Version 370.1 by Xiaoling on 2025/04/22 16:58

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89 == 1.4 Model Difference ==
90
91
92 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
93
94 (% style="color:#037691" %)**For antenna design: **
95
96 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
97 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
98
99 [[image:image-20250422095731-2.png]]
100
101
102 (% style="color:#037691" %)**For enclosure dimensions:**
103
104 * **LHT65N**
105
106 [[image:image-20250422165135-1.png]]
107
108
109
110 * **LHT65S (Unit: mm)**
111
112
113
114 [[image:image-20250422165216-2.png]]
115
116
117 = 2. Connect LHT65N/S to IoT Server =
118
119 == 2.1 How does LHT65N/S work? ==
120
121
122 (((
123 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
124 )))
125
126 (((
127 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
128 )))
129
130
131 == 2.2 How to Activate LHT65N/S? ==
132
133
134 (((
135 The LHT65N/S has two working modes:
136 )))
137
138 * (((
139 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
140 )))
141 * (((
142 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
143 )))
144
145 (((
146 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
147 )))
148
149 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
150
151 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
152 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
153 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
154 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
155 )))
156 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
157 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
158 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
159 )))
160 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
161
162 == 2.3 Example to join LoRaWAN network ==
163
164
165 (% class="wikigeneratedid" %)
166 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
167
168 (% class="wikigeneratedid" %)
169 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
170
171
172 (((
173 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
174 )))
175
176
177 === 2.3.1 Step 1: Create Device on TTN ===
178
179
180 (((
181 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
182 )))
183
184 (((
185 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
186 )))
187
188 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
189
190 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
191
192 (% style="color:blue" %)**1. Create application**
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
197
198
199 (% style="color:blue" %)**2. Add devices to the created Application.**
200
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
203
204 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
205
206 (% style="color:blue" %)**3. Enter end device specifics manually.**
207
208 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
209
210
211 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
212
213
214 === 2.3.2 Step 2: Add decoder ===
215
216
217 In TTN, user can add a custom payload so it shows friendly reading.
218
219 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
220
221 Below is TTN screen shot
222
223 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
224
225 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
226
227 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
228
229
230 (((
231 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
232 )))
233
234 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
235
236
237 == 2.4 Uplink Payload (Fport~=2) ==
238
239
240 (((
241 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
242 )))
243
244 (((
245 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
246 )))
247
248 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 **Size(bytes)**
251 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
252 **2**
253 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
254 **2**
255 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
256 **2**
257 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
258 **1**
259 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
260 **4**
261 )))
262 |(% style="width:97px" %)(((
263 Value
264 )))|(% style="width:39px" %)(((
265 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
266 )))|(% style="width:100px" %)(((
267 (((
268 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
269 )))
270 )))|(% style="width:77px" %)(((
271 (((
272 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
273 )))
274 )))|(% style="width:47px" %)(((
275 [[Ext>>||anchor="H2.4.5Ext23"]] #
276 )))|(% style="width:51px" %)(((
277 [[Ext value>>||anchor="H2.4.6Extvalue"]]
278 )))
279
280 * The First 6 bytes: has fix meanings for every LHT65N/S.
281
282 * The 7th byte (EXT #): defines the external sensor model.
283
284 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
285
286 === 2.4.1 Decoder in TTN V3 ===
287
288
289 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
290
291 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
292
293
294 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
295
296
297 === 2.4.2 BAT-Battery Info ===
298
299
300 These two bytes of BAT include the battery state and the actually voltage.
301
302 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
303 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
304 **Bit(bit)**
305 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
306 |(% style="width:66px" %)(((
307 Value
308 )))|(% style="width:250px" %)(((
309 BAT Status
310 00(b): Ultra Low ( BAT <= 2.50v)
311 01(b): Low (2.50v <=BAT <= 2.55v)
312 10(b): OK (2.55v <= BAT <=2.65v)
313 11(b): Good (BAT >= 2.65v)
314 )))|(% style="width:152px" %)Actually BAT voltage
315
316 **(b)stands for binary**
317
318
319 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
320
321
322 Check the battery voltage for LHT65N/S.
323
324 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
325
326 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
327
328 === 2.4.3 Built-in Temperature ===
329
330
331 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
332
333 * Temperature:  0x0ABB/100=27.47℃
334
335 [[image:image-20220522235639-3.png||_mstalt="432120"]]
336
337 * Temperature:  (0xF5C6-65536)/100=-26.18℃
338
339 === 2.4.4 Built-in Humidity ===
340
341
342 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
343
344 * Humidity:    0x025C/10=60.4%
345
346 === 2.4.5 Ext # ===
347
348
349 Bytes for External Sensor:
350
351 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
352 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
353 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
354 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
355 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
356 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
357 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
358 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
359 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
360 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
361
362 === 2.4.6 Ext value ===
363
364 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
365
366
367 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
368 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
369 **Size(bytes)**
370 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
371 **2**
372 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
373 2
374 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
375 **2**
376 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
377 1
378 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
379 2
380 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
381 2
382 )))
383 |(% style="width:110px" %)(((
384 Value
385 )))|(% style="width:71px" %)(((
386 BAT & BAT Status
387 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
388 Status & Ext
389 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
390
391 [[image:image-20220522235639-5.png||_mstalt="432848"]]
392
393
394 * DS18B20 temp=0x0ADD/100=27.81℃
395
396 The last 2 bytes of data are meaningless
397
398 [[image:image-20220522235639-6.png||_mstalt="433212"]]
399
400
401 * External temperature= (0xF54F-65536)/100=-27.37℃
402
403 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
404
405 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
406
407 The last 2 bytes of data are meaningless
408
409 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
410
411
412 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
413
414
415 (((
416 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
417 )))
418
419 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
420 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
421 **Size(bytes)**
422 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
423 **2**
424 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
425 **2**
426 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
427 **2**
428 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
429 **1**
430 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
431 **4**
432 )))
433 |(% style="width:110px" %)(((
434 Value
435 )))|(% style="width:71px" %)(((
436 External temperature
437 )))|(% style="width:99px" %)(((
438 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
439 )))|(% style="width:132px" %)(((
440 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
441 )))|(% style="width:54px" %)(((
442 Status & Ext
443 )))|(% style="width:64px" %)(((
444 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
445 )))
446
447 * **Battery status & Built-in Humidity**
448
449 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
450 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
451 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
452 BAT Status
453 00(b): Ultra Low ( BAT <= 2.50v)
454 01(b): Low  (2.50v <=BAT <= 2.55v)
455 10(b): OK   (2.55v <= BAT <=2.65v)
456 11(b): Good   (BAT >= 2.65v)
457 )))|(% style="width:132px" %)(((
458 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
459 )))
460
461 * **Status & Ext Byte**
462
463 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
464 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
465 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
466
467 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
468 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
469 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
470
471 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
472
473
474 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
475 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
476 **Size(bytes)**
477 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
478 **2**
479 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
480 2
481 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
482 **2**
483 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
484 1
485 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
486 2
487 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
488 2
489 )))
490 |(% style="width:110px" %)(((
491 Value
492 )))|(% style="width:71px" %)(((
493 BAT & BAT Status
494 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
495 Status & Ext
496 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
497
498 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
499
500 be used to power the external ADC sensor; user can control the power on time for this
501
502 (% style="color:blue" %)**sensor by setting:**
503
504 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
505
506 **For example:**
507
508 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
509
510
511 Or use **downlink command A2** to set the same.
512
513 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
514
515 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
516
517 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
518
519
520 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
521
522 [[image:image-20220628150714-4.png||_mstalt="431054"]]
523
524
525 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
526
527
528 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
529
530 [[image:image-20220628151005-5.png||_mstalt="429546"]]
531
532
533 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
534
535 [[image:image-20220628151056-6.png||_mstalt="431873"]]
536
537
538 3) Within range
539
540 [[image:image-20220628151143-7.png||_mstalt="431210"]]
541
542
543 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
544
545
546 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
547
548 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
549
550 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
551 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
552 **Size(bytes)**
553 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
554 **2**
555 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
556 2
557 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
558 **2**
559 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
560 1
561 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
562 2
563 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
564 2
565 )))
566 |(% style="width:110px" %)(((
567 Value
568 )))|(% style="width:71px" %)(((
569 BAT & BAT Status
570 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
571 Status & Ext
572 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
573
574 [[image:image-20220906102307-7.png||_mstalt="430443"]]
575
576 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
577
578 The external cable NE2 can be use for MOD4 and MOD8
579
580
581 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
582
583
584 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
585
586 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
587
588 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
589 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
590 **Size(bytes)**
591 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
592 **2**
593 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
594 2
595 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
596 **2**
597 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
598 1
599 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
600 2
601 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
602 2
603 )))
604 |(% style="width:110px" %)(((
605 Value
606 )))|(% style="width:71px" %)(((
607 BAT & BAT Status
608 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
609 Status & Ext
610 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
611
612 [[image:SHT31.png||_mstalt="104715"]]
613
614
615 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
616
617
618 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
619
620
621 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
622
623 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
624
625 In Open State, the power consumption is the same as if there is no probe
626
627 In Close state, the power consumption will be 3uA higher than normal.
628
629 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
630
631
632 Ext=4,Interrupt Sensor:
633
634 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
635 |(% style="width:101px" %)(((
636 **AT+EXT=4,1**
637 )))|(% style="width:395px" %)(((
638 **Sent uplink packet in both rising and falling interrupt**
639 )))
640 |(% style="width:101px" %)(((
641 **AT+EXT=4,2**
642 )))|(% style="width:395px" %)(((
643 **Sent uplink packet only in falling interrupt**
644 )))
645 |(% style="width:101px" %)(((
646 **AT+EXT=4,3**
647 )))|(% style="width:395px" %)(((
648 **Sent uplink packet only in rising interrupt**
649 )))
650
651 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
652 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
653 **Size(bytes)**
654 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
655 **2**
656 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
657 2
658 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
659 **2**
660 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
661 1
662 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
663 1
664 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
665 2
666 )))
667 |(% style="width:110px" %)(((
668 Value
669 )))|(% style="width:71px" %)(((
670 BAT & BAT Status
671 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
672 Status & Ext
673 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
674
675 Trigger by falling edge:
676
677 [[image:image-20220906101145-2.png||_mstalt="428324"]]
678
679
680 Trigger by raising edge:
681
682 [[image:image-20220906101145-3.png||_mstalt="428688"]]
683
684
685 (% style="color:blue" %)**BAT & BAT Status :**
686
687 Check the battery voltage.
688
689 Ex1: 0x0B45 = 2885mV
690
691 Ex2: 0x0B49 = 2889mV
692
693
694 (% style="color:blue" %)**TempC_SHT :**
695
696 The temperature detected by the built-in temperature and humidity sensor SHT31.
697
698 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
699
700 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
701
702 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
703
704
705 (% style="color:blue" %)**Hum_SHT :**
706
707 The humidity detected by the built-in temperature and humidity sensor SHT31.
708
709 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
710
711
712 (% style="color:blue" %)**Status & Ext :**
713
714 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
715 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
716 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
717
718 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
719 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
720 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
721
722 (% style="color:blue" %)**Exti_pin_level :**
723
724 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
725 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
726
727 (% style="color:blue" %)**Exti_status :**
728
729 Determines whether the uplink packet is generated by an interrupt.
730
731 1: Interrupt packet
732
733 0: Normal TDC uplink packet
734
735
736 (% style="color:blue" %)**senseless :**
737
738 Reserved position, meaningless. The value is fixed to 0x7FFF.
739
740
741 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
742
743
744 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
745
746
747 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
748
749 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
750
751
752 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
753
754 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
755
756
757 Ext=8, Counting Sensor ( 4 bytes):
758
759 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
760 |(% style="width:131px" %)(((
761 **AT+EXT=8,0**
762 )))|(% style="width:195px" %)(((
763 **Count at falling interrupt**
764 )))
765 |(% style="width:131px" %)(((
766 **AT+EXT=8,1**
767 )))|(% style="width:195px" %)(((
768 **Count at rising interrupt**
769 )))
770 |(% style="width:131px" %)(((
771 **AT+SETCNT=60**
772 )))|(% style="width:195px" %)(((
773 **Sent current count to 60**
774 )))
775
776 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
777 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
778 **Size(bytes)**
779 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
780 **2**
781 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
782 2
783 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
784 **2**
785 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
786 1
787 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
788 4
789 )))
790 |(% style="width:110px" %)(((
791 Value
792 )))|(% style="width:71px" %)(((
793 BAT & BAT Status
794 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
795 Status & Ext
796 )))|(% style="width:64px" %)Exit_count
797
798 [[image:image-20220906101320-6.png||_mstalt="428064"]]
799
800
801 (% style="color:blue" %)**A2 downlink Command:**
802
803 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
804
805 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
806
807 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
808
809 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
810
811 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
812
813
814 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
815
816
817 (((
818 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
819 )))
820
821 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
822 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
823 **Size(bytes)**
824 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
825 **2**
826 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
827 **2**
828 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
829 **2**
830 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
831 **1**
832 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
833 **4**
834 )))
835 |(% style="width:110px" %)(((
836 Value
837 )))|(% style="width:71px" %)(((
838 External temperature
839 )))|(% style="width:99px" %)(((
840 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
841 )))|(% style="width:132px" %)(((
842 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
843 )))|(% style="width:54px" %)(((
844 Status & Ext
845 )))|(% style="width:64px" %)(((
846 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
847 )))
848
849 * **Battery status & Built-in Humidity**
850
851 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
852 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
853 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
854 BAT Status
855 00(b): Ultra Low ( BAT <= 2.50v)
856 01(b): Low  (2.50v <=BAT <= 2.55v)
857 10(b): OK   (2.55v <= BAT <=2.65v)
858 11(b): Good   (BAT >= 2.65v)
859 )))|(% style="width:132px" %)(((
860 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
861 )))
862
863 * **Status & Ext Byte**
864
865 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
866 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
867 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
868
869 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
870 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
871 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
872
873 == 2.5 Show data on Datacake ==
874
875
876 (((
877 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
878 )))
879
880
881 (((
882 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
883 )))
884
885 (((
886 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
887 )))
888
889
890 (((
891 Add Datacake:
892 )))
893
894 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
895
896
897 Select default key as Access Key:
898
899
900 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
901
902
903 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
904
905 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
906
907
908 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
909
910
911 == 2.6 Datalog Feature ==
912
913
914 (((
915 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
916 )))
917
918
919 === 2.6.1 Ways to get datalog via LoRaWAN ===
920
921
922 There are two methods:
923
924 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
925
926
927 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
928
929
930 (% style="color:red" %)**Note for method 2:**
931
932 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
933 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
934
935 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
936
937 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
938
939
940 === 2.6.2 Unix TimeStamp ===
941
942
943 LHT65N/S uses Unix TimeStamp format based on
944
945 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
946
947
948 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
949
950 Below is the converter example
951
952 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
953
954
955 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
956
957
958 === 2.6.3 Set Device Time ===
959
960
961 (((
962 (% style="color:blue" %)**There are two ways to set device's time:**
963 )))
964
965 (((
966 **1.  Through LoRaWAN MAC Command (Default settings)**
967 )))
968
969 (((
970 User need to set SYNCMOD=1 to enable sync time via MAC command.
971 )))
972
973 (((
974 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
975 )))
976
977 (((
978 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
979 )))
980
981
982 (((
983 **2. Manually Set Time**
984 )))
985
986 (((
987 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
988 )))
989
990
991 === 2.6.4 Poll sensor value ===
992
993
994 User can poll sensor value based on timestamps from the server. Below is the downlink command.
995
996 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
997 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
998 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
999
1000 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1001
1002 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1003
1004 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1005
1006 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1007
1008
1009 === 2.6.5 Datalog Uplink payload ===
1010
1011
1012 The Datalog poll reply uplink will use below payload format.
1013
1014 **Retrieval data payload:**
1015
1016 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1017 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1018 **Size(bytes)**
1019 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1020 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1021
1022 **Poll message flag & Ext:**
1023
1024 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1025 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1026 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1027
1028 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1029
1030 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1031
1032 * Poll Message Flag is set to 1.
1033
1034 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1035
1036 For example, in US915 band, the max payload for different DR is:
1037
1038 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1039
1040 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1041
1042 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1043
1044 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1045
1046 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1047
1048
1049 **Example:**
1050
1051 If LHT65N/S has below data inside Flash:
1052
1053 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1054 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1055 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1056 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1057 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1058 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1059 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1060 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1061 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1062 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1063
1064 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1065
1066 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1067
1068 Stop time: 60066DA7= time 21/1/19 05:27:03
1069
1070
1071 **LHT65N/S will uplink this payload.**
1072
1073 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1074
1075
1076 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1077
1078 Where the first 11 bytes is for the first entry:
1079
1080 7FFF089801464160065F97
1081
1082 Ext sensor data=0x7FFF/100=327.67
1083
1084 Temp=0x088E/100=22.00
1085
1086 Hum=0x014B/10=32.6
1087
1088 poll message flag & Ext=0x41,means reply data,Ext=1
1089
1090 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1091
1092
1093 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1094
1095
1096 (((
1097 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1098 )))
1099
1100 (((
1101 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1102
1103
1104 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1105
1106 (((
1107 (% class="box infomessage" %)
1108 (((
1109 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1110 )))
1111 )))
1112
1113 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1114
1115 **~ AT+WMOD=1,60,-10,20**
1116
1117
1118 Explain:
1119
1120 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1121 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1122 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1123
1124 (% style="color:#4f81bd" %)**Downlink Command:**
1125
1126 **Example: **A5013CFC1807D0
1127
1128 MOD=01
1129
1130 CITEMP=3C(S) =60(S)
1131
1132 TEMPlow=FC18 = -1000/100=-10(℃)
1133
1134 TEMPhigh=07D0=2000/100=20(℃)
1135
1136
1137 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1138
1139 **AT+WMOD=2,60,5** 
1140
1141 Explain:
1142
1143 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1144 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1145 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1146
1147 (% style="color:#4f81bd" %)**Downlink Command**
1148
1149 **Example: **A5023C05
1150
1151 MOD=02
1152
1153 CITEMP=3C(S)=60(S)
1154
1155 temperature fluctuation=05(℃)
1156
1157
1158 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1159
1160 **AT+WMOD=3,1,60,20,-16,32,1**   
1161
1162 Explain:
1163
1164 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1165 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1166 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1167 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1168 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1169 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1170
1171 (% style="color:#4f81bd" %)**Downlink Command:**
1172
1173 **Example: **A50301003C14FFF0002001
1174
1175 MOD=03
1176
1177 TEMP=DS18B20
1178
1179 CITEMP=003C(S)=60(S)
1180
1181 Total number of acquisitions=14
1182
1183 TEMPlow=FFF0=-16(℃)
1184
1185 TEMPhigh=0020=20(℃)
1186
1187 ARTEMP=01
1188
1189
1190 **Uplink payload( Fport=3)**
1191
1192 **Example: CBEA**01**0992**//0A41//**09C4**
1193
1194 BatV=CBEA
1195
1196 TEMP=DS18B20
1197
1198 Temp1=0992  ~/~/ 24.50℃
1199
1200 Temp2=0A41  ~/~/ 26.25℃
1201
1202 Temp3=09C4  ~/~/ 25.00℃
1203
1204 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1205
1206 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1207 )))
1208
1209
1210 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1211
1212
1213 (% class="box infomessage" %)
1214 (((
1215 (((
1216 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1217 )))
1218
1219 (((
1220 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1221 )))
1222
1223 (((
1224 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1225 )))
1226
1227 (((
1228 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1229 )))
1230
1231 (((
1232 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1233 )))
1234 )))
1235
1236 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1237
1238 Total bytes: 8 bytes
1239
1240 **Example:**AA0100010001003C
1241
1242 WMOD=01
1243
1244 CITEMP=0001
1245
1246 TEMPlow=0001
1247
1248 TEMPhigh=003C
1249
1250
1251 == 2.8 LED Indicator ==
1252
1253
1254 The LHT65 has a triple color LED which for easy showing different stage .
1255
1256 While user press ACT button, the LED will work as per LED status with ACT button.
1257
1258 In a normal working state:
1259
1260 * For each uplink, the BLUE LED or RED LED will blink once.
1261 BLUE LED when external sensor is connected.
1262 * RED LED when external sensor is not connected
1263 * For each success downlink, the PURPLE LED will blink once
1264
1265 == 2.9 installation ==
1266
1267
1268 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1269
1270
1271 = 3. Sensors and Accessories =
1272
1273 == 3.1 E2 Extension Cable ==
1274
1275
1276 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1277
1278
1279 **1m long breakout cable for LHT65N/S. Features:**
1280
1281 * (((
1282 Use for AT Command, works for both LHT52, LHT65N/S
1283 )))
1284 * (((
1285 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1286 )))
1287 * (((
1288 Supports ADC mode to monitor external ADC
1289 )))
1290 * (((
1291 Supports Interrupt mode
1292 )))
1293 * (((
1294 Exposed All pins from the LHT65N/S Type-C connector.
1295
1296
1297
1298 )))
1299
1300 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1301
1302
1303 == 3.2 E3 Temperature Probe ==
1304
1305
1306 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1307
1308
1309 Temperature sensor with 2 meters cable long
1310
1311 * Resolution: 0.0625 °C
1312 * ±0.5°C accuracy from -10°C to +85°C
1313 * ±2°C accuracy from -55°C to +125°C
1314 * Operating Range: -40 ~~ 125 °C
1315 * Working voltage 2.35v ~~ 5v
1316
1317 == 3.3 E31F Temperature Probe ==
1318
1319
1320 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1321
1322
1323 Temperature sensor with 1 meters cable long
1324
1325
1326 **Built-in Temperature Sensor:**
1327
1328 * Resolution: 0.01 °C
1329 * Accuracy Tolerance : Typ ±0.3 °C
1330 * Long Term Drift: < 0.02 °C/yr
1331 * Operating Range: -40 ~~ 80 °C
1332
1333 **Built-in Humidity Sensor:**
1334
1335 * Resolution: 0.04 % RH
1336 * Accuracy Tolerance : Typ ±3 % RH
1337 * Long Term Drift: < 0.25 RH/yr
1338 * Operating Range: 0 ~~ 96 % RH
1339
1340 **External Temperature Sensor :**
1341
1342 * Resolution: 0.01 °C
1343 * Accuracy Tolerance : Typical ±0.3 °C
1344 * Long Term Drift: < 0.02 °C/yr
1345 * Operating Range: -40 ~~ 125 °C
1346
1347 **External Humidity Sensor :**
1348
1349 * Resolution: 0.04 % RH
1350 * Accuracy Tolerance : Typ ±3 % RH
1351 * Long Term Drift: < 0.25 RH/yr
1352 * Operating Range: 0 ~~ 96 % RH
1353
1354 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1355
1356
1357 External Temperature Sensor – NE117:
1358 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1359
1360 * Silica gel cable
1361 * ±0.1 °C (maximum) from –20 °C to 50 °C
1362 * ±0.2 °C (maximum) from –40 °C to 100 °C
1363 * ±0.3 °C (maximum) from –55 °C to 150 °C
1364
1365 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1366
1367
1368 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1369
1370
1371 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1372 * 3 wires: VCC/GND/INT
1373 * Cable Lenght: 1 meter
1374
1375 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1376
1377 LHT65N/S-DC can be used to connect various types of external sensor. below.
1378
1379 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1380
1381 [[image:image-20240422100149-5.png||height="163" width="510"]]
1382
1383 [[image:image-20240422100217-6.png||height="141" width="507"]]
1384
1385
1386 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1387
1388
1389 * Aluminum Alloy Door Sensor
1390 * Detect Distance: ~~3cm
1391 * Cable Lenght: 1 meter
1392
1393 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1394
1395 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1396
1397
1398 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1399
1400
1401 (((
1402 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1403 )))
1404
1405 * (((
1406 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1407 )))
1408
1409 * (((
1410 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1411 )))
1412
1413 (((
1414 There are two kinds of commands to configure LHT65N/S, they are:
1415 )))
1416
1417 * (((
1418 (% style="color:#4f81bd" %)**General Commands**.
1419 )))
1420
1421 (((
1422 These commands are to configure:
1423 )))
1424
1425 1. (((
1426 General system settings like: uplink interval.
1427 )))
1428 1. (((
1429 LoRaWAN protocol & radio-related commands.
1430 )))
1431
1432 (((
1433 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1434 )))
1435
1436 * (((
1437 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1438 )))
1439
1440 (((
1441 These commands are only valid for LHT65N/S, as below:
1442 )))
1443
1444
1445 == 4.1 Set Transmit Interval Time ==
1446
1447
1448 Feature: Change LoRaWAN End Node Transmit Interval.
1449
1450
1451 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1452
1453 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1454 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1455 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1456 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1457
1458 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1459
1460 Format: Command Code (0x01) followed by 3 bytes time value.
1461
1462 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1463
1464 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1465
1466 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1467
1468 == 4.2 Set External Sensor Mode ==
1469
1470
1471 Feature: Change External Sensor Mode.
1472
1473 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1474
1475 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1476 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1477 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1478 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1479 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1480 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1481 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1482 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1483 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1484 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1485 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1486
1487 **Response**
1488
1489 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1490
1491 Total bytes: 2 ~~ 5 bytes
1492
1493 **Example:**
1494
1495 * 0xA201: Set external sensor type to E1
1496
1497 * 0xA209: Same as AT+EXT=9
1498
1499 * 0xA20702003c: Same as AT+SETCNT=60
1500
1501 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1502
1503
1504 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1505
1506 * First Packet after OTAA Join
1507 * Every 24 hours since the first packet.
1508
1509 PID is default set to disable (0)
1510
1511 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1512
1513 (% style="color:#4f81bd" %)**AT Command:**
1514
1515 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1516 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1517 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1518
1519 (% style="color:#4f81bd" %)**Downlink Command:**
1520
1521 * **0xA800**  **~-~->** AT+PID=0
1522 * **0xA801**     **~-~->** AT+PID=1
1523
1524 == 4.4 Set Password ==
1525
1526
1527 Feature: Set device password, max 9 digits
1528
1529 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1530
1531 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1532 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1533 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1534 123456
1535
1536 OK
1537 )))
1538 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1539
1540 (% style="color:#4f81bd" %)**Downlink Command:**
1541
1542 No downlink command for this feature.
1543
1544
1545 == 4.5 Quit AT Command ==
1546
1547
1548 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1549
1550 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1551
1552 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1553 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1554 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1555
1556 (% style="color:#4f81bd" %)**Downlink Command:**
1557
1558 No downlink command for this feature.
1559
1560
1561 == 4.6 Set to sleep mode ==
1562
1563
1564 Feature: Set device to sleep mode
1565
1566 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1567 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1568
1569 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1570
1571 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1572 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1573 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1574 Clear all stored sensor data…
1575
1576 OK
1577 )))
1578
1579 (% style="color:#4f81bd" %)**Downlink Command:**
1580
1581 * There is no downlink command to set to Sleep mode.
1582
1583 == 4.7 Set system time ==
1584
1585
1586 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1587
1588 (% style="color:#4f81bd" %)**AT Command:**
1589
1590 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1591 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1592 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1593 OK
1594
1595 Set System time to 2021-01-20 00:59:12
1596 )))
1597
1598 (% style="color:#4f81bd" %)**Downlink Command:**
1599
1600 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1601
1602
1603 == 4.8 Set Time Sync Mode ==
1604
1605
1606 (((
1607 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1608 )))
1609
1610 (((
1611 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1612 )))
1613
1614 (% style="color:#4f81bd" %)**AT Command:**
1615
1616 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1617 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1618 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1619
1620 (% style="color:#4f81bd" %)**Downlink Command:**
1621
1622 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1623 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1624
1625
1626 == 4.9 Set Time Sync Interval ==
1627
1628
1629 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1630
1631 (% style="color:#4f81bd" %)**AT Command:**
1632
1633 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1634 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1635 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1636
1637 (% style="color:#4f81bd" %)**Downlink Command:**
1638
1639 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1640
1641
1642 == 4.10 Get data ==
1643
1644
1645 Feature: Get the current sensor data.
1646
1647 (% style="color:#4f81bd" %)**AT Command:**
1648
1649 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1650 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1651
1652 == 4.11 Print data entries base on page ==
1653
1654
1655 Feature: Print the sector data from start page to stop page (max is 416 pages).
1656
1657 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1658
1659 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1660 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1661 |(% style="width:156px" %)(((
1662 AT+PDTA=1,3
1663 Print page 1 to 3
1664 )))|(% style="width:311px" %)(((
1665 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1666 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1667 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1668 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1669 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1670 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1671 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1672 8019570
1673 8019580
1674 8019590
1675 80195A0
1676 80195B0
1677 80195C0
1678 80195D0
1679 80195E0
1680 80195F0
1681
1682 OK
1683 )))
1684
1685 (% style="color:#4f81bd" %)**Downlink Command:**
1686
1687 No downlink commands for feature
1688
1689
1690 == 4.12 Print last few data entries ==
1691
1692
1693 Feature: Print the last few data entries
1694
1695 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1696
1697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1698 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1699 |(% style="width:156px" %)(((
1700 AT+PLDTA=5
1701 Print last 5 entries
1702 )))|(% style="width:311px" %)(((
1703 Stop Tx and RTP events when read sensor data
1704 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1705 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1706 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1707 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1708 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1709 Start Tx and RTP events
1710 OK
1711 )))
1712
1713 (% style="color:#4f81bd" %)**Downlink Command:**
1714
1715 No downlink commands for feature
1716
1717
1718 == 4.13 Clear Flash Record ==
1719
1720
1721 Feature: Clear flash storage for data log feature.
1722
1723 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1724
1725 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1726 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1727 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1728 Clear all stored sensor data…
1729
1730 OK
1731 )))
1732
1733 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1734
1735 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1736
1737 == 4.14 Auto Send None-ACK messages ==
1738
1739
1740 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1741
1742 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1743
1744 The default factory setting is 0
1745
1746 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1747 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1748 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1749
1750 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1751
1752 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1753
1754 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1755
1756
1757 Feature: Set internal and external temperature sensor alarms.
1758
1759 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1760 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1761 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1762
1763 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1764
1765 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1766
1767 0): Cancel
1768
1769 1): Threshold alarm
1770
1771 2): Fluctuation alarm
1772
1773 3): Sampling multiple times and uplink together
1774
1775
1776 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1777
1778 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1779
1780
1781 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1782
1783 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1784
1785 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1786
1787
1788 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1789
1790 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1791
1792 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1793
1794
1795 **3): If Alarm Mode is set to 3:**
1796
1797 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1798 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1799 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1800 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1801 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1802 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1803
1804 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1805
1806 0xA5 00 ~-~- AT+WMOD=0.
1807
1808 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1809
1810 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1811
1812 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1813
1814 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1815
1816 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1817
1818
1819 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1820
1821
1822 Feature: use downlink to get firmware version.
1823
1824 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1825
1826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1827 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1828 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1829
1830 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1831
1832 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1833
1834 (% style="color:#037691" %)**Sensor model**
1835
1836 0x0b: LHT65N/S
1837
1838
1839 (% style="color:#037691" %)**Firmware version**
1840
1841 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1842
1843 Example: 0x0140=V1.4.0
1844
1845
1846 (% style="color:#037691" %)** Frequency Band:**
1847
1848 * 0x01: EU868
1849 * 0x02: US915
1850 * 0x03: IN865
1851 * 0x04: AU915
1852 * 0x05: KZ865
1853 * 0x06: RU864
1854 * 0x07: AS923
1855 * 0x08: AS923-1
1856 * 0x09: AS923-2
1857 * 0xa0: AS923-3
1858
1859 (% style="color:#037691" %)**Subband**
1860
1861 value 0x00 ~~ 0x08
1862
1863 Example: 0xFF ~-~--> " NULL"
1864
1865
1866 (% style="color:#037691" %)**Battery**
1867
1868 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1869
1870 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1871
1872
1873 == 4.17 Setting LEDAlarm ==
1874
1875 Feature: Setting LEDAlarm
1876
1877 The default factory setting is 0
1878
1879 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1880 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1881 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1882
1883 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1884
1885 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1886
1887 = 5. Battery & How to replace =
1888
1889 == 5.1 Battery Type ==
1890
1891
1892 (((
1893 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1894 )))
1895
1896 (((
1897 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1898
1899 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1900 )))
1901
1902 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1903
1904 == 5.2 Replace Battery ==
1905
1906
1907 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1908
1909 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1910
1911
1912 == 5.3 Battery Life Analyze ==
1913
1914
1915 (((
1916 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1917 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1918 )))
1919
1920
1921 (((
1922 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1923 )))
1924
1925
1926 = 6. FAQ =
1927
1928 == 6.1 How to connect to LHT65N/S UART interface? ==
1929
1930
1931 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1932
1933 * Send AT Commands, and get output from LHT65N/S
1934 * Upgrade firmwre of LHT65N/S.
1935
1936 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1937
1938
1939 **Option of USB TTL adapter:**
1940
1941 * CP2101 USB TTL Adapter
1942 * CH340 USB TTL Adapter
1943 * FT232 USB TTL Adapter
1944
1945 **Option of Type-C Adapter:**
1946
1947 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1948
1949
1950 **Connection:**
1951
1952 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1953 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1954 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1955
1956 (((
1957
1958
1959 Connection Example:
1960
1961 [[image:1655802313617-381.png||_mstalt="293917"]]
1962
1963
1964 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1965
1966
1967 == 6.2 How to use AT Commands? ==
1968
1969
1970 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1971
1972 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1973 )))
1974
1975
1976 Input password and ATZ to activate LHT65N/S, As shown below:
1977
1978 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1979
1980
1981 AT Command List is as below:
1982
1983 AT+<CMD>? :  Help on <CMD>
1984
1985 AT+<CMD> :  Run <CMD>
1986
1987 AT+<CMD>=<value> :  Set the value
1988
1989 AT+<CMD>=? :  Get the value
1990
1991 AT+DEBUG:  Set more info output
1992
1993 ATZ:  Trig a reset of the MCU
1994
1995 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1996
1997 AT+DEUI:  Get or Set the Device EUI
1998
1999 AT+DADDR:  Get or Set the Device Address
2000
2001 AT+APPKEY:  Get or Set the Application Key
2002
2003 AT+NWKSKEY:  Get or Set the Network Session Key
2004
2005 AT+APPSKEY:  Get or Set the Application Session Key
2006
2007 AT+APPEUI:  Get or Set the Application EUI
2008
2009 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2010
2011 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2012
2013 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2014
2015 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2016
2017 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2018
2019 AT+RX2FQ:  Get or Set the Rx2 window frequency
2020
2021 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2022
2023 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2024
2025 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2026
2027 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2028
2029 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2030
2031 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2032
2033 AT+NWKID:  Get or Set the Network ID
2034
2035 AT+FCU:  Get or Set the Frame Counter Uplink
2036
2037 AT+FCD:  Get or Set the Frame Counter Downlink
2038
2039 AT+CLASS:  Get or Set the Device Class
2040
2041 AT+JOIN:  Join network
2042
2043 AT+NJS:  Get the join status
2044
2045 AT+SENDB:  Send hexadecimal data along with the application port
2046
2047 AT+SEND:  Send text data along with the application port
2048
2049 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2050
2051 AT+RECV:  Print last received data in raw format
2052
2053 AT+VER:  Get current image version and Frequency Band
2054
2055 AT+CFM:  Get or Set the confirmation mode (0-1)
2056
2057 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2058
2059 AT+SNR:  Get the SNR of the last received packet
2060
2061 AT+RSSI:  Get the RSSI of the last received packet
2062
2063 AT+TDC:  Get or set the application data transmission interval in ms
2064
2065 AT+PORT:  Get or set the application port
2066
2067 AT+DISAT:  Disable AT commands
2068
2069 AT+PWORD: Set password, max 9 digits
2070
2071 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2072
2073 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2074
2075 AT+PDTA:  Print the sector data from start page to stop page
2076
2077 AT+PLDTA:  Print the last few sets of data
2078
2079 AT+CLRDTA:  Clear the storage, record position back to 1st
2080
2081 AT+SLEEP:  Set sleep mode
2082
2083 AT+EXT:  Get or Set external sensor model
2084
2085 AT+BAT:  Get the current battery voltage in mV
2086
2087 AT+CFG:  Print all configurations
2088
2089 AT+WMOD:  Get or Set Work Mode
2090
2091 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2092
2093 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2094
2095 AT+SETCNT:  Set the count at present
2096
2097 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2098
2099 AT+RPL:  Get or set response level
2100
2101 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2102
2103 AT+LEAPSEC:  Get or Set Leap Second
2104
2105 AT+SYNCMOD:  Get or Set time synchronization method
2106
2107 AT+SYNCTDC:  Get or set time synchronization interval in day
2108
2109 AT+PID:  Get or set the PID
2110
2111
2112 == 6.3 How to use Downlink commands? ==
2113
2114
2115 **Downlink commands:**
2116
2117
2118 (% style="color:blue" %)**TTN:**
2119
2120 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2121
2122
2123
2124 (% style="color:blue" %)**Helium: **
2125
2126 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2127
2128
2129
2130 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2131
2132
2133 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2134
2135
2136 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2137
2138
2139
2140 (% style="color:blue" %)**AWS-IOT :**
2141
2142 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2143
2144
2145 == 6.4 How to change the uplink interval? ==
2146
2147
2148 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2149
2150
2151 == 6.5 How to upgrade firmware? ==
2152
2153
2154 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2155 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2156
2157
2158 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2159
2160
2161 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2162
2163 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2164
2165 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2166
2167 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2168
2169 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2170
2171 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2172
2173 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2174
2175 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2176
2177 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2178
2179 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2180
2181 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2182
2183
2184 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2185
2186 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2187
2188 [[image:image-20240716174308-1.png||height="523" width="410"]]
2189
2190
2191 === 6.5.2 Updated firmware for V1.4 and above ===
2192
2193
2194 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2195
2196 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2197 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2198
2199 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2200
2201
2202 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2203
2204
2205 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2206
2207 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2208
2209
2210 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2211
2212
2213 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2214
2215
2216 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2217
2218 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2219
2220 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2221
2222
2223
2224 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2225
2226 Connect PC and LHT65N/S via USB TTL adapter .
2227
2228 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2229
2230 **Connection method:**
2231
2232 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2233
2234 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2235
2236 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2237
2238 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2239
2240 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2241
2242
2243 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2244
2245 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2246
2247
2248 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2249
2250 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2251
2252
2253 When this interface appears, it indicates that the download has been completed.
2254
2255 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2256
2257
2258 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2259
2260
2261 == 6.6 Why can't I see the datalog information ==
2262
2263
2264 ~1. The time is not aligned, and the correct query command is not used.
2265
2266 2. Decoder error, did not parse the datalog data, the data was filtered.
2267
2268
2269 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2270
2271
2272 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2273
2274 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2275
2276
2277 After there is UART Connectio, run below commands:
2278
2279 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2280
2281 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2282
2283 Example output:
2284
2285 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2286
2287
2288 = 7. Order Info =
2289
2290
2291 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2292
2293 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2294
2295 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2296 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2297 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2298 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2299 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2300 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2301 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2303
2304 = 8. Packing Info =
2305
2306
2307 **Package Includes**:
2308
2309 * LHT65N/S Temperature & Humidity Sensor x 1
2310 * 1 x External Lora Antenna for LHT65S
2311 * Optional external sensor
2312
2313 = 9. Reference material =
2314
2315
2316 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2317
2318 = 10. FCC Warning =
2319
2320
2321 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2322
2323 (1) This device may not cause harmful interference;
2324
2325 (2) this device must accept any interference received, including interference that may cause undesired operation.