Version 372.1 by Xiaoling on 2025/04/24 09:12

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89 == 1.4 Model Difference ==
90
91
92 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
93
94 (% style="color:#037691" %)**For antenna design: **
95
96 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
97 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
98
99 [[image:image-20250422095731-2.png]]
100
101
102 (% style="color:#037691" %)**For enclosure dimensions:**
103
104 * **LHT65N**
105
106 [[image:image-20250422165135-1.png]]
107
108
109
110 * **LHT65S (Unit: mm)**
111
112 [[image:image-20250422165216-2.png]]
113
114
115 = 2. Connect LHT65N/S to IoT Server =
116
117 == 2.1 How does LHT65N/S work? ==
118
119
120 (((
121 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
122 )))
123
124 (((
125 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
126 )))
127
128
129 == 2.2 How to Activate LHT65N/S? ==
130
131
132 (((
133 The LHT65N/S has two working modes:
134 )))
135
136 * (((
137 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
138 )))
139 * (((
140 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
141 )))
142
143 (((
144 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
145 )))
146
147 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
148
149 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
150 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
151 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
152 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
153 )))
154 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
155 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
156 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
157 )))
158 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
159
160 == 2.3 Example to join LoRaWAN network ==
161
162
163 (% class="wikigeneratedid" %)
164 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
165
166 (% class="wikigeneratedid" %)
167 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
168
169
170 (((
171 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
172 )))
173
174
175 === 2.3.1 Step 1: Create Device on TTN ===
176
177
178 (((
179 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
180 )))
181
182 (((
183 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
184 )))
185
186 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
187
188
189 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
190
191 (% style="color:blue" %)**1. Create application**
192
193
194
195 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
198
199
200
201 (% style="color:blue" %)**2. Add devices to the created Application.**
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
204
205
206 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
207
208
209 (% style="color:blue" %)**3. Enter end device specifics manually.**
210
211 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
212
213 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
214
215
216
217 === 2.3.2 Step 2: Add decoder ===
218
219
220 In TTN, user can add a custom payload so it shows friendly reading.
221
222 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
223
224 Below is TTN screen shot
225
226 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
227
228 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
229
230
231 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
232
233
234 (((
235 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
236 )))
237
238 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
239
240
241 == 2.4 Uplink Payload (Fport~=2) ==
242
243
244 (((
245 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
246 )))
247
248 (((
249 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
250 )))
251
252 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
253 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 **Size(bytes)**
255 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
256 **2**
257 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
258 **2**
259 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
260 **2**
261 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
262 **1**
263 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
264 **4**
265 )))
266 |(% style="width:97px" %)(((
267 Value
268 )))|(% style="width:39px" %)(((
269 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
270 )))|(% style="width:100px" %)(((
271 (((
272 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
273 )))
274 )))|(% style="width:77px" %)(((
275 (((
276 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
277 )))
278 )))|(% style="width:47px" %)(((
279 [[Ext>>||anchor="H2.4.5Ext23"]] #
280 )))|(% style="width:51px" %)(((
281 [[Ext value>>||anchor="H2.4.6Extvalue"]]
282 )))
283
284 * The First 6 bytes: has fix meanings for every LHT65N/S.
285
286 * The 7th byte (EXT #): defines the external sensor model.
287
288 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
289
290 === 2.4.1 Decoder in TTN V3 ===
291
292
293 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
294
295 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
296
297 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
298
299
300 === 2.4.2 BAT-Battery Info ===
301
302
303 These two bytes of BAT include the battery state and the actually voltage.
304
305 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
306 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
307 **Bit(bit)**
308 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
309 |(% style="width:66px" %)(((
310 Value
311 )))|(% style="width:250px" %)(((
312 BAT Status
313 00(b): Ultra Low ( BAT <= 2.50v)
314 01(b): Low (2.50v <=BAT <= 2.55v)
315 10(b): OK (2.55v <= BAT <=2.65v)
316 11(b): Good (BAT >= 2.65v)
317 )))|(% style="width:152px" %)Actually BAT voltage
318
319 **(b)stands for binary**
320
321
322 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
323
324
325 Check the battery voltage for LHT65N/S.
326
327 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
328
329 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
330
331 === 2.4.3 Built-in Temperature ===
332
333
334 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
335
336 * Temperature:  0x0ABB/100=27.47℃
337
338 [[image:image-20220522235639-3.png||_mstalt="432120"]]
339
340 * Temperature:  (0xF5C6-65536)/100=-26.18℃
341
342 === 2.4.4 Built-in Humidity ===
343
344
345 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
346
347 * Humidity:    0x025C/10=60.4%
348
349 === 2.4.5 Ext # ===
350
351
352 Bytes for External Sensor:
353
354 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
355 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
356 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
357 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
358 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
359 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
360 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
361 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
362 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
363 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
364
365 === 2.4.6 Ext value ===
366
367 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
368
369
370 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
371 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
372 **Size(bytes)**
373 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
374 **2**
375 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
376 2
377 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
378 **2**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 1
381 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
382 2
383 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
384 2
385 )))
386 |(% style="width:110px" %)(((
387 Value
388 )))|(% style="width:71px" %)(((
389 BAT & BAT Status
390 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
391 Status & Ext
392 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
393
394 [[image:image-20220522235639-5.png||_mstalt="432848"]]
395
396
397 * DS18B20 temp=0x0ADD/100=27.81℃
398
399 The last 2 bytes of data are meaningless
400
401 [[image:image-20220522235639-6.png||_mstalt="433212"]]
402
403
404 * External temperature= (0xF54F-65536)/100=-27.37℃
405
406 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
407
408 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
409
410 The last 2 bytes of data are meaningless
411
412 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
413
414
415 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
416
417
418 (((
419 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
420 )))
421
422 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
423 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
424 **Size(bytes)**
425 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
426 **2**
427 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
428 **2**
429 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
430 **2**
431 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
432 **1**
433 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
434 **4**
435 )))
436 |(% style="width:110px" %)(((
437 Value
438 )))|(% style="width:71px" %)(((
439 External temperature
440 )))|(% style="width:99px" %)(((
441 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
442 )))|(% style="width:132px" %)(((
443 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
444 )))|(% style="width:54px" %)(((
445 Status & Ext
446 )))|(% style="width:64px" %)(((
447 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
448 )))
449
450 * **Battery status & Built-in Humidity**
451
452 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
453 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
454 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
455 BAT Status
456 00(b): Ultra Low ( BAT <= 2.50v)
457 01(b): Low  (2.50v <=BAT <= 2.55v)
458 10(b): OK   (2.55v <= BAT <=2.65v)
459 11(b): Good   (BAT >= 2.65v)
460 )))|(% style="width:132px" %)(((
461 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
462 )))
463
464 * **Status & Ext Byte**
465
466 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
467 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
468 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
469
470 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
471 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
472 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
473
474 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
475
476
477 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
478 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
479 **Size(bytes)**
480 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
481 **2**
482 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
483 2
484 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
485 **2**
486 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
487 1
488 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
489 2
490 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
491 2
492 )))
493 |(% style="width:110px" %)(((
494 Value
495 )))|(% style="width:71px" %)(((
496 BAT & BAT Status
497 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
498 Status & Ext
499 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
500
501 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
502
503 be used to power the external ADC sensor; user can control the power on time for this
504
505 (% style="color:blue" %)**sensor by setting:**
506
507 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
508
509 **For example:**
510
511 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
512
513
514 Or use **downlink command A2** to set the same.
515
516 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
517
518 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
519
520 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
521
522
523 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
524
525 [[image:image-20220628150714-4.png||_mstalt="431054"]]
526
527
528 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
529
530
531 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
532
533 [[image:image-20220628151005-5.png||_mstalt="429546"]]
534
535
536 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
537
538 [[image:image-20220628151056-6.png||_mstalt="431873"]]
539
540
541 3) Within range
542
543 [[image:image-20220628151143-7.png||_mstalt="431210"]]
544
545
546 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
547
548
549 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
550
551 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
552
553 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
554 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
555 **Size(bytes)**
556 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
557 **2**
558 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 **2**
562 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
563 1
564 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
565 2
566 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
567 2
568 )))
569 |(% style="width:110px" %)(((
570 Value
571 )))|(% style="width:71px" %)(((
572 BAT & BAT Status
573 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
574 Status & Ext
575 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
576
577 [[image:image-20220906102307-7.png||_mstalt="430443"]]
578
579 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
580
581 The external cable NE2 can be use for MOD4 and MOD8
582
583
584 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
585
586
587 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
588
589 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
590
591 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
592 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
593 **Size(bytes)**
594 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
595 **2**
596 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
597 2
598 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
599 **2**
600 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
601 1
602 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
603 2
604 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
605 2
606 )))
607 |(% style="width:110px" %)(((
608 Value
609 )))|(% style="width:71px" %)(((
610 BAT & BAT Status
611 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
612 Status & Ext
613 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
614
615 [[image:SHT31.png||_mstalt="104715"]]
616
617
618 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
619
620
621 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
622
623
624 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
625
626 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
627
628 In Open State, the power consumption is the same as if there is no probe
629
630 In Close state, the power consumption will be 3uA higher than normal.
631
632 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
633
634
635 Ext=4,Interrupt Sensor:
636
637 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
638 |(% style="width:101px" %)(((
639 **AT+EXT=4,1**
640 )))|(% style="width:395px" %)(((
641 **Sent uplink packet in both rising and falling interrupt**
642 )))
643 |(% style="width:101px" %)(((
644 **AT+EXT=4,2**
645 )))|(% style="width:395px" %)(((
646 **Sent uplink packet only in falling interrupt**
647 )))
648 |(% style="width:101px" %)(((
649 **AT+EXT=4,3**
650 )))|(% style="width:395px" %)(((
651 **Sent uplink packet only in rising interrupt**
652 )))
653
654 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
655 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
656 **Size(bytes)**
657 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
658 **2**
659 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
660 2
661 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
662 **2**
663 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
664 1
665 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
666 1
667 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
668 2
669 )))
670 |(% style="width:110px" %)(((
671 Value
672 )))|(% style="width:71px" %)(((
673 BAT & BAT Status
674 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
675 Status & Ext
676 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
677
678 Trigger by falling edge:
679
680 [[image:image-20220906101145-2.png||_mstalt="428324"]]
681
682
683 Trigger by raising edge:
684
685 [[image:image-20220906101145-3.png||_mstalt="428688"]]
686
687
688 (% style="color:blue" %)**BAT & BAT Status :**
689
690 Check the battery voltage.
691
692 Ex1: 0x0B45 = 2885mV
693
694 Ex2: 0x0B49 = 2889mV
695
696
697 (% style="color:blue" %)**TempC_SHT :**
698
699 The temperature detected by the built-in temperature and humidity sensor SHT31.
700
701 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
702
703 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
704
705 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
706
707
708 (% style="color:blue" %)**Hum_SHT :**
709
710 The humidity detected by the built-in temperature and humidity sensor SHT31.
711
712 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
713
714
715 (% style="color:blue" %)**Status & Ext :**
716
717 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
718 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
719 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
720
721 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
722 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
723 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
724
725 (% style="color:blue" %)**Exti_pin_level :**
726
727 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
728 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
729
730 (% style="color:blue" %)**Exti_status :**
731
732 Determines whether the uplink packet is generated by an interrupt.
733
734 1: Interrupt packet
735
736 0: Normal TDC uplink packet
737
738
739 (% style="color:blue" %)**senseless :**
740
741 Reserved position, meaningless. The value is fixed to 0x7FFF.
742
743
744 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
745
746
747 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
748
749
750 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
751
752 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
753
754
755 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
756
757 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
758
759
760 Ext=8, Counting Sensor ( 4 bytes):
761
762 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
763 |(% style="width:131px" %)(((
764 **AT+EXT=8,0**
765 )))|(% style="width:195px" %)(((
766 **Count at falling interrupt**
767 )))
768 |(% style="width:131px" %)(((
769 **AT+EXT=8,1**
770 )))|(% style="width:195px" %)(((
771 **Count at rising interrupt**
772 )))
773 |(% style="width:131px" %)(((
774 **AT+SETCNT=60**
775 )))|(% style="width:195px" %)(((
776 **Sent current count to 60**
777 )))
778
779 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
780 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
781 **Size(bytes)**
782 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
783 **2**
784 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
785 2
786 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
787 **2**
788 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
789 1
790 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
791 4
792 )))
793 |(% style="width:110px" %)(((
794 Value
795 )))|(% style="width:71px" %)(((
796 BAT & BAT Status
797 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
798 Status & Ext
799 )))|(% style="width:64px" %)Exit_count
800
801 [[image:image-20220906101320-6.png||_mstalt="428064"]]
802
803
804 (% style="color:blue" %)**A2 downlink Command:**
805
806 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
807
808 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
809
810 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
811
812 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
813
814 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
815
816
817 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
818
819
820 (((
821 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
822 )))
823
824 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
825 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
826 **Size(bytes)**
827 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
828 **2**
829 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
830 **2**
831 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
832 **2**
833 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
834 **1**
835 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
836 **4**
837 )))
838 |(% style="width:110px" %)(((
839 Value
840 )))|(% style="width:71px" %)(((
841 External temperature
842 )))|(% style="width:99px" %)(((
843 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
844 )))|(% style="width:132px" %)(((
845 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
846 )))|(% style="width:54px" %)(((
847 Status & Ext
848 )))|(% style="width:64px" %)(((
849 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
850 )))
851
852 * **Battery status & Built-in Humidity**
853
854 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
855 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
856 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
857 BAT Status
858 00(b): Ultra Low ( BAT <= 2.50v)
859 01(b): Low  (2.50v <=BAT <= 2.55v)
860 10(b): OK   (2.55v <= BAT <=2.65v)
861 11(b): Good   (BAT >= 2.65v)
862 )))|(% style="width:132px" %)(((
863 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
864 )))
865
866 * **Status & Ext Byte**
867
868 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
869 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
870 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
871
872 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
873 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
874 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
875
876 == 2.5 Show data on Datacake ==
877
878
879 (((
880 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
881 )))
882
883
884 (((
885 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
886 )))
887
888 (((
889 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
890 )))
891
892
893 (((
894 Add Datacake:
895 )))
896
897 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
898
899
900 Select default key as Access Key:
901
902
903 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
904
905
906 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
907
908 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
909
910
911 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
912
913
914 == 2.6 Datalog Feature ==
915
916
917 (((
918 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
919 )))
920
921
922 === 2.6.1 Ways to get datalog via LoRaWAN ===
923
924
925 There are two methods:
926
927 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
928
929
930 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
931
932
933 (% style="color:red" %)**Note for method 2:**
934
935 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
936 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
937
938 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
939
940 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
941
942
943 === 2.6.2 Unix TimeStamp ===
944
945
946 LHT65N/S uses Unix TimeStamp format based on
947
948 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
949
950
951 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
952
953 Below is the converter example
954
955 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
956
957
958 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
959
960
961 === 2.6.3 Set Device Time ===
962
963
964 (((
965 (% style="color:blue" %)**There are two ways to set device's time:**
966 )))
967
968 (((
969 **1.  Through LoRaWAN MAC Command (Default settings)**
970 )))
971
972 (((
973 User need to set SYNCMOD=1 to enable sync time via MAC command.
974 )))
975
976 (((
977 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
978 )))
979
980 (((
981 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
982 )))
983
984
985 (((
986 **2. Manually Set Time**
987 )))
988
989 (((
990 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
991 )))
992
993
994 === 2.6.4 Poll sensor value ===
995
996
997 User can poll sensor value based on timestamps from the server. Below is the downlink command.
998
999 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
1000 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
1001 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
1002
1003 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1004
1005 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1006
1007 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1008
1009 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1010
1011
1012 === 2.6.5 Datalog Uplink payload ===
1013
1014
1015 The Datalog poll reply uplink will use below payload format.
1016
1017 **Retrieval data payload:**
1018
1019 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1020 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1021 **Size(bytes)**
1022 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1023 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1024
1025 **Poll message flag & Ext:**
1026
1027 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1028 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1029 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1030
1031 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1032
1033 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1034
1035 * Poll Message Flag is set to 1.
1036
1037 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1038
1039 For example, in US915 band, the max payload for different DR is:
1040
1041 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1042
1043 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1044
1045 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1046
1047 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1048
1049 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1050
1051
1052 **Example:**
1053
1054 If LHT65N/S has below data inside Flash:
1055
1056 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1057 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1058 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1059 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1060 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1061 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1062 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1063 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1064 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1065 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1066
1067 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1068
1069 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1070
1071 Stop time: 60066DA7= time 21/1/19 05:27:03
1072
1073
1074 **LHT65N/S will uplink this payload.**
1075
1076 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1077
1078
1079 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1080
1081 Where the first 11 bytes is for the first entry:
1082
1083 7FFF089801464160065F97
1084
1085 Ext sensor data=0x7FFF/100=327.67
1086
1087 Temp=0x088E/100=22.00
1088
1089 Hum=0x014B/10=32.6
1090
1091 poll message flag & Ext=0x41,means reply data,Ext=1
1092
1093 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1094
1095
1096 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1097
1098
1099 (((
1100 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1101 )))
1102
1103 (((
1104 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1105
1106
1107 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1108
1109 (((
1110 (% class="box infomessage" %)
1111 (((
1112 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1113 )))
1114 )))
1115
1116 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1117
1118 **~ AT+WMOD=1,60,-10,20**
1119
1120
1121 Explain:
1122
1123 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1124 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1125 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1126
1127 (% style="color:#4f81bd" %)**Downlink Command:**
1128
1129 **Example: **A5013CFC1807D0
1130
1131 MOD=01
1132
1133 CITEMP=3C(S) =60(S)
1134
1135 TEMPlow=FC18 = -1000/100=-10(℃)
1136
1137 TEMPhigh=07D0=2000/100=20(℃)
1138
1139
1140 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1141
1142 **AT+WMOD=2,60,5** 
1143
1144 Explain:
1145
1146 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1147 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1148 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1149
1150 (% style="color:#4f81bd" %)**Downlink Command**
1151
1152 **Example: **A5023C05
1153
1154 MOD=02
1155
1156 CITEMP=3C(S)=60(S)
1157
1158 temperature fluctuation=05(℃)
1159
1160
1161 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1162
1163 **AT+WMOD=3,1,60,20,-16,32,1**   
1164
1165 Explain:
1166
1167 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1168 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1169 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1170 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1171 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1172 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1173
1174 (% style="color:#4f81bd" %)**Downlink Command:**
1175
1176 **Example: **A50301003C14FFF0002001
1177
1178 MOD=03
1179
1180 TEMP=DS18B20
1181
1182 CITEMP=003C(S)=60(S)
1183
1184 Total number of acquisitions=14
1185
1186 TEMPlow=FFF0=-16(℃)
1187
1188 TEMPhigh=0020=20(℃)
1189
1190 ARTEMP=01
1191
1192
1193 **Uplink payload( Fport=3)**
1194
1195 **Example: CBEA**01**0992**//0A41//**09C4**
1196
1197 BatV=CBEA
1198
1199 TEMP=DS18B20
1200
1201 Temp1=0992  ~/~/ 24.50℃
1202
1203 Temp2=0A41  ~/~/ 26.25℃
1204
1205 Temp3=09C4  ~/~/ 25.00℃
1206
1207 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1208
1209 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1210 )))
1211
1212
1213 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1214
1215
1216 (% class="box infomessage" %)
1217 (((
1218 (((
1219 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1220 )))
1221
1222 (((
1223 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1224 )))
1225
1226 (((
1227 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1228 )))
1229
1230 (((
1231 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1232 )))
1233
1234 (((
1235 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1236 )))
1237 )))
1238
1239 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1240
1241 Total bytes: 8 bytes
1242
1243 **Example:**AA0100010001003C
1244
1245 WMOD=01
1246
1247 CITEMP=0001
1248
1249 TEMPlow=0001
1250
1251 TEMPhigh=003C
1252
1253
1254 == 2.8 LED Indicator ==
1255
1256
1257 The LHT65 has a triple color LED which for easy showing different stage .
1258
1259 While user press ACT button, the LED will work as per LED status with ACT button.
1260
1261 In a normal working state:
1262
1263 * For each uplink, the BLUE LED or RED LED will blink once.
1264 BLUE LED when external sensor is connected.
1265 * RED LED when external sensor is not connected
1266 * For each success downlink, the PURPLE LED will blink once
1267
1268 == 2.9 installation ==
1269
1270
1271 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1272
1273
1274 = 3. Sensors and Accessories =
1275
1276 == 3.1 E2 Extension Cable ==
1277
1278
1279 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1280
1281
1282 **1m long breakout cable for LHT65N/S. Features:**
1283
1284 * (((
1285 Use for AT Command, works for both LHT52, LHT65N/S
1286 )))
1287 * (((
1288 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1289 )))
1290 * (((
1291 Supports ADC mode to monitor external ADC
1292 )))
1293 * (((
1294 Supports Interrupt mode
1295 )))
1296 * (((
1297 Exposed All pins from the LHT65N/S Type-C connector.
1298
1299
1300
1301 )))
1302
1303 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1304
1305
1306 == 3.2 E3 Temperature Probe ==
1307
1308
1309 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1310
1311
1312 Temperature sensor with 2 meters cable long
1313
1314 * Resolution: 0.0625 °C
1315 * ±0.5°C accuracy from -10°C to +85°C
1316 * ±2°C accuracy from -55°C to +125°C
1317 * Operating Range: -40 ~~ 125 °C
1318 * Working voltage 2.35v ~~ 5v
1319
1320 == 3.3 E31F Temperature Probe ==
1321
1322
1323 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1324
1325
1326 Temperature sensor with 1 meters cable long
1327
1328
1329 **Built-in Temperature Sensor:**
1330
1331 * Resolution: 0.01 °C
1332 * Accuracy Tolerance : Typ ±0.3 °C
1333 * Long Term Drift: < 0.02 °C/yr
1334 * Operating Range: -40 ~~ 80 °C
1335
1336 **Built-in Humidity Sensor:**
1337
1338 * Resolution: 0.04 % RH
1339 * Accuracy Tolerance : Typ ±3 % RH
1340 * Long Term Drift: < 0.25 RH/yr
1341 * Operating Range: 0 ~~ 96 % RH
1342
1343 **External Temperature Sensor :**
1344
1345 * Resolution: 0.01 °C
1346 * Accuracy Tolerance : Typical ±0.3 °C
1347 * Long Term Drift: < 0.02 °C/yr
1348 * Operating Range: -40 ~~ 125 °C
1349
1350 **External Humidity Sensor :**
1351
1352 * Resolution: 0.04 % RH
1353 * Accuracy Tolerance : Typ ±3 % RH
1354 * Long Term Drift: < 0.25 RH/yr
1355 * Operating Range: 0 ~~ 96 % RH
1356
1357 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1358
1359
1360 External Temperature Sensor – NE117:
1361 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1362
1363 * Silica gel cable
1364 * ±0.1 °C (maximum) from –20 °C to 50 °C
1365 * ±0.2 °C (maximum) from –40 °C to 100 °C
1366 * ±0.3 °C (maximum) from –55 °C to 150 °C
1367
1368 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1369
1370
1371 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1372
1373
1374 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1375 * 3 wires: VCC/GND/INT
1376 * Cable Lenght: 1 meter
1377
1378 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1379
1380 LHT65N/S-DC can be used to connect various types of external sensor. below.
1381
1382 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1383
1384 [[image:image-20240422100149-5.png||height="163" width="510"]]
1385
1386 [[image:image-20240422100217-6.png||height="141" width="507"]]
1387
1388
1389 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1390
1391
1392 * Aluminum Alloy Door Sensor
1393 * Detect Distance: ~~3cm
1394 * Cable Lenght: 1 meter
1395
1396 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1397
1398 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1399
1400
1401 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1402
1403
1404 (((
1405 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1406 )))
1407
1408 * (((
1409 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1410 )))
1411
1412 * (((
1413 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1414 )))
1415
1416 (((
1417 There are two kinds of commands to configure LHT65N/S, they are:
1418 )))
1419
1420 * (((
1421 (% style="color:#4f81bd" %)**General Commands**.
1422 )))
1423
1424 (((
1425 These commands are to configure:
1426 )))
1427
1428 1. (((
1429 General system settings like: uplink interval.
1430 )))
1431 1. (((
1432 LoRaWAN protocol & radio-related commands.
1433 )))
1434
1435 (((
1436 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1437 )))
1438
1439 * (((
1440 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1441 )))
1442
1443 (((
1444 These commands are only valid for LHT65N/S, as below:
1445 )))
1446
1447
1448 == 4.1 Set Transmit Interval Time ==
1449
1450
1451 Feature: Change LoRaWAN End Node Transmit Interval.
1452
1453
1454 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1455
1456 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1457 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1458 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1459 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1460
1461 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1462
1463 Format: Command Code (0x01) followed by 3 bytes time value.
1464
1465 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1466
1467 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1468
1469 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1470
1471 == 4.2 Set External Sensor Mode ==
1472
1473
1474 Feature: Change External Sensor Mode.
1475
1476 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1477
1478 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1479 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1480 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1481 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1482 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1483 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1484 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1485 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1486 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1487 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1488 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1489
1490 **Response**
1491
1492 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1493
1494 Total bytes: 2 ~~ 5 bytes
1495
1496 **Example:**
1497
1498 * 0xA201: Set external sensor type to E1
1499
1500 * 0xA209: Same as AT+EXT=9
1501
1502 * 0xA20702003c: Same as AT+SETCNT=60
1503
1504 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1505
1506
1507 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1508
1509 * First Packet after OTAA Join
1510 * Every 24 hours since the first packet.
1511
1512 PID is default set to disable (0)
1513
1514 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1515
1516 (% style="color:#4f81bd" %)**AT Command:**
1517
1518 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1519 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1520 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1521
1522 (% style="color:#4f81bd" %)**Downlink Command:**
1523
1524 * **0xA800**  **~-~->** AT+PID=0
1525 * **0xA801**     **~-~->** AT+PID=1
1526
1527 == 4.4 Set Password ==
1528
1529
1530 Feature: Set device password, max 9 digits
1531
1532 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1533
1534 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1535 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1536 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1537 123456
1538
1539 OK
1540 )))
1541 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1542
1543 (% style="color:#4f81bd" %)**Downlink Command:**
1544
1545 No downlink command for this feature.
1546
1547
1548 == 4.5 Quit AT Command ==
1549
1550
1551 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1552
1553 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1554
1555 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1556 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1557 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1558
1559 (% style="color:#4f81bd" %)**Downlink Command:**
1560
1561 No downlink command for this feature.
1562
1563
1564 == 4.6 Set to sleep mode ==
1565
1566
1567 Feature: Set device to sleep mode
1568
1569 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1570 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1571
1572 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1573
1574 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1575 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1576 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1577 Clear all stored sensor data…
1578
1579 OK
1580 )))
1581
1582 (% style="color:#4f81bd" %)**Downlink Command:**
1583
1584 * There is no downlink command to set to Sleep mode.
1585
1586 == 4.7 Set system time ==
1587
1588
1589 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1590
1591 (% style="color:#4f81bd" %)**AT Command:**
1592
1593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1594 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1595 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1596 OK
1597
1598 Set System time to 2021-01-20 00:59:12
1599 )))
1600
1601 (% style="color:#4f81bd" %)**Downlink Command:**
1602
1603 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1604
1605
1606 == 4.8 Set Time Sync Mode ==
1607
1608
1609 (((
1610 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1611 )))
1612
1613 (((
1614 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1615 )))
1616
1617 (% style="color:#4f81bd" %)**AT Command:**
1618
1619 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1620 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1621 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1622
1623 (% style="color:#4f81bd" %)**Downlink Command:**
1624
1625 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1626 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1627
1628
1629 == 4.9 Set Time Sync Interval ==
1630
1631
1632 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1633
1634 (% style="color:#4f81bd" %)**AT Command:**
1635
1636 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1637 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1638 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1639
1640 (% style="color:#4f81bd" %)**Downlink Command:**
1641
1642 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1643
1644
1645 == 4.10 Get data ==
1646
1647
1648 Feature: Get the current sensor data.
1649
1650 (% style="color:#4f81bd" %)**AT Command:**
1651
1652 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1653 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1654
1655 == 4.11 Print data entries base on page ==
1656
1657
1658 Feature: Print the sector data from start page to stop page (max is 416 pages).
1659
1660 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1661
1662 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1663 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1664 |(% style="width:156px" %)(((
1665 AT+PDTA=1,3
1666 Print page 1 to 3
1667 )))|(% style="width:311px" %)(((
1668 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1669 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1670 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1671 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1672 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1673 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1674 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1675 8019570
1676 8019580
1677 8019590
1678 80195A0
1679 80195B0
1680 80195C0
1681 80195D0
1682 80195E0
1683 80195F0
1684
1685 OK
1686 )))
1687
1688 (% style="color:#4f81bd" %)**Downlink Command:**
1689
1690 No downlink commands for feature
1691
1692
1693 == 4.12 Print last few data entries ==
1694
1695
1696 Feature: Print the last few data entries
1697
1698 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1699
1700 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1701 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1702 |(% style="width:156px" %)(((
1703 AT+PLDTA=5
1704 Print last 5 entries
1705 )))|(% style="width:311px" %)(((
1706 Stop Tx and RTP events when read sensor data
1707 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1708 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1709 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1710 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1711 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1712 Start Tx and RTP events
1713 OK
1714 )))
1715
1716 (% style="color:#4f81bd" %)**Downlink Command:**
1717
1718 No downlink commands for feature
1719
1720
1721 == 4.13 Clear Flash Record ==
1722
1723
1724 Feature: Clear flash storage for data log feature.
1725
1726 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1727
1728 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1729 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1730 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1731 Clear all stored sensor data…
1732
1733 OK
1734 )))
1735
1736 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1737
1738 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1739
1740 == 4.14 Auto Send None-ACK messages ==
1741
1742
1743 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1744
1745 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1746
1747 The default factory setting is 0
1748
1749 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1750 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1751 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1752
1753 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1754
1755 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1756
1757 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1758
1759
1760 Feature: Set internal and external temperature sensor alarms.
1761
1762 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1763 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1764 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1765
1766 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1767
1768 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1769
1770 0): Cancel
1771
1772 1): Threshold alarm
1773
1774 2): Fluctuation alarm
1775
1776 3): Sampling multiple times and uplink together
1777
1778
1779 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1780
1781 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1782
1783
1784 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1785
1786 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1787
1788 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1789
1790
1791 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1792
1793 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1794
1795 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1796
1797
1798 **3): If Alarm Mode is set to 3:**
1799
1800 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1801 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1802 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1803 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1804 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1805 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1806
1807 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1808
1809 0xA5 00 ~-~- AT+WMOD=0.
1810
1811 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1812
1813 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1814
1815 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1816
1817 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1818
1819 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1820
1821
1822 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1823
1824
1825 Feature: use downlink to get firmware version.
1826
1827 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1828
1829 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1830 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1831 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1832
1833 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1834
1835 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1836
1837 (% style="color:#037691" %)**Sensor model**
1838
1839 0x0b: LHT65N/S
1840
1841
1842 (% style="color:#037691" %)**Firmware version**
1843
1844 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1845
1846 Example: 0x0140=V1.4.0
1847
1848
1849 (% style="color:#037691" %)** Frequency Band:**
1850
1851 * 0x01: EU868
1852 * 0x02: US915
1853 * 0x03: IN865
1854 * 0x04: AU915
1855 * 0x05: KZ865
1856 * 0x06: RU864
1857 * 0x07: AS923
1858 * 0x08: AS923-1
1859 * 0x09: AS923-2
1860 * 0xa0: AS923-3
1861
1862 (% style="color:#037691" %)**Subband**
1863
1864 value 0x00 ~~ 0x08
1865
1866 Example: 0xFF ~-~--> " NULL"
1867
1868
1869 (% style="color:#037691" %)**Battery**
1870
1871 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1872
1873 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1874
1875
1876 == 4.17 Setting LEDAlarm ==
1877
1878 Feature: Setting LEDAlarm
1879
1880 The default factory setting is 0
1881
1882 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1883 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1884 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1885
1886 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1887
1888 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1889
1890 = 5. Battery & How to replace =
1891
1892 == 5.1 Battery Type ==
1893
1894
1895 (((
1896 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1897 )))
1898
1899 (((
1900 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1901
1902 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1903 )))
1904
1905 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1906
1907 == 5.2 Replace Battery ==
1908
1909
1910 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1911
1912 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1913
1914
1915 == 5.3 Battery Life Analyze ==
1916
1917
1918 (((
1919 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1920 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1921 )))
1922
1923
1924 (((
1925 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1926 )))
1927
1928
1929 = 6. FAQ =
1930
1931 == 6.1 How to connect to LHT65N/S UART interface? ==
1932
1933
1934 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1935
1936 * Send AT Commands, and get output from LHT65N/S
1937 * Upgrade firmwre of LHT65N/S.
1938
1939 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1940
1941
1942 **Option of USB TTL adapter:**
1943
1944 * CP2101 USB TTL Adapter
1945 * CH340 USB TTL Adapter
1946 * FT232 USB TTL Adapter
1947
1948 **Option of Type-C Adapter:**
1949
1950 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1951
1952
1953 **Connection:**
1954
1955 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1956 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1957 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1958
1959 (((
1960
1961
1962 Connection Example:
1963
1964 [[image:1655802313617-381.png||_mstalt="293917"]]
1965
1966
1967 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1968
1969
1970 == 6.2 How to use AT Commands? ==
1971
1972
1973 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1974
1975 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1976 )))
1977
1978
1979 Input password and ATZ to activate LHT65N/S, As shown below:
1980
1981 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1982
1983
1984 AT Command List is as below:
1985
1986 AT+<CMD>? :  Help on <CMD>
1987
1988 AT+<CMD> :  Run <CMD>
1989
1990 AT+<CMD>=<value> :  Set the value
1991
1992 AT+<CMD>=? :  Get the value
1993
1994 AT+DEBUG:  Set more info output
1995
1996 ATZ:  Trig a reset of the MCU
1997
1998 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1999
2000 AT+DEUI:  Get or Set the Device EUI
2001
2002 AT+DADDR:  Get or Set the Device Address
2003
2004 AT+APPKEY:  Get or Set the Application Key
2005
2006 AT+NWKSKEY:  Get or Set the Network Session Key
2007
2008 AT+APPSKEY:  Get or Set the Application Session Key
2009
2010 AT+APPEUI:  Get or Set the Application EUI
2011
2012 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2013
2014 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2015
2016 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2017
2018 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2019
2020 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2021
2022 AT+RX2FQ:  Get or Set the Rx2 window frequency
2023
2024 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2025
2026 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2027
2028 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2029
2030 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2031
2032 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2033
2034 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2035
2036 AT+NWKID:  Get or Set the Network ID
2037
2038 AT+FCU:  Get or Set the Frame Counter Uplink
2039
2040 AT+FCD:  Get or Set the Frame Counter Downlink
2041
2042 AT+CLASS:  Get or Set the Device Class
2043
2044 AT+JOIN:  Join network
2045
2046 AT+NJS:  Get the join status
2047
2048 AT+SENDB:  Send hexadecimal data along with the application port
2049
2050 AT+SEND:  Send text data along with the application port
2051
2052 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2053
2054 AT+RECV:  Print last received data in raw format
2055
2056 AT+VER:  Get current image version and Frequency Band
2057
2058 AT+CFM:  Get or Set the confirmation mode (0-1)
2059
2060 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2061
2062 AT+SNR:  Get the SNR of the last received packet
2063
2064 AT+RSSI:  Get the RSSI of the last received packet
2065
2066 AT+TDC:  Get or set the application data transmission interval in ms
2067
2068 AT+PORT:  Get or set the application port
2069
2070 AT+DISAT:  Disable AT commands
2071
2072 AT+PWORD: Set password, max 9 digits
2073
2074 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2075
2076 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2077
2078 AT+PDTA:  Print the sector data from start page to stop page
2079
2080 AT+PLDTA:  Print the last few sets of data
2081
2082 AT+CLRDTA:  Clear the storage, record position back to 1st
2083
2084 AT+SLEEP:  Set sleep mode
2085
2086 AT+EXT:  Get or Set external sensor model
2087
2088 AT+BAT:  Get the current battery voltage in mV
2089
2090 AT+CFG:  Print all configurations
2091
2092 AT+WMOD:  Get or Set Work Mode
2093
2094 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2095
2096 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2097
2098 AT+SETCNT:  Set the count at present
2099
2100 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2101
2102 AT+RPL:  Get or set response level
2103
2104 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2105
2106 AT+LEAPSEC:  Get or Set Leap Second
2107
2108 AT+SYNCMOD:  Get or Set time synchronization method
2109
2110 AT+SYNCTDC:  Get or set time synchronization interval in day
2111
2112 AT+PID:  Get or set the PID
2113
2114
2115 == 6.3 How to use Downlink commands? ==
2116
2117
2118 **Downlink commands:**
2119
2120
2121 (% style="color:blue" %)**TTN:**
2122
2123 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2124
2125
2126
2127 (% style="color:blue" %)**Helium: **
2128
2129 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2130
2131
2132
2133 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2134
2135
2136 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2137
2138
2139 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2140
2141
2142
2143 (% style="color:blue" %)**AWS-IOT :**
2144
2145 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2146
2147
2148 == 6.4 How to change the uplink interval? ==
2149
2150
2151 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2152
2153
2154 == 6.5 How to upgrade firmware? ==
2155
2156
2157 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2158 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2159
2160
2161 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2162
2163
2164 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2165
2166 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2167
2168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2169
2170 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2171
2172 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2173
2174 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2175
2176 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2177
2178 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2179
2180 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2181
2182 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2183
2184 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2185
2186
2187 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2188
2189 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2190
2191 [[image:image-20240716174308-1.png||height="523" width="410"]]
2192
2193
2194 === 6.5.2 Updated firmware for V1.4 and above ===
2195
2196
2197 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2198
2199 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2200 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2201
2202 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2203
2204
2205 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2206
2207
2208 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2209
2210 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2211
2212
2213 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2214
2215
2216 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2217
2218
2219 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2220
2221 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2222
2223 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2224
2225
2226
2227 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2228
2229 Connect PC and LHT65N/S via USB TTL adapter .
2230
2231 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2232
2233 **Connection method:**
2234
2235 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2236
2237 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2238
2239 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2240
2241 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2242
2243 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2244
2245
2246 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2247
2248 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2249
2250
2251 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2252
2253 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2254
2255
2256 When this interface appears, it indicates that the download has been completed.
2257
2258 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2259
2260
2261 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2262
2263
2264 == 6.6 Why can't I see the datalog information ==
2265
2266
2267 ~1. The time is not aligned, and the correct query command is not used.
2268
2269 2. Decoder error, did not parse the datalog data, the data was filtered.
2270
2271
2272 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2273
2274
2275 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2276
2277 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2278
2279
2280 After there is UART Connectio, run below commands:
2281
2282 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2283
2284 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2285
2286 Example output:
2287
2288 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2289
2290
2291 = 7. Order Info =
2292
2293
2294 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2295
2296 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2297
2298 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2299 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2300 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2301 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2303 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2304 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2305 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2306
2307 = 8. Packing Info =
2308
2309
2310 **Package Includes**:
2311
2312 * LHT65N/S Temperature & Humidity Sensor x 1
2313 * 1 x External Lora Antenna for LHT65S
2314 * Optional external sensor
2315
2316 = 9. Reference material =
2317
2318
2319 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2320
2321 = 10. FCC Warning =
2322
2323
2324 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2325
2326 (1) This device may not cause harmful interference;
2327
2328 (2) this device must accept any interference received, including interference that may cause undesired operation.