplink packet only in falling interrupt**
649 )))
650 |(% style="width:101px" %)(((
651 **AT+EXT=4,3**
652 )))|(% style="width:395px" %)(((
653 **Sent uplink packet only in rising interrupt**
654 )))
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
658 **Size(bytes)**
659 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
660 **2**
661 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
662 2
663 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
664 **2**
665 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
666 1
667 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
668 1
669 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
670 2
671 )))
672 |(% style="width:110px" %)(((
673 Value
674 )))|(% style="width:71px" %)(((
675 BAT & BAT Status
676 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
677 Status & Ext
678 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
679
680 Trigger by falling edge:
681
682 [[image:image-20220906101145-2.png||_mstalt="428324"]]
683
684
685 Trigger by raising edge:
686
687 [[image:image-20220906101145-3.png||_mstalt="428688"]]
688
689
690 (% style="color:blue" %)**BAT & BAT Status :**
691
692 Check the battery voltage.
693
694 Ex1: 0x0B45 = 2885mV
695
696 Ex2: 0x0B49 = 2889mV
697
698
699 (% style="color:blue" %)**TempC_SHT :**
700
701 The temperature detected by the built-in temperature and humidity sensor SHT31.
702
703 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
704
705 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
706
707 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
708
709
710 (% style="color:blue" %)**Hum_SHT :**
711
712 The humidity detected by the built-in temperature and humidity sensor SHT31.
713
714 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
715
716
717 (% style="color:blue" %)**Status & Ext :**
718
719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
720 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
721 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
722
723 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
724 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
725 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
726
727 (% style="color:blue" %)**Exti_pin_level :**
728
729 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
730 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
731
732 (% style="color:blue" %)**Exti_status :**
733
734 Determines whether the uplink packet is generated by an interrupt.
735
736 1: Interrupt packet
737
738 0: Normal TDC uplink packet
739
740
741 (% style="color:blue" %)**senseless :**
742
743 Reserved position, meaningless. The value is fixed to 0x7FFF.
744
745
746 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
747
748
749 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
750
751
752 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
753
754 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
755
756
757 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
758
759 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
760
761
762 Ext=8, Counting Sensor ( 4 bytes):
763
764 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
765 |(% style="width:131px" %)(((
766 **AT+EXT=8,0**
767 )))|(% style="width:195px" %)(((
768 **Count at falling interrupt**
769 )))
770 |(% style="width:131px" %)(((
771 **AT+EXT=8,1**
772 )))|(% style="width:195px" %)(((
773 **Count at rising interrupt**
774 )))
775 |(% style="width:131px" %)(((
776 **AT+SETCNT=60**
777 )))|(% style="width:195px" %)(((
778 **Sent current count to 60**
779 )))
780
781 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
782 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
783 **Size(bytes)**
784 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
785 **2**
786 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
787 2
788 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
789 **2**
790 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
791 1
792 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
793 4
794 )))
795 |(% style="width:110px" %)(((
796 Value
797 )))|(% style="width:71px" %)(((
798 BAT & BAT Status
799 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
800 Status & Ext
801 )))|(% style="width:64px" %)Exit_count
802
803 [[image:image-20220906101320-6.png||_mstalt="428064"]]
804
805
806 (% style="color:blue" %)**A2 downlink Command:**
807
808 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
809
810 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
811
812 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
813
814 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
815
816 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
817
818
819 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
820
821
822 (((
823 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
824 )))
825
826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
827 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
828 **Size(bytes)**
829 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
830 **2**
831 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
832 **2**
833 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
834 **2**
835 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
836 **1**
837 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
838 **4**
839 )))
840 |(% style="width:110px" %)(((
841 Value
842 )))|(% style="width:71px" %)(((
843 External temperature
844 )))|(% style="width:99px" %)(((
845 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
846 )))|(% style="width:132px" %)(((
847 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
848 )))|(% style="width:54px" %)(((
849 Status & Ext
850 )))|(% style="width:64px" %)(((
851 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
852 )))
853
854 * **Battery status & Built-in Humidity**
855
856 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
857 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
858 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
859 BAT Status
860 00(b): Ultra Low ( BAT <= 2.50v)
861 01(b): Low  (2.50v <=BAT <= 2.55v)
862 10(b): OK   (2.55v <= BAT <=2.65v)
863 11(b): Good   (BAT >= 2.65v)
864 )))|(% style="width:132px" %)(((
865 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
866 )))
867
868 * **Status & Ext Byte**
869
870 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
871 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
872 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
873
874 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
875 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
876 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
877
878 == 2.5 Show data on Datacake ==
879
880
881 (((
882 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
883 )))
884
885
886 (((
887 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
888 )))
889
890 (((
891 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
892 )))
893
894
895 (((
896 Add Datacake:
897 )))
898
899 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
900
901
902 Select default key as Access Key:
903
904
905 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
906
907
908 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
909
910 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
911
912
913 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
914
915
916 == 2.6 Datalog Feature ==
917
918
919 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes.
920
921
922 === 2.6.1 How datalog works ===
923
924
925 LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network,LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
926
927 * (((
928 a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
929 )))
930 * (((
931 b) LHT65N/S will send data in **CONFIRMED Mode**, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N/S gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK messages.
932
933
934 )))
935
936 === 2.6.2 Enable Datalog ===
937
938
939 User need to make sure below two settings are enable to use datalog;
940
941 * (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
942 * (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
943
944
945
946 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
947
948 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
949
950
951 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
952
953 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
954
955
956 === 2.6.3 Unix TimeStamp ===
957
958
959 LHT65N/S uses Unix TimeStamp format based on
960
961 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
962
963
964 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
965
966 Below is the converter example
967
968 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
969
970
971 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
972
973
974 === 2.6.4 Poll sensor value ===
975
976
977 User can poll sensor value based on timestamps from the server. Below is the downlink command.
978
979 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
980 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
981 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
982
983 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
984
985 For example, downlink command (% _mstmutation="1" %)**31 5F C5 F3 50 5F C6 01 60 05**(%%)
986
987 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
988
989 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
990
991
992 === 2.6.5 Datalog Uplink payload ===
993
994
995 The Datalog poll reply uplink will use below payload format.
996
997 **Retrieval data payload:**
998
999 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1000 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1001 **Size(bytes)**
1002 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1003 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1004
1005 **Poll message flag & Ext:**
1006
1007 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1008 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1009 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1010
1011 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1012
1013 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1014
1015 * Poll Message Flag is set to 1.
1016
1017 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1018
1019 For example, in US915 band, the max payload for different DR is:
1020
1021 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1022
1023 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1024
1025 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1026
1027 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1028
1029 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1030
1031
1032 **Example:**
1033
1034 If LHT65N/S has below data inside Flash:
1035
1036 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1037 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1038 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1039 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1040 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1041 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1042 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1043 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1044 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1045 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1046
1047 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1048
1049 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1050
1051 Stop time: 60066DA7= time 21/1/19 05:27:03
1052
1053
1054 **LHT65N/S will uplink this payload.**
1055
1056 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1057
1058
1059 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1060
1061 Where the first 11 bytes is for the first entry:
1062
1063 7FFF089801464160065F97
1064
1065 Ext sensor data=0x7FFF/100=327.67
1066
1067 Temp=0x088E/100=22.00
1068
1069 Hum=0x014B/10=32.6
1070
1071 poll message flag & Ext=0x41,means reply data,Ext=1
1072
1073 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1074
1075
1076 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1077
1078
1079 (((
1080 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1081 )))
1082
1083 (((
1084 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1085
1086
1087 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1088
1089 (((
1090 (% class="box infomessage" %)
1091 (((
1092 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1093 )))
1094 )))
1095
1096 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1097
1098 **~ AT+WMOD=1,60,-10,20**
1099
1100
1101 Explain:
1102
1103 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1104 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1105 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)The safe temperature range is -10 to 20℃ (Set the temperature range value with a coefficient of 100).
1106 * **Summary:** By enabling the temperature alarm mode of the external sensor, the LHT65N will sample every 60 seconds and will alarm when the external temperature is below -10℃ or when the external temperature is above 20℃.
1107
1108 (% style="color:#4f81bd" %)**Downlink Command:**
1109
1110 **Example: **A5013CFC1807D0
1111
1112 MOD=01
1113
1114 CITEMP=3C(S) =60(S)
1115
1116 TEMPlow=FC18 = -1000/100=-10(℃)
1117
1118 TEMPhigh=07D0=2000/100=20(℃)
1119
1120
1121 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1122
1123 **AT+WMOD=2,60,5** 
1124
1125 Explain:
1126
1127 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1128 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1129 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1130
1131 (% style="color:#4f81bd" %)**Downlink Command**
1132
1133 **Example: **A5023C05
1134
1135 MOD=02
1136
1137 CITEMP=3C(S)=60(S)
1138
1139 temperature fluctuation=05(℃)
1140
1141
1142 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1143
1144 **AT+WMOD=3,1,60,20,-16,32,1**   
1145
1146 Explain:
1147
1148 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1149 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1150 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1151 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1152 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1153 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1154
1155 (% style="color:#4f81bd" %)**Downlink Command:**
1156
1157 **Example: **A50301003C14FFF0002001
1158
1159 MOD=03
1160
1161 TEMP=DS18B20
1162
1163 CITEMP=003C(S)=60(S)
1164
1165 Total number of acquisitions=14
1166
1167 TEMPlow=FFF0=-16(℃)
1168
1169 TEMPhigh=0020=20(℃)
1170
1171 ARTEMP=01
1172
1173
1174 **Uplink payload( Fport=3)**
1175
1176 **Example: CBEA**01**0992**//0A41//**09C4**
1177
1178 BatV=CBEA
1179
1180 TEMP=DS18B20
1181
1182 Temp1=0992  ~/~/ 24.50℃
1183
1184 Temp2=0A41  ~/~/ 26.25℃
1185
1186 Temp3=09C4  ~/~/ 25.00℃
1187
1188 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1189
1190 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1191 )))
1192
1193
1194 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1195
1196
1197 (% class="box infomessage" %)
1198 (((
1199 (((
1200 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1201 )))
1202
1203 (((
1204 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1205 )))
1206
1207 (((
1208 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1209 )))
1210
1211 (((
1212 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1213 )))
1214
1215 (((
1216 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1217 )))
1218 )))
1219
1220 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1221
1222 Total bytes: 8 bytes
1223
1224 **Example:**AA0100010001003C
1225
1226 WMOD=01
1227
1228 CITEMP=0001
1229
1230 TEMPlow=0001
1231
1232 TEMPhigh=003C
1233
1234
1235 == 2.8 LED Indicator ==
1236
1237
1238 The LHT65 has a triple color LED which for easy showing different stage .
1239
1240 While user press ACT button, the LED will work as per LED status with ACT button.
1241
1242 In a normal working state:
1243
1244 * For each uplink, the BLUE LED or RED LED will blink once.
1245 BLUE LED when external sensor is connected.
1246 * RED LED when external sensor is not connected
1247 * For each success downlink, the PURPLE LED will blink once
1248
1249 == 2.9 installation ==
1250
1251
1252 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1253
1254
1255 = 3. Sensors and Accessories =
1256
1257 == 3.1 E2 Extension Cable ==
1258
1259
1260 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1261
1262
1263 **1m long breakout cable for LHT65N/S. Features:**
1264
1265 * (((
1266 Use for AT Command, works for both LHT52, LHT65N/S
1267 )))
1268 * (((
1269 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1270 )))
1271 * (((
1272 Supports ADC mode to monitor external ADC
1273 )))
1274 * (((
1275 Supports Interrupt mode
1276 )))
1277 * (((
1278 Exposed All pins from the LHT65N/S Type-C connector.
1279
1280
1281
1282 )))
1283
1284 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1285
1286
1287 == 3.2 E3 Temperature Probe ==
1288
1289
1290 [[image:image-20220515080154-4.png||alt="photo-20220515080154-4.png" _mstalt="434681" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1291
1292
1293 Temperature sensor with 2 meters cable long
1294
1295 * Resolution: 0.0625 °C
1296 * ±0.5°C accuracy from -10°C to +85°C
1297 * ±2°C accuracy from -55°C to +125°C
1298 * Operating Range: -40 ~~ 125 °C
1299 * Working voltage 2.35v ~~ 5v
1300
1301 == 3.3 E31F Temperature Probe ==
1302
1303
1304 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1305
1306
1307 Temperature sensor with 1 meters cable long
1308
1309
1310 **Built-in Temperature Sensor:**
1311
1312 * Resolution: 0.01 °C
1313 * Accuracy Tolerance : Typ ±0.3 °C
1314 * Long Term Drift: < 0.02 °C/yr
1315 * Operating Range: -40 ~~ 80 °C
1316
1317 **Built-in Humidity Sensor:**
1318
1319 * Resolution: 0.04 % RH
1320 * Accuracy Tolerance : Typ ±3 % RH
1321 * Long Term Drift: < 0.25 RH/yr
1322 * Operating Range: 0 ~~ 96 % RH
1323
1324 **External Temperature Sensor :**
1325
1326 * Resolution: 0.01 °C
1327 * Accuracy Tolerance : Typical ±0.3 °C
1328 * Long Term Drift: < 0.02 °C/yr
1329 * Operating Range: -40 ~~ 125 °C
1330
1331 **External Humidity Sensor :**
1332
1333 * Resolution: 0.04 % RH
1334 * Accuracy Tolerance : Typ ±3 % RH
1335 * Long Term Drift: < 0.25 RH/yr
1336 * Operating Range: 0 ~~ 96 % RH
1337
1338 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1339
1340
1341 External Temperature Sensor – NE117:
1342 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1343
1344 * Silica gel cable
1345 * ±0.1 °C (maximum) from –20 °C to 50 °C
1346 * ±0.2 °C (maximum) from –40 °C to 100 °C
1347 * ±0.3 °C (maximum) from –55 °C to 150 °C
1348
1349 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1350
1351
1352 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1353
1354
1355 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1356 * 3 wires: VCC/GND/INT
1357 * Cable Lenght: 1 meter
1358
1359 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1360
1361 LHT65N/S-DC can be used to connect various types of external sensor. below.
1362
1363 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1364
1365 [[image:image-20240422100149-5.png||height="163" width="510"]]
1366
1367 [[image:image-20240422100217-6.png||height="141" width="507"]]
1368
1369
1370 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1371
1372
1373 * Aluminum Alloy Door Sensor
1374 * Detect Distance: ~~3cm
1375 * Cable Lenght: 1 meter
1376
1377 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1378
1379 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1380
1381
1382 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1383
1384
1385 (((
1386 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1387 )))
1388
1389 * (((
1390 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1391 )))
1392
1393 * (((
1394 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1395 )))
1396
1397 (((
1398 There are two kinds of commands to configure LHT65N/S, they are:
1399 )))
1400
1401 * (((
1402 (% style="color:#4f81bd" %)**General Commands**.
1403 )))
1404
1405 (((
1406 These commands are to configure:
1407 )))
1408
1409 1. (((
1410 General system settings like: uplink interval.
1411 )))
1412 1. (((
1413 LoRaWAN protocol & radio-related commands.
1414 )))
1415
1416 (((
1417 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1418 )))
1419
1420 * (((
1421 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1422 )))
1423
1424 (((
1425 These commands are only valid for LHT65N/S, as below:
1426 )))
1427
1428
1429
1430 == 4.1 Set Transmit Interval Time ==
1431
1432
1433 Feature: Change LoRaWAN End Node Transmit Interval.
1434
1435
1436 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1437
1438 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1439 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1440 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1441 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1442
1443 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1444
1445 Format: Command Code (0x01) followed by 3 bytes time value.
1446
1447 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1448
1449 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1450
1451 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1452
1453 == 4.2 Set External Sensor Mode ==
1454
1455
1456 Feature: Change External Sensor Mode.
1457
1458 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1459
1460 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1461 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1462 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1463 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1464 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1465 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1466 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1467 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1468 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1469 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1470 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1471
1472 **Response**
1473
1474 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1475
1476 Total bytes: 2 ~~ 5 bytes
1477
1478 **Example:**
1479
1480 * 0xA201: Set external sensor type to E1
1481
1482 * 0xA209: Same as AT+EXT=9
1483
1484 * 0xA20702003c: Same as AT+SETCNT=60
1485
1486 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1487
1488
1489 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1490
1491 * First Packet after OTAA Join
1492 * Every 24 hours since the first packet.
1493
1494 PID is default set to disable (0)
1495
1496 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1497
1498 (% style="color:#4f81bd" %)**AT Command:**
1499
1500 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1501 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1502 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1503
1504 (% style="color:#4f81bd" %)**Downlink Command:**
1505
1506 * **0xA800**  **~-~->** AT+PID=0
1507 * **0xA801**     **~-~->** AT+PID=1
1508
1509 == 4.4 Set Password ==
1510
1511
1512 Feature: Set device password, max 9 digits
1513
1514 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1515
1516 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1517 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1518 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1519 123456
1520
1521 OK
1522 )))
1523 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1524
1525 (% style="color:#4f81bd" %)**Downlink Command:**
1526
1527 No downlink command for this feature.
1528
1529
1530 == 4.5 Quit AT Command ==
1531
1532
1533 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1534
1535 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1536
1537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1538 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1539 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1540
1541 (% style="color:#4f81bd" %)**Downlink Command:**
1542
1543 No downlink command for this feature.
1544
1545
1546 == 4.6 Set to sleep mode ==
1547
1548
1549 Feature: Set device to sleep mode
1550
1551 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1552 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1553
1554 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1555
1556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1557 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1558 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1559 Clear all stored sensor data…
1560
1561 OK
1562 )))
1563
1564 (% style="color:#4f81bd" %)**Downlink Command:**
1565
1566 * There is no downlink command to set to Sleep mode.
1567
1568 == 4.7 Set system time ==
1569
1570
1571 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1572
1573 (% style="color:#4f81bd" %)**AT Command:**
1574
1575 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1576 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1577 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1578 OK
1579
1580 Set System time to 2021-01-20 00:59:12
1581 )))
1582
1583 (% style="color:#4f81bd" %)**Downlink Command:**
1584
1585 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1586
1587
1588 == 4.8 Set Time Sync Mode ==
1589
1590
1591 (((
1592 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1593 )))
1594
1595 (((
1596 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1597 )))
1598
1599 (% style="color:#4f81bd" %)**AT Command:**
1600
1601 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1602 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1603 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1604
1605 (% style="color:#4f81bd" %)**Downlink Command:**
1606
1607 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1608 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1609
1610
1611 == 4.9 Set Time Sync Interval ==
1612
1613
1614 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1615
1616 (% style="color:#4f81bd" %)**AT Command:**
1617
1618 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1619 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1620 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1621
1622 (% style="color:#4f81bd" %)**Downlink Command:**
1623
1624 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1625
1626
1627 == 4.10 Get data ==
1628
1629
1630 Feature: Get the current sensor data.
1631
1632 (% style="color:#4f81bd" %)**AT Command:**
1633
1634 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1635 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1636
1637 == 4.11 Print data entries base on page ==
1638
1639
1640 Feature: Print the sector data from start page to stop page (max is 416 pages).
1641
1642 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1643
1644 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1645 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1646 |(% style="width:156px" %)(((
1647 AT+PDTA=1,3
1648 Print page 1 to 3
1649 )))|(% style="width:311px" %)(((
1650 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1651 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1652 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1653 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1654 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1655 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1656 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1657 8019570
1658 8019580
1659 8019590
1660 80195A0
1661 80195B0
1662 80195C0
1663 80195D0
1664 80195E0
1665 80195F0
1666
1667 OK
1668 )))
1669
1670 (% style="color:#4f81bd" %)**Downlink Command:**
1671
1672 No downlink commands for feature
1673
1674
1675 == 4.12 Print last few data entries ==
1676
1677
1678 Feature: Print the last few data entries
1679
1680 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1681
1682 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1683 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1684 |(% style="width:156px" %)(((
1685 AT+PLDTA=5
1686 Print last 5 entries
1687 )))|(% style="width:311px" %)(((
1688 Stop Tx and RTP events when read sensor data
1689 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1690 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1691 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1692 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1693 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1694 Start Tx and RTP events
1695 OK
1696 )))
1697
1698 (% style="color:#4f81bd" %)**Downlink Command:**
1699
1700 No downlink commands for feature
1701
1702
1703 == 4.13 Clear Flash Record ==
1704
1705
1706 Feature: Clear flash storage for data log feature.
1707
1708 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1709
1710 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1711 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1712 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1713 Clear all stored sensor data…
1714
1715 OK
1716 )))
1717
1718 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1719
1720 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1721
1722 == 4.14 Auto Send None-ACK messages ==
1723
1724
1725 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1726
1727 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1728
1729 The default factory setting is 0
1730
1731 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1732 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1733 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1734
1735 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1736
1737 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1738
1739 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1740
1741
1742 Feature: Set internal and external temperature sensor alarms.
1743
1744 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1745 |=(% style="width: 286px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 276px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 82px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
1746 |(% style="width:286px" %)(((
1747 AT+WMOD=parameter1,parameter2,
1748
1749 parameter3,parameter4
1750 )))|(% style="width:276px" %)Set internal and external temperature sensor alarms|(% style="width:82px" %)OK
1751
1752 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1753
1754 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1755
1756 0): Cancel
1757
1758 1): Threshold alarm
1759
1760 2): Fluctuation alarm
1761
1762 3): Sampling multiple times and uplink together
1763
1764
1765 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1766
1767 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1768
1769
1770 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1771
1772 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1773
1774 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1775
1776
1777 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1778
1779 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1780
1781 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1782
1783
1784 **3): If Alarm Mode is set to 3:**
1785
1786 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1787 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1788 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1789 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1790 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1791 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1792
1793 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1794
1795 0xA5 00 ~-~- AT+WMOD=0.
1796
1797 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1798
1799 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1800
1801 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1802
1803 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1804
1805 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1806
1807
1808 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1809
1810
1811 Feature: use downlink to get firmware version.
1812
1813 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1814
1815 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:490px" %)
1816 |=(% style="width: 190px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 92px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1817 |(% style="width:190px" %)Get Firmware Version Info|(% style="width:61px" %)Any|(% style="width:92px" %)26|(% style="width:154px" %)2
1818
1819 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1820
1821 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1822
1823 (% style="color:#037691" %)**Sensor model**
1824
1825 0x0b: LHT65N/S
1826
1827
1828 (% style="color:#037691" %)**Firmware version**
1829
1830 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1831
1832 Example: 0x0140=V1.4.0
1833
1834
1835 (% style="color:#037691" %)** Frequency Band:**
1836
1837 * 0x01: EU868
1838 * 0x02: US915
1839 * 0x03: IN865
1840 * 0x04: AU915
1841 * 0x05: KZ865
1842 * 0x06: RU864
1843 * 0x07: AS923
1844 * 0x08: AS923-1
1845 * 0x09: AS923-2
1846 * 0xa0: AS923-3
1847
1848 (% style="color:#037691" %)**Subband**
1849
1850 value 0x00 ~~ 0x08
1851
1852 Example: 0xFF ~-~--> " NULL"
1853
1854
1855 (% style="color:#037691" %)**Battery**
1856
1857 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1858
1859 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1860
1861
1862 == 4.17 Setting LED Alarm ==
1863
1864
1865 Feature: Setting LED Alarm
1866
1867 The default factory setting is 0
1868
1869 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
1870 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 87px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
1871 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:158px" %)Setting LED Alarm|(% style="width:87px" %)OK
1872
1873 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1874
1875 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1876
1877
1878 = 5. Battery & How to replace =
1879
1880 == 5.1 Battery Type ==
1881
1882
1883 (((
1884 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1885 )))
1886
1887 (((
1888 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1889
1890 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1891 )))
1892
1893 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1894
1895 == 5.2 Replace Battery ==
1896
1897
1898 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1899
1900 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1901
1902
1903 == 5.3 Battery Life Analyze ==
1904
1905
1906 (((
1907 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1908 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1909 )))
1910
1911
1912 (((
1913 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1914 )))
1915
1916
1917 = 6. FAQ =
1918
1919 == 6.1 How to connect to LHT65N/S UART interface? ==
1920
1921
1922 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1923
1924 * Send AT Commands, and get output from LHT65N/S
1925 * Upgrade firmwre of LHT65N/S.
1926
1927 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1928
1929
1930 **Option of USB TTL adapter:**
1931
1932 * CP2101 USB TTL Adapter
1933 * CH340 USB TTL Adapter
1934 * FT232 USB TTL Adapter
1935
1936 **Option of Type-C Adapter:**
1937
1938 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1939
1940
1941 **Connection:**
1942
1943 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1944 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1945 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1946
1947 (((
1948
1949
1950 Connection Example:
1951
1952 [[image:1655802313617-381.png||_mstalt="293917"]]
1953
1954
1955 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1956
1957
1958 == 6.2 How to use AT Commands? ==
1959
1960
1961 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1962
1963 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1964 )))
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974 Input password and ATZ to activate LHT65N/S, As shown below:
1975
1976 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1977
1978
1979 AT Command List is as below:
1980
1981 AT+<CMD>? :  Help on <CMD>
1982
1983 AT+<CMD> :  Run <CMD>
1984
1985 AT+<CMD>=<value> :  Set the value
1986
1987 AT+<CMD>=? :  Get the value
1988
1989 AT+DEBUG:  Set more info output
1990
1991 ATZ:  Trig a reset of the MCU
1992
1993 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1994
1995 AT+DEUI:  Get or Set the Device EUI
1996
1997 AT+DADDR:  Get or Set the Device Address
1998
1999 AT+APPKEY:  Get or Set the Application Key
2000
2001 AT+NWKSKEY:  Get or Set the Network Session Key
2002
2003 AT+APPSKEY:  Get or Set the Application Session Key
2004
2005 AT+APPEUI:  Get or Set the Application EUI
2006
2007 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2008
2009 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2010
2011 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2012
2013 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2014
2015 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2016
2017 AT+RX2FQ:  Get or Set the Rx2 window frequency
2018
2019 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2020
2021 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2022
2023 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2024
2025 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2026
2027 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2028
2029 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2030
2031 AT+NWKID:  Get or Set the Network ID
2032
2033 AT+FCU:  Get or Set the Frame Counter Uplink
2034
2035 AT+FCD:  Get or Set the Frame Counter Downlink
2036
2037 AT+CLASS:  Get or Set the Device Class
2038
2039 AT+JOIN:  Join network
2040
2041 AT+NJS:  Get the join status
2042
2043 AT+SENDB:  Send hexadecimal data along with the application port
2044
2045 AT+SEND:  Send text data along with the application port
2046
2047 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2048
2049 AT+RECV:  Print last received data in raw format
2050
2051 AT+VER:  Get current image version and Frequency Band
2052
2053 AT+CFM:  Get or Set the confirmation mode (0-1)
2054
2055 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2056
2057 AT+SNR:  Get the SNR of the last received packet
2058
2059 AT+RSSI:  Get the RSSI of the last received packet
2060
2061 AT+TDC:  Get or set the application data transmission interval in ms
2062
2063 AT+PORT:  Get or set the application port
2064
2065 AT+DISAT:  Disable AT commands
2066
2067 AT+PWORD: Set password, max 9 digits
2068
2069 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2070
2071 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2072
2073 AT+PDTA:  Print the sector data from start page to stop page
2074
2075 AT+PLDTA:  Print the last few sets of data
2076
2077 AT+CLRDTA:  Clear the storage, record position back to 1st
2078
2079 AT+SLEEP:  Set sleep mode
2080
2081 AT+EXT:  Get or Set external sensor model
2082
2083 AT+BAT:  Get the current battery voltage in mV
2084
2085 AT+CFG:  Print all configurations
2086
2087 AT+WMOD:  Get or Set Work Mode
2088
2089 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2090
2091 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2092
2093 AT+SETCNT:  Set the count at present
2094
2095 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2096
2097 AT+RPL:  Get or set response level
2098
2099 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2100
2101 AT+LEAPSEC:  Get or Set Leap Second
2102
2103 AT+SYNCMOD:  Get or Set time synchronization method
2104
2105 AT+SYNCTDC:  Get or set time synchronization interval in day
2106
2107 AT+PID:  Get or set the PID
2108
2109
2110 == 6.3 How to use Downlink commands? ==
2111
2112
2113 **Downlink commands:**
2114
2115
2116 (% style="color:blue" %)**TTN:**
2117
2118 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2119
2120
2121
2122 (% style="color:blue" %)**Helium: **
2123
2124 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2125
2126
2127
2128 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2129
2130
2131 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2132
2133
2134 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2135
2136
2137
2138 (% style="color:blue" %)**AWS-IOT :**
2139
2140 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2141
2142
2143 == 6.4 How to change the uplink interval? ==
2144
2145
2146 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2147
2148
2149 == 6.5 How to upgrade firmware? ==
2150
2151
2152 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2153 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2154
2155
2156 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2157
2158
2159 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2160
2161 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2162
2163 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2164
2165 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2166
2167 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2168
2169 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2170
2171 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2172
2173 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2174
2175 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2176
2177 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2178
2179 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2180
2181
2182 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2183
2184 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2185
2186 [[image:image-20240716174308-1.png||height="523" width="410"]]
2187
2188
2189 === 6.5.2 Updated firmware for V1.4 and above ===
2190
2191
2192 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2193
2194 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2195 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2196
2197 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2198
2199
2200 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2201
2202
2203 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2204
2205 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2206
2207
2208 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2209
2210
2211 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2212
2213
2214 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2215
2216 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2217
2218 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2219
2220
2221
2222 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2223
2224 Connect PC and LHT65N/S via USB TTL adapter .
2225
2226 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2227
2228 **Connection method:**
2229
2230 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2231
2232 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2233
2234 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2235
2236 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2237
2238 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2239
2240
2241 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2242
2243 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2244
2245
2246 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2247
2248 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2249
2250
2251 When this interface appears, it indicates that the download has been completed.
2252
2253 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2254
2255
2256 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2257
2258
2259 == 6.6 Why can't I see the datalog information ==
2260
2261
2262 ~1. The time is not aligned, and the correct query command is not used.
2263
2264 2. Decoder error, did not parse the datalog data, the data was filtered.
2265
2266
2267 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2268
2269
2270 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2271
2272 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2273
2274
2275 After there is UART Connectio, run below commands:
2276
2277 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2278
2279 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2280
2281 Example output:
2282
2283 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2284
2285
2286 = 7. Order Info =
2287
2288
2289 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2290
2291 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2292
2293 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2294 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2295 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2296 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2297 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2298 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2299 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2300 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2301
2302 = 8. Packing Info =
2303
2304
2305 (% style="color:#4f81bd" %)**Package Includes:**
2306
2307 * LHT65N/S Temperature & Humidity Sensor x 1
2308 * 1 x External Lora Antenna for LHT65S
2309 * Optional external sensor
2310
2311 (% style="color:#4f81bd" %)**Dimension and weight:**
2312
2313 **Package Size / pcs :**
2314
2315 * For LHT65N: 110*45*35mm
2316
2317 **Weight / pcs :**
2318
2319 * For LHT65N: 80g
2320
2321
2322
2323 = 9. Reference material =
2324
2325
2326 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2327
2328 = 10. FCC Warning =
2329
2330
2331 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2332
2333 (1) This device may not cause harmful interference;
2334
2335 (2) this device must accept any interference received, including interference that may cause undesired operation.