Version 354.1 by Mengting Qiu on 2025/04/22 10:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89
90 == 1.4 Model Difference ==
91
92
93 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
94
95 (% style="color:#037691" %)**For antenna design: **
96
97 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
98 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
99
100 [[image:image-20250422095731-2.png]]
101
102
103 (% style="color:#037691" %)**For enclosure dimensions:**
104
105
106
107
108
109
110
111 = 2. Connect LHT65N/S to IoT Server =
112
113 == 2.1 How does LHT65N/S work? ==
114
115
116 (((
117 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
118 )))
119
120 (((
121 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
122 )))
123
124
125 == 2.2 How to Activate LHT65N/S? ==
126
127
128 (((
129 The LHT65N/S has two working modes:
130 )))
131
132 * (((
133 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
134 )))
135 * (((
136 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
137 )))
138
139 (((
140 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
141 )))
142
143 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
144
145 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
146 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
147 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
148 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
149 )))
150 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
151 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
152 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
153 )))
154 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
155
156 == 2.3 Example to join LoRaWAN network ==
157
158
159 (% class="wikigeneratedid" %)
160 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
161
162 (% class="wikigeneratedid" %)
163 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
164
165
166 (((
167 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
168 )))
169
170
171 === 2.3.1 Step 1: Create Device on TTN ===
172
173
174 (((
175 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
176 )))
177
178 (((
179 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
180 )))
181
182 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
183
184 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
185
186 (% style="color:blue" %)**1. Create application**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
189
190 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
191
192
193 (% style="color:blue" %)**2. Add devices to the created Application.**
194
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
197
198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
199
200 (% style="color:blue" %)**3. Enter end device specifics manually.**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
203
204
205 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
206
207
208 === 2.3.2 Step 2: Add decoder ===
209
210
211 In TTN, user can add a custom payload so it shows friendly reading.
212
213 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
214
215 Below is TTN screen shot
216
217 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
218
219 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
220
221 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
222
223
224 (((
225 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
226 )))
227
228 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
229
230
231 == 2.4 Uplink Payload (Fport~=2) ==
232
233
234 (((
235 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
236 )))
237
238 (((
239 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
240 )))
241
242 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
243 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
244 **Size(bytes)**
245 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
246 **2**
247 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
248 **2**
249 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
250 **2**
251 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
252 **1**
253 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
254 **4**
255 )))
256 |(% style="width:97px" %)(((
257 Value
258 )))|(% style="width:39px" %)(((
259 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
260 )))|(% style="width:100px" %)(((
261 (((
262 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
263 )))
264 )))|(% style="width:77px" %)(((
265 (((
266 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
267 )))
268 )))|(% style="width:47px" %)(((
269 [[Ext>>||anchor="H2.4.5Ext23"]] #
270 )))|(% style="width:51px" %)(((
271 [[Ext value>>||anchor="H2.4.6Extvalue"]]
272 )))
273
274 * The First 6 bytes: has fix meanings for every LHT65N/S.
275
276 * The 7th byte (EXT #): defines the external sensor model.
277
278 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
279
280 === 2.4.1 Decoder in TTN V3 ===
281
282
283 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
284
285 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
286
287
288 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
289
290
291 === 2.4.2 BAT-Battery Info ===
292
293
294 These two bytes of BAT include the battery state and the actually voltage.
295
296 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
297 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
298 **Bit(bit)**
299 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
300 |(% style="width:66px" %)(((
301 Value
302 )))|(% style="width:250px" %)(((
303 BAT Status
304 00(b): Ultra Low ( BAT <= 2.50v)
305 01(b): Low (2.50v <=BAT <= 2.55v)
306 10(b): OK (2.55v <= BAT <=2.65v)
307 11(b): Good (BAT >= 2.65v)
308 )))|(% style="width:152px" %)Actually BAT voltage
309
310 **(b)stands for binary**
311
312
313 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
314
315
316 Check the battery voltage for LHT65N/S.
317
318 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
319
320 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
321
322 === 2.4.3 Built-in Temperature ===
323
324
325 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
326
327 * Temperature:  0x0ABB/100=27.47℃
328
329 [[image:image-20220522235639-3.png||_mstalt="432120"]]
330
331 * Temperature:  (0xF5C6-65536)/100=-26.18℃
332
333 === 2.4.4 Built-in Humidity ===
334
335
336 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
337
338 * Humidity:    0x025C/10=60.4%
339
340 === 2.4.5 Ext # ===
341
342
343 Bytes for External Sensor:
344
345 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
346 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
347 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
348 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
349 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
350 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
351 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
352 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
353 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
354 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
355
356 === 2.4.6 Ext value ===
357
358 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
359
360
361 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
362 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
363 **Size(bytes)**
364 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
365 **2**
366 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
367 2
368 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
369 **2**
370 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
371 1
372 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
373 2
374 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
375 2
376 )))
377 |(% style="width:110px" %)(((
378 Value
379 )))|(% style="width:71px" %)(((
380 BAT & BAT Status
381 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
382 Status & Ext
383 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
384
385 [[image:image-20220522235639-5.png||_mstalt="432848"]]
386
387
388 * DS18B20 temp=0x0ADD/100=27.81℃
389
390 The last 2 bytes of data are meaningless
391
392 [[image:image-20220522235639-6.png||_mstalt="433212"]]
393
394
395 * External temperature= (0xF54F-65536)/100=-27.37℃
396
397 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
398
399 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
400
401 The last 2 bytes of data are meaningless
402
403 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
404
405
406 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
407
408
409 (((
410 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
411 )))
412
413 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
414 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
415 **Size(bytes)**
416 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
417 **2**
418 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
419 **2**
420 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
421 **2**
422 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
423 **1**
424 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
425 **4**
426 )))
427 |(% style="width:110px" %)(((
428 Value
429 )))|(% style="width:71px" %)(((
430 External temperature
431 )))|(% style="width:99px" %)(((
432 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
433 )))|(% style="width:132px" %)(((
434 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
435 )))|(% style="width:54px" %)(((
436 Status & Ext
437 )))|(% style="width:64px" %)(((
438 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
439 )))
440
441 * **Battery status & Built-in Humidity**
442
443 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
444 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
445 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
446 BAT Status
447 00(b): Ultra Low ( BAT <= 2.50v)
448 01(b): Low  (2.50v <=BAT <= 2.55v)
449 10(b): OK   (2.55v <= BAT <=2.65v)
450 11(b): Good   (BAT >= 2.65v)
451 )))|(% style="width:132px" %)(((
452 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
453 )))
454
455 * **Status & Ext Byte**
456
457 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
458 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
459 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
460
461 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
462 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
463 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
464
465 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
466
467
468 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
469 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
470 **Size(bytes)**
471 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
472 **2**
473 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
474 2
475 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
476 **2**
477 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
478 1
479 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
480 2
481 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
482 2
483 )))
484 |(% style="width:110px" %)(((
485 Value
486 )))|(% style="width:71px" %)(((
487 BAT & BAT Status
488 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
489 Status & Ext
490 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
491
492 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
493
494 be used to power the external ADC sensor; user can control the power on time for this
495
496 (% style="color:blue" %)**sensor by setting:**
497
498 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
499
500 **For example:**
501
502 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
503
504
505 Or use **downlink command A2** to set the same.
506
507 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
508
509 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
510
511 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
512
513
514 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
515
516 [[image:image-20220628150714-4.png||_mstalt="431054"]]
517
518
519 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
520
521
522 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
523
524 [[image:image-20220628151005-5.png||_mstalt="429546"]]
525
526
527 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
528
529 [[image:image-20220628151056-6.png||_mstalt="431873"]]
530
531
532 3) Within range
533
534 [[image:image-20220628151143-7.png||_mstalt="431210"]]
535
536
537 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
538
539
540 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
541
542 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
543
544 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
545 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
546 **Size(bytes)**
547 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
548 **2**
549 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
550 2
551 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
552 **2**
553 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
554 1
555 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
556 2
557 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
558 2
559 )))
560 |(% style="width:110px" %)(((
561 Value
562 )))|(% style="width:71px" %)(((
563 BAT & BAT Status
564 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
565 Status & Ext
566 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
567
568 [[image:image-20220906102307-7.png||_mstalt="430443"]]
569
570 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
571
572 The external cable NE2 can be use for MOD4 and MOD8
573
574
575 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
576
577
578 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
579
580 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
581
582 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
583 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
584 **Size(bytes)**
585 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
586 **2**
587 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
588 2
589 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
590 **2**
591 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
592 1
593 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
594 2
595 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
596 2
597 )))
598 |(% style="width:110px" %)(((
599 Value
600 )))|(% style="width:71px" %)(((
601 BAT & BAT Status
602 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
603 Status & Ext
604 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
605
606 [[image:SHT31.png||_mstalt="104715"]]
607
608
609 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
610
611
612 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
613
614
615 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
616
617 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
618
619 In Open State, the power consumption is the same as if there is no probe
620
621 In Close state, the power consumption will be 3uA higher than normal.
622
623 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
624
625
626 Ext=4,Interrupt Sensor:
627
628 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
629 |(% style="width:101px" %)(((
630 **AT+EXT=4,1**
631 )))|(% style="width:395px" %)(((
632 **Sent uplink packet in both rising and falling interrupt**
633 )))
634 |(% style="width:101px" %)(((
635 **AT+EXT=4,2**
636 )))|(% style="width:395px" %)(((
637 **Sent uplink packet only in falling interrupt**
638 )))
639 |(% style="width:101px" %)(((
640 **AT+EXT=4,3**
641 )))|(% style="width:395px" %)(((
642 **Sent uplink packet only in rising interrupt**
643 )))
644
645 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
646 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
647 **Size(bytes)**
648 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
649 **2**
650 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
651 2
652 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
653 **2**
654 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
655 1
656 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
657 1
658 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
659 2
660 )))
661 |(% style="width:110px" %)(((
662 Value
663 )))|(% style="width:71px" %)(((
664 BAT & BAT Status
665 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
666 Status & Ext
667 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
668
669 Trigger by falling edge:
670
671 [[image:image-20220906101145-2.png||_mstalt="428324"]]
672
673
674 Trigger by raising edge:
675
676 [[image:image-20220906101145-3.png||_mstalt="428688"]]
677
678
679 (% style="color:blue" %)**BAT & BAT Status :**
680
681 Check the battery voltage.
682
683 Ex1: 0x0B45 = 2885mV
684
685 Ex2: 0x0B49 = 2889mV
686
687
688 (% style="color:blue" %)**TempC_SHT :**
689
690 The temperature detected by the built-in temperature and humidity sensor SHT31.
691
692 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
693
694 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
695
696 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
697
698
699 (% style="color:blue" %)**Hum_SHT :**
700
701 The humidity detected by the built-in temperature and humidity sensor SHT31.
702
703 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
704
705
706 (% style="color:blue" %)**Status & Ext :**
707
708 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
709 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
710 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
711
712 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
713 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
714 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
715
716 (% style="color:blue" %)**Exti_pin_level :**
717
718 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
719 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
720
721 (% style="color:blue" %)**Exti_status :**
722
723 Determines whether the uplink packet is generated by an interrupt.
724
725 1: Interrupt packet
726
727 0: Normal TDC uplink packet
728
729
730 (% style="color:blue" %)**senseless :**
731
732 Reserved position, meaningless. The value is fixed to 0x7FFF.
733
734
735 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
736
737
738 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
739
740
741 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
742
743 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
744
745
746 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
747
748 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
749
750
751 Ext=8, Counting Sensor ( 4 bytes):
752
753 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
754 |(% style="width:131px" %)(((
755 **AT+EXT=8,0**
756 )))|(% style="width:195px" %)(((
757 **Count at falling interrupt**
758 )))
759 |(% style="width:131px" %)(((
760 **AT+EXT=8,1**
761 )))|(% style="width:195px" %)(((
762 **Count at rising interrupt**
763 )))
764 |(% style="width:131px" %)(((
765 **AT+SETCNT=60**
766 )))|(% style="width:195px" %)(((
767 **Sent current count to 60**
768 )))
769
770 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
771 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
772 **Size(bytes)**
773 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
774 **2**
775 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
776 2
777 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
778 **2**
779 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
780 1
781 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
782 4
783 )))
784 |(% style="width:110px" %)(((
785 Value
786 )))|(% style="width:71px" %)(((
787 BAT & BAT Status
788 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
789 Status & Ext
790 )))|(% style="width:64px" %)Exit_count
791
792 [[image:image-20220906101320-6.png||_mstalt="428064"]]
793
794
795 (% style="color:blue" %)**A2 downlink Command:**
796
797 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
798
799 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
800
801 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
802
803 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
804
805 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
806
807
808 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
809
810
811 (((
812 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
813 )))
814
815 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
816 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
817 **Size(bytes)**
818 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
819 **2**
820 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
821 **2**
822 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
823 **2**
824 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
825 **1**
826 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
827 **4**
828 )))
829 |(% style="width:110px" %)(((
830 Value
831 )))|(% style="width:71px" %)(((
832 External temperature
833 )))|(% style="width:99px" %)(((
834 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
835 )))|(% style="width:132px" %)(((
836 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
837 )))|(% style="width:54px" %)(((
838 Status & Ext
839 )))|(% style="width:64px" %)(((
840 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
841 )))
842
843 * **Battery status & Built-in Humidity**
844
845 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
846 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
847 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
848 BAT Status
849 00(b): Ultra Low ( BAT <= 2.50v)
850 01(b): Low  (2.50v <=BAT <= 2.55v)
851 10(b): OK   (2.55v <= BAT <=2.65v)
852 11(b): Good   (BAT >= 2.65v)
853 )))|(% style="width:132px" %)(((
854 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
855 )))
856
857 * **Status & Ext Byte**
858
859 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
860 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
861 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
862
863 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
864 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
865 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
866
867 == 2.5 Show data on Datacake ==
868
869
870 (((
871 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
872 )))
873
874
875 (((
876 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
877 )))
878
879 (((
880 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
881 )))
882
883
884 (((
885 Add Datacake:
886 )))
887
888 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
889
890
891 Select default key as Access Key:
892
893
894 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
895
896
897 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
898
899 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
900
901
902 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
903
904
905 == 2.6 Datalog Feature ==
906
907
908 (((
909 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
910 )))
911
912
913 === 2.6.1 Ways to get datalog via LoRaWAN ===
914
915
916 There are two methods:
917
918 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
919
920
921 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
922
923
924 (% style="color:red" %)**Note for method 2:**
925
926 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
927 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
928
929 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
930
931 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
932
933
934 === 2.6.2 Unix TimeStamp ===
935
936
937 LHT65N/S uses Unix TimeStamp format based on
938
939 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
940
941
942 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
943
944 Below is the converter example
945
946 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
947
948
949 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
950
951
952 === 2.6.3 Set Device Time ===
953
954
955 (((
956 (% style="color:blue" %)**There are two ways to set device's time:**
957 )))
958
959 (((
960 **1.  Through LoRaWAN MAC Command (Default settings)**
961 )))
962
963 (((
964 User need to set SYNCMOD=1 to enable sync time via MAC command.
965 )))
966
967 (((
968 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
969 )))
970
971 (((
972 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
973 )))
974
975
976 (((
977 **2. Manually Set Time**
978 )))
979
980 (((
981 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
982 )))
983
984
985 === 2.6.4 Poll sensor value ===
986
987
988 User can poll sensor value based on timestamps from the server. Below is the downlink command.
989
990 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
991 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
992 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
993
994 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
995
996 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
997
998 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
999
1000 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1001
1002
1003 === 2.6.5 Datalog Uplink payload ===
1004
1005
1006 The Datalog poll reply uplink will use below payload format.
1007
1008 **Retrieval data payload:**
1009
1010 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1011 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1012 **Size(bytes)**
1013 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1014 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1015
1016 **Poll message flag & Ext:**
1017
1018 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1019 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1020 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1021
1022 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1023
1024 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1025
1026 * Poll Message Flag is set to 1.
1027
1028 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1029
1030 For example, in US915 band, the max payload for different DR is:
1031
1032 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1033
1034 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1035
1036 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1037
1038 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1039
1040 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1041
1042
1043 **Example:**
1044
1045 If LHT65N/S has below data inside Flash:
1046
1047 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1048 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1049 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1050 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1051 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1052 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1053 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1054 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1055 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1056 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1057
1058 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1059
1060 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1061
1062 Stop time: 60066DA7= time 21/1/19 05:27:03
1063
1064
1065 **LHT65N/S will uplink this payload.**
1066
1067 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1068
1069
1070 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1071
1072 Where the first 11 bytes is for the first entry:
1073
1074 7FFF089801464160065F97
1075
1076 Ext sensor data=0x7FFF/100=327.67
1077
1078 Temp=0x088E/100=22.00
1079
1080 Hum=0x014B/10=32.6
1081
1082 poll message flag & Ext=0x41,means reply data,Ext=1
1083
1084 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1085
1086
1087 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1088
1089
1090 (((
1091 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1092 )))
1093
1094 (((
1095 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1096
1097
1098 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1099
1100 (((
1101 (% class="box infomessage" %)
1102 (((
1103 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1104 )))
1105 )))
1106
1107 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1108
1109 **~ AT+WMOD=1,60,-10,20**
1110
1111
1112 Explain:
1113
1114 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1115 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1116 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1117
1118 (% style="color:#4f81bd" %)**Downlink Command:**
1119
1120 **Example: **A5013CFC1807D0
1121
1122 MOD=01
1123
1124 CITEMP=3C(S) =60(S)
1125
1126 TEMPlow=FC18 = -1000/100=-10(℃)
1127
1128 TEMPhigh=07D0=2000/100=20(℃)
1129
1130
1131 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1132
1133 **AT+WMOD=2,60,5** 
1134
1135 Explain:
1136
1137 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1138 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1139 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1140
1141 (% style="color:#4f81bd" %)**Downlink Command**
1142
1143 **Example: **A5023C05
1144
1145 MOD=02
1146
1147 CITEMP=3C(S)=60(S)
1148
1149 temperature fluctuation=05(℃)
1150
1151
1152 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1153
1154 **AT+WMOD=3,1,60,20,-16,32,1**   
1155
1156 Explain:
1157
1158 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1159 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1160 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1161 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1162 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1163 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1164
1165 (% style="color:#4f81bd" %)**Downlink Command:**
1166
1167 **Example: **A50301003C14FFF0002001
1168
1169 MOD=03
1170
1171 TEMP=DS18B20
1172
1173 CITEMP=003C(S)=60(S)
1174
1175 Total number of acquisitions=14
1176
1177 TEMPlow=FFF0=-16(℃)
1178
1179 TEMPhigh=0020=20(℃)
1180
1181 ARTEMP=01
1182
1183
1184 **Uplink payload( Fport=3)**
1185
1186 **Example: CBEA**01**0992**//0A41//**09C4**
1187
1188 BatV=CBEA
1189
1190 TEMP=DS18B20
1191
1192 Temp1=0992  ~/~/ 24.50℃
1193
1194 Temp2=0A41  ~/~/ 26.25℃
1195
1196 Temp3=09C4  ~/~/ 25.00℃
1197
1198 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1199
1200 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1201 )))
1202
1203
1204 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1205
1206
1207 (% class="box infomessage" %)
1208 (((
1209 (((
1210 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1211 )))
1212
1213 (((
1214 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1215 )))
1216
1217 (((
1218 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1219 )))
1220
1221 (((
1222 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1223 )))
1224
1225 (((
1226 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1227 )))
1228 )))
1229
1230 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1231
1232 Total bytes: 8 bytes
1233
1234 **Example:**AA0100010001003C
1235
1236 WMOD=01
1237
1238 CITEMP=0001
1239
1240 TEMPlow=0001
1241
1242 TEMPhigh=003C
1243
1244
1245 == 2.8 LED Indicator ==
1246
1247
1248 The LHT65 has a triple color LED which for easy showing different stage .
1249
1250 While user press ACT button, the LED will work as per LED status with ACT button.
1251
1252 In a normal working state:
1253
1254 * For each uplink, the BLUE LED or RED LED will blink once.
1255 BLUE LED when external sensor is connected.
1256 * RED LED when external sensor is not connected
1257 * For each success downlink, the PURPLE LED will blink once
1258
1259 == 2.9 installation ==
1260
1261
1262 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1263
1264
1265 = 3. Sensors and Accessories =
1266
1267 == 3.1 E2 Extension Cable ==
1268
1269
1270 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1271
1272
1273 **1m long breakout cable for LHT65N/S. Features:**
1274
1275 * (((
1276 Use for AT Command, works for both LHT52, LHT65N/S
1277 )))
1278 * (((
1279 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1280 )))
1281 * (((
1282 Supports ADC mode to monitor external ADC
1283 )))
1284 * (((
1285 Supports Interrupt mode
1286 )))
1287 * (((
1288 Exposed All pins from the LHT65N/S Type-C connector.
1289
1290
1291
1292 )))
1293
1294 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1295
1296
1297 == 3.2 E3 Temperature Probe ==
1298
1299
1300 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1301
1302
1303 Temperature sensor with 2 meters cable long
1304
1305 * Resolution: 0.0625 °C
1306 * ±0.5°C accuracy from -10°C to +85°C
1307 * ±2°C accuracy from -55°C to +125°C
1308 * Operating Range: -40 ~~ 125 °C
1309 * Working voltage 2.35v ~~ 5v
1310
1311 == 3.3 E31F Temperature Probe ==
1312
1313
1314 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1315
1316
1317 Temperature sensor with 1 meters cable long
1318
1319
1320 **Built-in Temperature Sensor:**
1321
1322 * Resolution: 0.01 °C
1323 * Accuracy Tolerance : Typ ±0.3 °C
1324 * Long Term Drift: < 0.02 °C/yr
1325 * Operating Range: -40 ~~ 80 °C
1326
1327 **Built-in Humidity Sensor:**
1328
1329 * Resolution: 0.04 % RH
1330 * Accuracy Tolerance : Typ ±3 % RH
1331 * Long Term Drift: < 0.25 RH/yr
1332 * Operating Range: 0 ~~ 96 % RH
1333
1334 **External Temperature Sensor :**
1335
1336 * Resolution: 0.01 °C
1337 * Accuracy Tolerance : Typical ±0.3 °C
1338 * Long Term Drift: < 0.02 °C/yr
1339 * Operating Range: -40 ~~ 125 °C
1340
1341 **External Humidity Sensor :**
1342
1343 * Resolution: 0.04 % RH
1344 * Accuracy Tolerance : Typ ±3 % RH
1345 * Long Term Drift: < 0.25 RH/yr
1346 * Operating Range: 0 ~~ 96 % RH
1347
1348 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1349
1350
1351 External Temperature Sensor – NE117:
1352 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1353
1354 * Silica gel cable
1355 * ±0.1 °C (maximum) from –20 °C to 50 °C
1356 * ±0.2 °C (maximum) from –40 °C to 100 °C
1357 * ±0.3 °C (maximum) from –55 °C to 150 °C
1358
1359 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1360
1361
1362 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1363
1364
1365 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1366 * 3 wires: VCC/GND/INT
1367 * Cable Lenght: 1 meter
1368
1369 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1370
1371 LHT65N/S-DC can be used to connect various types of external sensor. below.
1372
1373 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1374
1375 [[image:image-20240422100149-5.png||height="163" width="510"]]
1376
1377 [[image:image-20240422100217-6.png||height="141" width="507"]]
1378
1379
1380 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1381
1382
1383 * Aluminum Alloy Door Sensor
1384 * Detect Distance: ~~3cm
1385 * Cable Lenght: 1 meter
1386
1387 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1388
1389 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1390
1391
1392 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1393
1394
1395 (((
1396 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1397 )))
1398
1399 * (((
1400 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1401 )))
1402
1403 * (((
1404 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1405 )))
1406
1407 (((
1408 There are two kinds of commands to configure LHT65N/S, they are:
1409 )))
1410
1411 * (((
1412 (% style="color:#4f81bd" %)**General Commands**.
1413 )))
1414
1415 (((
1416 These commands are to configure:
1417 )))
1418
1419 1. (((
1420 General system settings like: uplink interval.
1421 )))
1422 1. (((
1423 LoRaWAN protocol & radio-related commands.
1424 )))
1425
1426 (((
1427 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1428 )))
1429
1430 * (((
1431 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1432 )))
1433
1434 (((
1435 These commands are only valid for LHT65N/S, as below:
1436 )))
1437
1438
1439 == 4.1 Set Transmit Interval Time ==
1440
1441
1442 Feature: Change LoRaWAN End Node Transmit Interval.
1443
1444
1445 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1446
1447 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1448 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1449 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1450 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1451
1452 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1453
1454 Format: Command Code (0x01) followed by 3 bytes time value.
1455
1456 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1457
1458 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1459
1460 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1461
1462 == 4.2 Set External Sensor Mode ==
1463
1464
1465 Feature: Change External Sensor Mode.
1466
1467 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1468
1469 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500.222px" %)
1470 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:126px" %)**Dowlink Command**
1471 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1472 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1473 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1474 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1475 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1476 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1477 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1478 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1479 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1480
1481 **Response**
1482
1483 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1484
1485 Total bytes: 2 ~~ 5 bytes
1486
1487 **Example:**
1488
1489 * 0xA201: Set external sensor type to E1
1490
1491 * 0xA209: Same as AT+EXT=9
1492
1493 * 0xA20702003c: Same as AT+SETCNT=60
1494
1495 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1496
1497
1498 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1499
1500 * First Packet after OTAA Join
1501 * Every 24 hours since the first packet.
1502
1503 PID is default set to disable (0)
1504
1505 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1506
1507 (% style="color:#4f81bd" %)**AT Command:**
1508
1509 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1510 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1511 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1512
1513 (% style="color:#4f81bd" %)**Downlink Command:**
1514
1515 * **0xA800**  **~-~->** AT+PID=0
1516 * **0xA801**     **~-~->** AT+PID=1
1517
1518 == 4.4 Set Password ==
1519
1520
1521 Feature: Set device password, max 9 digits
1522
1523 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1524
1525 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1526 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1527 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1528 123456
1529
1530 OK
1531 )))
1532 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1533
1534 (% style="color:#4f81bd" %)**Downlink Command:**
1535
1536 No downlink command for this feature.
1537
1538
1539 == 4.5 Quit AT Command ==
1540
1541
1542 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1543
1544 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1545
1546 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1547 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1548 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1549
1550 (% style="color:#4f81bd" %)**Downlink Command:**
1551
1552 No downlink command for this feature.
1553
1554
1555 == 4.6 Set to sleep mode ==
1556
1557
1558 Feature: Set device to sleep mode
1559
1560 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1561 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1562
1563 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1564
1565 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1566 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1567 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1568 Clear all stored sensor data…
1569
1570 OK
1571 )))
1572
1573 (% style="color:#4f81bd" %)**Downlink Command:**
1574
1575 * There is no downlink command to set to Sleep mode.
1576
1577 == 4.7 Set system time ==
1578
1579
1580 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1581
1582 (% style="color:#4f81bd" %)**AT Command:**
1583
1584 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1585 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1586 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1587 OK
1588
1589 Set System time to 2021-01-20 00:59:12
1590 )))
1591
1592 (% style="color:#4f81bd" %)**Downlink Command:**
1593
1594 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1595
1596
1597 == 4.8 Set Time Sync Mode ==
1598
1599
1600 (((
1601 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1602 )))
1603
1604 (((
1605 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1606 )))
1607
1608 (% style="color:#4f81bd" %)**AT Command:**
1609
1610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1611 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1612 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1613
1614 (% style="color:#4f81bd" %)**Downlink Command:**
1615
1616 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1617 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1618
1619
1620 == 4.9 Set Time Sync Interval ==
1621
1622
1623 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1624
1625 (% style="color:#4f81bd" %)**AT Command:**
1626
1627 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1628 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1629 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1630
1631 (% style="color:#4f81bd" %)**Downlink Command:**
1632
1633 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1634
1635
1636 == 4.10 Get data ==
1637
1638
1639 Feature: Get the current sensor data.
1640
1641 (% style="color:#4f81bd" %)**AT Command:**
1642
1643 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1644 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1645
1646 == 4.11 Print data entries base on page ==
1647
1648
1649 Feature: Print the sector data from start page to stop page (max is 416 pages).
1650
1651 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1652
1653 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1654 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1655 |(% style="width:156px" %)(((
1656 AT+PDTA=1,3
1657 Print page 1 to 3
1658 )))|(% style="width:311px" %)(((
1659 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1660 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1661 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1662 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1663 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1664 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1665 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1666 8019570
1667 8019580
1668 8019590
1669 80195A0
1670 80195B0
1671 80195C0
1672 80195D0
1673 80195E0
1674 80195F0
1675
1676 OK
1677 )))
1678
1679 (% style="color:#4f81bd" %)**Downlink Command:**
1680
1681 No downlink commands for feature
1682
1683
1684 == 4.12 Print last few data entries ==
1685
1686
1687 Feature: Print the last few data entries
1688
1689 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1690
1691 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1692 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1693 |(% style="width:156px" %)(((
1694 AT+PLDTA=5
1695 Print last 5 entries
1696 )))|(% style="width:311px" %)(((
1697 Stop Tx and RTP events when read sensor data
1698 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1699 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1700 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1701 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1702 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1703 Start Tx and RTP events
1704 OK
1705 )))
1706
1707 (% style="color:#4f81bd" %)**Downlink Command:**
1708
1709 No downlink commands for feature
1710
1711
1712 == 4.13 Clear Flash Record ==
1713
1714
1715 Feature: Clear flash storage for data log feature.
1716
1717 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1718
1719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1720 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1721 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1722 Clear all stored sensor data…
1723
1724 OK
1725 )))
1726
1727 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1728
1729 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1730
1731 == 4.14 Auto Send None-ACK messages ==
1732
1733
1734 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1735
1736 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1737
1738 The default factory setting is 0
1739
1740 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1741 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1742 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1743
1744 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1745
1746 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1747
1748 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1749
1750
1751 Feature: Set internal and external temperature sensor alarms.
1752
1753 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1754 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1755 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1756
1757 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1758
1759 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1760
1761 0): Cancel
1762
1763 1): Threshold alarm
1764
1765 2): Fluctuation alarm
1766
1767 3): Sampling multiple times and uplink together
1768
1769
1770 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1771
1772 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1773
1774
1775 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1776
1777 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1778
1779 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1780
1781
1782 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1783
1784 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1785
1786 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1787
1788
1789 **3): If Alarm Mode is set to 3:**
1790
1791 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1792 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1793 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1794 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1795 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1796 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1797
1798 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1799
1800 0xA5 00 ~-~- AT+WMOD=0.
1801
1802 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1803
1804 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1805
1806 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1807
1808 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1809
1810 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1811
1812
1813 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1814
1815
1816 Feature: use downlink to get firmware version.
1817
1818 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1819
1820 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1821 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1822 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1823
1824 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1825
1826 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1827
1828 (% style="color:#037691" %)**Sensor model**
1829
1830 0x0b: LHT65N/S
1831
1832
1833 (% style="color:#037691" %)**Firmware version**
1834
1835 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1836
1837 Example: 0x0140=V1.4.0
1838
1839
1840 (% style="color:#037691" %)** Frequency Band:**
1841
1842 * 0x01: EU868
1843 * 0x02: US915
1844 * 0x03: IN865
1845 * 0x04: AU915
1846 * 0x05: KZ865
1847 * 0x06: RU864
1848 * 0x07: AS923
1849 * 0x08: AS923-1
1850 * 0x09: AS923-2
1851 * 0xa0: AS923-3
1852
1853 (% style="color:#037691" %)**Subband**
1854
1855 value 0x00 ~~ 0x08
1856
1857 Example: 0xFF ~-~--> " NULL"
1858
1859
1860 (% style="color:#037691" %)**Battery**
1861
1862 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1863
1864 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1865
1866
1867 == 4.17 Setting LEDAlarm ==
1868
1869 Feature: Setting LEDAlarm
1870
1871 The default factory setting is 0
1872
1873 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1874 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1875 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1876
1877 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1878
1879 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1880
1881 = 5. Battery & How to replace =
1882
1883 == 5.1 Battery Type ==
1884
1885
1886 (((
1887 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1888 )))
1889
1890 (((
1891 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1892
1893 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1894 )))
1895
1896 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1897
1898 == 5.2 Replace Battery ==
1899
1900
1901 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1902
1903 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1904
1905
1906 == 5.3 Battery Life Analyze ==
1907
1908
1909 (((
1910 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1911 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1912 )))
1913
1914
1915 (((
1916 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1917 )))
1918
1919
1920 = 6. FAQ =
1921
1922 == 6.1 How to connect to LHT65N/S UART interface? ==
1923
1924
1925 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1926
1927 * Send AT Commands, and get output from LHT65N/S
1928 * Upgrade firmwre of LHT65N/S.
1929
1930 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1931
1932
1933 **Option of USB TTL adapter:**
1934
1935 * CP2101 USB TTL Adapter
1936 * CH340 USB TTL Adapter
1937 * FT232 USB TTL Adapter
1938
1939 **Option of Type-C Adapter:**
1940
1941 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1942
1943
1944 **Connection:**
1945
1946 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1947 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1948 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1949
1950 (((
1951
1952
1953 Connection Example:
1954
1955 [[image:1655802313617-381.png||_mstalt="293917"]]
1956
1957
1958 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1959
1960
1961 == 6.2 How to use AT Commands? ==
1962
1963
1964 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1965
1966 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1967 )))
1968
1969
1970 Input password and ATZ to activate LHT65N/S, As shown below:
1971
1972 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1973
1974
1975 AT Command List is as below:
1976
1977 AT+<CMD>? :  Help on <CMD>
1978
1979 AT+<CMD> :  Run <CMD>
1980
1981 AT+<CMD>=<value> :  Set the value
1982
1983 AT+<CMD>=? :  Get the value
1984
1985 AT+DEBUG:  Set more info output
1986
1987 ATZ:  Trig a reset of the MCU
1988
1989 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1990
1991 AT+DEUI:  Get or Set the Device EUI
1992
1993 AT+DADDR:  Get or Set the Device Address
1994
1995 AT+APPKEY:  Get or Set the Application Key
1996
1997 AT+NWKSKEY:  Get or Set the Network Session Key
1998
1999 AT+APPSKEY:  Get or Set the Application Session Key
2000
2001 AT+APPEUI:  Get or Set the Application EUI
2002
2003 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2004
2005 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2006
2007 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2008
2009 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2010
2011 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2012
2013 AT+RX2FQ:  Get or Set the Rx2 window frequency
2014
2015 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2016
2017 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2018
2019 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2020
2021 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2022
2023 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2024
2025 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2026
2027 AT+NWKID:  Get or Set the Network ID
2028
2029 AT+FCU:  Get or Set the Frame Counter Uplink
2030
2031 AT+FCD:  Get or Set the Frame Counter Downlink
2032
2033 AT+CLASS:  Get or Set the Device Class
2034
2035 AT+JOIN:  Join network
2036
2037 AT+NJS:  Get the join status
2038
2039 AT+SENDB:  Send hexadecimal data along with the application port
2040
2041 AT+SEND:  Send text data along with the application port
2042
2043 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2044
2045 AT+RECV:  Print last received data in raw format
2046
2047 AT+VER:  Get current image version and Frequency Band
2048
2049 AT+CFM:  Get or Set the confirmation mode (0-1)
2050
2051 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2052
2053 AT+SNR:  Get the SNR of the last received packet
2054
2055 AT+RSSI:  Get the RSSI of the last received packet
2056
2057 AT+TDC:  Get or set the application data transmission interval in ms
2058
2059 AT+PORT:  Get or set the application port
2060
2061 AT+DISAT:  Disable AT commands
2062
2063 AT+PWORD: Set password, max 9 digits
2064
2065 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2066
2067 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2068
2069 AT+PDTA:  Print the sector data from start page to stop page
2070
2071 AT+PLDTA:  Print the last few sets of data
2072
2073 AT+CLRDTA:  Clear the storage, record position back to 1st
2074
2075 AT+SLEEP:  Set sleep mode
2076
2077 AT+EXT:  Get or Set external sensor model
2078
2079 AT+BAT:  Get the current battery voltage in mV
2080
2081 AT+CFG:  Print all configurations
2082
2083 AT+WMOD:  Get or Set Work Mode
2084
2085 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2086
2087 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2088
2089 AT+SETCNT:  Set the count at present
2090
2091 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2092
2093 AT+RPL:  Get or set response level
2094
2095 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2096
2097 AT+LEAPSEC:  Get or Set Leap Second
2098
2099 AT+SYNCMOD:  Get or Set time synchronization method
2100
2101 AT+SYNCTDC:  Get or set time synchronization interval in day
2102
2103 AT+PID:  Get or set the PID
2104
2105
2106 == 6.3 How to use Downlink commands? ==
2107
2108
2109 **Downlink commands:**
2110
2111
2112 (% style="color:blue" %)**TTN:**
2113
2114 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2115
2116
2117
2118 (% style="color:blue" %)**Helium: **
2119
2120 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2121
2122
2123
2124 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2125
2126
2127 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2128
2129
2130 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2131
2132
2133
2134 (% style="color:blue" %)**AWS-IOT :**
2135
2136 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2137
2138
2139 == 6.4 How to change the uplink interval? ==
2140
2141
2142 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2143
2144
2145 == 6.5 How to upgrade firmware? ==
2146
2147
2148 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2149 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2150
2151
2152 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2153
2154
2155 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2156
2157 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2158
2159 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2160
2161 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2162
2163 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2164
2165 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2166
2167 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2168
2169 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2170
2171 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2172
2173 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2174
2175 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2176
2177
2178 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2179
2180 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2181
2182 [[image:image-20240716174308-1.png||height="523" width="410"]]
2183
2184
2185 === 6.5.2 Updated firmware for V1.4 and above ===
2186
2187
2188 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2189
2190 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2191 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2192
2193 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2194
2195
2196 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2197
2198
2199 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2200
2201 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2202
2203
2204 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2205
2206
2207 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2208
2209
2210 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2211
2212 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2213
2214 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2215
2216
2217
2218 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2219
2220 Connect PC and LHT65N/S via USB TTL adapter .
2221
2222 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2223
2224 **Connection method:**
2225
2226 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2227
2228 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2229
2230 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2231
2232 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2233
2234 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2235
2236
2237 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2238
2239 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2240
2241
2242 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2243
2244 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2245
2246
2247 When this interface appears, it indicates that the download has been completed.
2248
2249 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2250
2251
2252 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2253
2254
2255 == 6.6 Why can't I see the datalog information ==
2256
2257
2258 ~1. The time is not aligned, and the correct query command is not used.
2259
2260 2. Decoder error, did not parse the datalog data, the data was filtered.
2261
2262
2263 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2264
2265
2266 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2267
2268 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2269
2270
2271 After there is UART Connectio, run below commands:
2272
2273 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2274
2275 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2276
2277 Example output:
2278
2279 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2280
2281
2282 = 7. Order Info =
2283
2284
2285 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2286
2287 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2288
2289 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2290 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2291 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2292 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2293 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2294 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2295 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2296 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2297
2298 = 8. Packing Info =
2299
2300
2301 **Package Includes**:
2302
2303 * LHT65N/S Temperature & Humidity Sensor x 1
2304 * 1 x External Lora Antenna for LHT65S
2305 * Optional external sensor
2306
2307 = 9. Reference material =
2308
2309
2310 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2311
2312 = 10. FCC Warning =
2313
2314
2315 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2316
2317 (1) This device may not cause harmful interference;
2318
2319 (2) this device must accept any interference received, including interference that may cause undesired operation.