Version 349.1 by Mengting Qiu on 2025/04/22 10:00

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89 == 1.4 Model Difference ==
90
91
92 (% style="color:#037691" %)**LHT65N**(%%)** **and (% style="color:#037691" %)**LHT65S**(%%) share identical core functionalities, with the only difference being the antenna design.
93
94 * LHT65N: Built-in PCB antenna, suitable for indoor environments with stable signals.
95 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
96
97 [[image:image-20250422095731-2.png]]
98
99
100 = 2. Connect LHT65N/S to IoT Server =
101
102 == 2.1 How does LHT65N/S work? ==
103
104
105 (((
106 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
107 )))
108
109 (((
110 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
111 )))
112
113
114 == 2.2 How to Activate LHT65N/S? ==
115
116
117 (((
118 The LHT65N/S has two working modes:
119 )))
120
121 * (((
122 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
123 )))
124 * (((
125 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
126 )))
127
128 (((
129 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
130 )))
131
132 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
133
134 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
135 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
136 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
137 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
138 )))
139 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
140 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
141 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
142 )))
143 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
144
145 == 2.3 Example to join LoRaWAN network ==
146
147
148 (% class="wikigeneratedid" %)
149 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
150
151 (% class="wikigeneratedid" %)
152 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
153
154
155 (((
156 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
157 )))
158
159
160 === 2.3.1 Step 1: Create Device on TTN ===
161
162
163 (((
164 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
165 )))
166
167 (((
168 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
169 )))
170
171 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
172
173 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
174
175 (% style="color:blue" %)**1. Create application**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
178
179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
180
181
182 (% style="color:blue" %)**2. Add devices to the created Application.**
183
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
188
189 (% style="color:blue" %)**3. Enter end device specifics manually.**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
195
196
197 === 2.3.2 Step 2: Add decoder ===
198
199
200 In TTN, user can add a custom payload so it shows friendly reading.
201
202 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
203
204 Below is TTN screen shot
205
206 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
207
208 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
209
210 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
211
212
213 (((
214 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
215 )))
216
217 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
218
219
220 == 2.4 Uplink Payload (Fport~=2) ==
221
222
223 (((
224 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
225 )))
226
227 (((
228 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
229 )))
230
231 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
232 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
233 **Size(bytes)**
234 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
235 **2**
236 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
237 **2**
238 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
239 **2**
240 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
241 **1**
242 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
243 **4**
244 )))
245 |(% style="width:97px" %)(((
246 Value
247 )))|(% style="width:39px" %)(((
248 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
249 )))|(% style="width:100px" %)(((
250 (((
251 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
252 )))
253 )))|(% style="width:77px" %)(((
254 (((
255 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
256 )))
257 )))|(% style="width:47px" %)(((
258 [[Ext>>||anchor="H2.4.5Ext23"]] #
259 )))|(% style="width:51px" %)(((
260 [[Ext value>>||anchor="H2.4.6Extvalue"]]
261 )))
262
263 * The First 6 bytes: has fix meanings for every LHT65N/S.
264
265 * The 7th byte (EXT #): defines the external sensor model.
266
267 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
268
269 === 2.4.1 Decoder in TTN V3 ===
270
271
272 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
273
274 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
275
276
277 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
278
279
280 === 2.4.2 BAT-Battery Info ===
281
282
283 These two bytes of BAT include the battery state and the actually voltage.
284
285 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
286 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
287 **Bit(bit)**
288 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
289 |(% style="width:66px" %)(((
290 Value
291 )))|(% style="width:250px" %)(((
292 BAT Status
293 00(b): Ultra Low ( BAT <= 2.50v)
294 01(b): Low (2.50v <=BAT <= 2.55v)
295 10(b): OK (2.55v <= BAT <=2.65v)
296 11(b): Good (BAT >= 2.65v)
297 )))|(% style="width:152px" %)Actually BAT voltage
298
299 **(b)stands for binary**
300
301
302 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
303
304
305 Check the battery voltage for LHT65N/S.
306
307 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
308
309 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
310
311 === 2.4.3 Built-in Temperature ===
312
313
314 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
315
316 * Temperature:  0x0ABB/100=27.47℃
317
318 [[image:image-20220522235639-3.png||_mstalt="432120"]]
319
320 * Temperature:  (0xF5C6-65536)/100=-26.18℃
321
322 === 2.4.4 Built-in Humidity ===
323
324
325 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
326
327 * Humidity:    0x025C/10=60.4%
328
329 === 2.4.5 Ext # ===
330
331
332 Bytes for External Sensor:
333
334 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
335 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
336 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
337 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
338 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
339 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
340 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
341 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
342 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
343 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
344
345 === 2.4.6 Ext value ===
346
347 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
348
349
350 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
351 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
352 **Size(bytes)**
353 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
354 **2**
355 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
356 2
357 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
358 **2**
359 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
360 1
361 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
362 2
363 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
364 2
365 )))
366 |(% style="width:110px" %)(((
367 Value
368 )))|(% style="width:71px" %)(((
369 BAT & BAT Status
370 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
371 Status & Ext
372 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
373
374 [[image:image-20220522235639-5.png||_mstalt="432848"]]
375
376
377 * DS18B20 temp=0x0ADD/100=27.81℃
378
379 The last 2 bytes of data are meaningless
380
381 [[image:image-20220522235639-6.png||_mstalt="433212"]]
382
383
384 * External temperature= (0xF54F-65536)/100=-27.37℃
385
386 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
387
388 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
389
390 The last 2 bytes of data are meaningless
391
392 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
393
394
395 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
396
397
398 (((
399 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
400 )))
401
402 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
403 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
404 **Size(bytes)**
405 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
406 **2**
407 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
408 **2**
409 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
410 **2**
411 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
412 **1**
413 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
414 **4**
415 )))
416 |(% style="width:110px" %)(((
417 Value
418 )))|(% style="width:71px" %)(((
419 External temperature
420 )))|(% style="width:99px" %)(((
421 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
422 )))|(% style="width:132px" %)(((
423 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
424 )))|(% style="width:54px" %)(((
425 Status & Ext
426 )))|(% style="width:64px" %)(((
427 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
428 )))
429
430 * **Battery status & Built-in Humidity**
431
432 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
433 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
434 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
435 BAT Status
436 00(b): Ultra Low ( BAT <= 2.50v)
437 01(b): Low  (2.50v <=BAT <= 2.55v)
438 10(b): OK   (2.55v <= BAT <=2.65v)
439 11(b): Good   (BAT >= 2.65v)
440 )))|(% style="width:132px" %)(((
441 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
442 )))
443
444 * **Status & Ext Byte**
445
446 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
447 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
448 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
449
450 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
451 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
452 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
453
454 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
455
456
457 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
458 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
459 **Size(bytes)**
460 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
461 **2**
462 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
463 2
464 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
465 **2**
466 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
467 1
468 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
469 2
470 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
471 2
472 )))
473 |(% style="width:110px" %)(((
474 Value
475 )))|(% style="width:71px" %)(((
476 BAT & BAT Status
477 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
478 Status & Ext
479 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
480
481 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
482
483 be used to power the external ADC sensor; user can control the power on time for this
484
485 (% style="color:blue" %)**sensor by setting:**
486
487 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
488
489 **For example:**
490
491 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
492
493
494 Or use **downlink command A2** to set the same.
495
496 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
497
498 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
499
500 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
501
502
503 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
504
505 [[image:image-20220628150714-4.png||_mstalt="431054"]]
506
507
508 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
509
510
511 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
512
513 [[image:image-20220628151005-5.png||_mstalt="429546"]]
514
515
516 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
517
518 [[image:image-20220628151056-6.png||_mstalt="431873"]]
519
520
521 3) Within range
522
523 [[image:image-20220628151143-7.png||_mstalt="431210"]]
524
525
526 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
527
528
529 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
530
531 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
532
533 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
534 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
535 **Size(bytes)**
536 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
537 **2**
538 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
539 2
540 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
541 **2**
542 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
543 1
544 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
545 2
546 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
547 2
548 )))
549 |(% style="width:110px" %)(((
550 Value
551 )))|(% style="width:71px" %)(((
552 BAT & BAT Status
553 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
554 Status & Ext
555 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
556
557 [[image:image-20220906102307-7.png||_mstalt="430443"]]
558
559 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
560
561 The external cable NE2 can be use for MOD4 and MOD8
562
563
564 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
565
566
567 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
568
569 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
570
571 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
572 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
573 **Size(bytes)**
574 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
575 **2**
576 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
577 2
578 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
579 **2**
580 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
581 1
582 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
583 2
584 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
585 2
586 )))
587 |(% style="width:110px" %)(((
588 Value
589 )))|(% style="width:71px" %)(((
590 BAT & BAT Status
591 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
592 Status & Ext
593 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
594
595 [[image:SHT31.png||_mstalt="104715"]]
596
597
598 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
599
600
601 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
602
603
604 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
605
606 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
607
608 In Open State, the power consumption is the same as if there is no probe
609
610 In Close state, the power consumption will be 3uA higher than normal.
611
612 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
613
614
615 Ext=4,Interrupt Sensor:
616
617 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
618 |(% style="width:101px" %)(((
619 **AT+EXT=4,1**
620 )))|(% style="width:395px" %)(((
621 **Sent uplink packet in both rising and falling interrupt**
622 )))
623 |(% style="width:101px" %)(((
624 **AT+EXT=4,2**
625 )))|(% style="width:395px" %)(((
626 **Sent uplink packet only in falling interrupt**
627 )))
628 |(% style="width:101px" %)(((
629 **AT+EXT=4,3**
630 )))|(% style="width:395px" %)(((
631 **Sent uplink packet only in rising interrupt**
632 )))
633
634 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
635 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
636 **Size(bytes)**
637 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
638 **2**
639 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
640 2
641 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
642 **2**
643 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
644 1
645 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
646 1
647 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
648 2
649 )))
650 |(% style="width:110px" %)(((
651 Value
652 )))|(% style="width:71px" %)(((
653 BAT & BAT Status
654 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
655 Status & Ext
656 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
657
658 Trigger by falling edge:
659
660 [[image:image-20220906101145-2.png||_mstalt="428324"]]
661
662
663 Trigger by raising edge:
664
665 [[image:image-20220906101145-3.png||_mstalt="428688"]]
666
667
668 (% style="color:blue" %)**BAT & BAT Status :**
669
670 Check the battery voltage.
671
672 Ex1: 0x0B45 = 2885mV
673
674 Ex2: 0x0B49 = 2889mV
675
676
677 (% style="color:blue" %)**TempC_SHT :**
678
679 The temperature detected by the built-in temperature and humidity sensor SHT31.
680
681 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
682
683 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
684
685 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
686
687
688 (% style="color:blue" %)**Hum_SHT :**
689
690 The humidity detected by the built-in temperature and humidity sensor SHT31.
691
692 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
693
694
695 (% style="color:blue" %)**Status & Ext :**
696
697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
698 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
699 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
700
701 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
702 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
703 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
704
705 (% style="color:blue" %)**Exti_pin_level :**
706
707 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
708 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
709
710 (% style="color:blue" %)**Exti_status :**
711
712 Determines whether the uplink packet is generated by an interrupt.
713
714 1: Interrupt packet
715
716 0: Normal TDC uplink packet
717
718
719 (% style="color:blue" %)**senseless :**
720
721 Reserved position, meaningless. The value is fixed to 0x7FFF.
722
723
724 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
725
726
727 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
728
729
730 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
731
732 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
733
734
735 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
736
737 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
738
739
740 Ext=8, Counting Sensor ( 4 bytes):
741
742 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
743 |(% style="width:131px" %)(((
744 **AT+EXT=8,0**
745 )))|(% style="width:195px" %)(((
746 **Count at falling interrupt**
747 )))
748 |(% style="width:131px" %)(((
749 **AT+EXT=8,1**
750 )))|(% style="width:195px" %)(((
751 **Count at rising interrupt**
752 )))
753 |(% style="width:131px" %)(((
754 **AT+SETCNT=60**
755 )))|(% style="width:195px" %)(((
756 **Sent current count to 60**
757 )))
758
759 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
760 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
761 **Size(bytes)**
762 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
763 **2**
764 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
765 2
766 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
767 **2**
768 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
769 1
770 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
771 4
772 )))
773 |(% style="width:110px" %)(((
774 Value
775 )))|(% style="width:71px" %)(((
776 BAT & BAT Status
777 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
778 Status & Ext
779 )))|(% style="width:64px" %)Exit_count
780
781 [[image:image-20220906101320-6.png||_mstalt="428064"]]
782
783
784 (% style="color:blue" %)**A2 downlink Command:**
785
786 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
787
788 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
789
790 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
791
792 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
793
794 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
795
796
797 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
798
799
800 (((
801 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
802 )))
803
804 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
805 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
806 **Size(bytes)**
807 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
808 **2**
809 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
810 **2**
811 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
812 **2**
813 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
814 **1**
815 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
816 **4**
817 )))
818 |(% style="width:110px" %)(((
819 Value
820 )))|(% style="width:71px" %)(((
821 External temperature
822 )))|(% style="width:99px" %)(((
823 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
824 )))|(% style="width:132px" %)(((
825 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
826 )))|(% style="width:54px" %)(((
827 Status & Ext
828 )))|(% style="width:64px" %)(((
829 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
830 )))
831
832 * **Battery status & Built-in Humidity**
833
834 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
835 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
836 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
837 BAT Status
838 00(b): Ultra Low ( BAT <= 2.50v)
839 01(b): Low  (2.50v <=BAT <= 2.55v)
840 10(b): OK   (2.55v <= BAT <=2.65v)
841 11(b): Good   (BAT >= 2.65v)
842 )))|(% style="width:132px" %)(((
843 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
844 )))
845
846 * **Status & Ext Byte**
847
848 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
849 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
850 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
851
852 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
853 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
854 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
855
856 == 2.5 Show data on Datacake ==
857
858
859 (((
860 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
861 )))
862
863
864 (((
865 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
866 )))
867
868 (((
869 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
870 )))
871
872
873 (((
874 Add Datacake:
875 )))
876
877 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
878
879
880 Select default key as Access Key:
881
882
883 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
884
885
886 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
887
888 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
889
890
891 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
892
893
894 == 2.6 Datalog Feature ==
895
896
897 (((
898 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
899 )))
900
901
902 === 2.6.1 Ways to get datalog via LoRaWAN ===
903
904
905 There are two methods:
906
907 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
908
909
910 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
911
912
913 (% style="color:red" %)**Note for method 2:**
914
915 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
916 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
917
918 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
919
920 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
921
922
923 === 2.6.2 Unix TimeStamp ===
924
925
926 LHT65N/S uses Unix TimeStamp format based on
927
928 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
929
930
931 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
932
933 Below is the converter example
934
935 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
936
937
938 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
939
940
941 === 2.6.3 Set Device Time ===
942
943
944 (((
945 (% style="color:blue" %)**There are two ways to set device's time:**
946 )))
947
948 (((
949 **1.  Through LoRaWAN MAC Command (Default settings)**
950 )))
951
952 (((
953 User need to set SYNCMOD=1 to enable sync time via MAC command.
954 )))
955
956 (((
957 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
958 )))
959
960 (((
961 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
962 )))
963
964
965 (((
966 **2. Manually Set Time**
967 )))
968
969 (((
970 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
971 )))
972
973
974 === 2.6.4 Poll sensor value ===
975
976
977 User can poll sensor value based on timestamps from the server. Below is the downlink command.
978
979 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
980 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
981 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
982
983 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
984
985 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
986
987 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
988
989 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
990
991
992 === 2.6.5 Datalog Uplink payload ===
993
994
995 The Datalog poll reply uplink will use below payload format.
996
997 **Retrieval data payload:**
998
999 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1000 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1001 **Size(bytes)**
1002 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1003 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1004
1005 **Poll message flag & Ext:**
1006
1007 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1008 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1009 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1010
1011 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1012
1013 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1014
1015 * Poll Message Flag is set to 1.
1016
1017 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1018
1019 For example, in US915 band, the max payload for different DR is:
1020
1021 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1022
1023 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1024
1025 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1026
1027 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1028
1029 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1030
1031
1032 **Example:**
1033
1034 If LHT65N/S has below data inside Flash:
1035
1036 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1037 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1038 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1039 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1040 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1041 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1042 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1043 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1044 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1045 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1046
1047 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1048
1049 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1050
1051 Stop time: 60066DA7= time 21/1/19 05:27:03
1052
1053
1054 **LHT65N/S will uplink this payload.**
1055
1056 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1057
1058
1059 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1060
1061 Where the first 11 bytes is for the first entry:
1062
1063 7FFF089801464160065F97
1064
1065 Ext sensor data=0x7FFF/100=327.67
1066
1067 Temp=0x088E/100=22.00
1068
1069 Hum=0x014B/10=32.6
1070
1071 poll message flag & Ext=0x41,means reply data,Ext=1
1072
1073 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1074
1075
1076 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1077
1078
1079 (((
1080 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1081 )))
1082
1083 (((
1084 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1085
1086
1087 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1088
1089 (((
1090 (% class="box infomessage" %)
1091 (((
1092 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1093 )))
1094 )))
1095
1096 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1097
1098 **~ AT+WMOD=1,60,-10,20**
1099
1100
1101 Explain:
1102
1103 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1104 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1105 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1106
1107 (% style="color:#4f81bd" %)**Downlink Command:**
1108
1109 **Example: **A5013CFC1807D0
1110
1111 MOD=01
1112
1113 CITEMP=3C(S) =60(S)
1114
1115 TEMPlow=FC18 = -1000/100=-10(℃)
1116
1117 TEMPhigh=07D0=2000/100=20(℃)
1118
1119
1120 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1121
1122 **AT+WMOD=2,60,5** 
1123
1124 Explain:
1125
1126 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1127 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1128 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1129
1130 (% style="color:#4f81bd" %)**Downlink Command**
1131
1132 **Example: **A5023C05
1133
1134 MOD=02
1135
1136 CITEMP=3C(S)=60(S)
1137
1138 temperature fluctuation=05(℃)
1139
1140
1141 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1142
1143 **AT+WMOD=3,1,60,20,-16,32,1**   
1144
1145 Explain:
1146
1147 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1148 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1149 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1150 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1151 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1152 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1153
1154 (% style="color:#4f81bd" %)**Downlink Command:**
1155
1156 **Example: **A50301003C14FFF0002001
1157
1158 MOD=03
1159
1160 TEMP=DS18B20
1161
1162 CITEMP=003C(S)=60(S)
1163
1164 Total number of acquisitions=14
1165
1166 TEMPlow=FFF0=-16(℃)
1167
1168 TEMPhigh=0020=20(℃)
1169
1170 ARTEMP=01
1171
1172
1173 **Uplink payload( Fport=3)**
1174
1175 **Example: CBEA**01**0992**//0A41//**09C4**
1176
1177 BatV=CBEA
1178
1179 TEMP=DS18B20
1180
1181 Temp1=0992  ~/~/ 24.50℃
1182
1183 Temp2=0A41  ~/~/ 26.25℃
1184
1185 Temp3=09C4  ~/~/ 25.00℃
1186
1187 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1188
1189 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1190 )))
1191
1192
1193 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1194
1195
1196 (% class="box infomessage" %)
1197 (((
1198 (((
1199 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1200 )))
1201
1202 (((
1203 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1204 )))
1205
1206 (((
1207 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1208 )))
1209
1210 (((
1211 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1212 )))
1213
1214 (((
1215 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1216 )))
1217 )))
1218
1219 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1220
1221 Total bytes: 8 bytes
1222
1223 **Example:**AA0100010001003C
1224
1225 WMOD=01
1226
1227 CITEMP=0001
1228
1229 TEMPlow=0001
1230
1231 TEMPhigh=003C
1232
1233
1234 == 2.8 LED Indicator ==
1235
1236
1237 The LHT65 has a triple color LED which for easy showing different stage .
1238
1239 While user press ACT button, the LED will work as per LED status with ACT button.
1240
1241 In a normal working state:
1242
1243 * For each uplink, the BLUE LED or RED LED will blink once.
1244 BLUE LED when external sensor is connected.
1245 * RED LED when external sensor is not connected
1246 * For each success downlink, the PURPLE LED will blink once
1247
1248 == 2.9 installation ==
1249
1250
1251 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1252
1253
1254 = 3. Sensors and Accessories =
1255
1256 == 3.1 E2 Extension Cable ==
1257
1258
1259 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1260
1261
1262 **1m long breakout cable for LHT65N/S. Features:**
1263
1264 * (((
1265 Use for AT Command, works for both LHT52, LHT65N/S
1266 )))
1267 * (((
1268 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1269 )))
1270 * (((
1271 Supports ADC mode to monitor external ADC
1272 )))
1273 * (((
1274 Supports Interrupt mode
1275 )))
1276 * (((
1277 Exposed All pins from the LHT65N/S Type-C connector.
1278
1279
1280
1281 )))
1282
1283 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1284
1285
1286 == 3.2 E3 Temperature Probe ==
1287
1288
1289 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1290
1291
1292 Temperature sensor with 2 meters cable long
1293
1294 * Resolution: 0.0625 °C
1295 * ±0.5°C accuracy from -10°C to +85°C
1296 * ±2°C accuracy from -55°C to +125°C
1297 * Operating Range: -40 ~~ 125 °C
1298 * Working voltage 2.35v ~~ 5v
1299
1300 == 3.3 E31F Temperature Probe ==
1301
1302
1303 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1304
1305
1306 Temperature sensor with 1 meters cable long
1307
1308
1309 **Built-in Temperature Sensor:**
1310
1311 * Resolution: 0.01 °C
1312 * Accuracy Tolerance : Typ ±0.3 °C
1313 * Long Term Drift: < 0.02 °C/yr
1314 * Operating Range: -40 ~~ 80 °C
1315
1316 **Built-in Humidity Sensor:**
1317
1318 * Resolution: 0.04 % RH
1319 * Accuracy Tolerance : Typ ±3 % RH
1320 * Long Term Drift: < 0.25 RH/yr
1321 * Operating Range: 0 ~~ 96 % RH
1322
1323 **External Temperature Sensor :**
1324
1325 * Resolution: 0.01 °C
1326 * Accuracy Tolerance : Typical ±0.3 °C
1327 * Long Term Drift: < 0.02 °C/yr
1328 * Operating Range: -40 ~~ 125 °C
1329
1330 **External Humidity Sensor :**
1331
1332 * Resolution: 0.04 % RH
1333 * Accuracy Tolerance : Typ ±3 % RH
1334 * Long Term Drift: < 0.25 RH/yr
1335 * Operating Range: 0 ~~ 96 % RH
1336
1337 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1338
1339
1340 External Temperature Sensor – NE117:
1341 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1342
1343 * Silica gel cable
1344 * ±0.1 °C (maximum) from –20 °C to 50 °C
1345 * ±0.2 °C (maximum) from –40 °C to 100 °C
1346 * ±0.3 °C (maximum) from –55 °C to 150 °C
1347
1348 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1349
1350
1351 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1352
1353
1354 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1355 * 3 wires: VCC/GND/INT
1356 * Cable Lenght: 1 meter
1357
1358 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1359
1360 LHT65N/S-DC can be used to connect various types of external sensor. below.
1361
1362 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1363
1364 [[image:image-20240422100149-5.png||height="163" width="510"]]
1365
1366 [[image:image-20240422100217-6.png||height="141" width="507"]]
1367
1368
1369 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1370
1371
1372 * Aluminum Alloy Door Sensor
1373 * Detect Distance: ~~3cm
1374 * Cable Lenght: 1 meter
1375
1376 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1377
1378 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1379
1380
1381 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1382
1383
1384 (((
1385 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1386 )))
1387
1388 * (((
1389 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1390 )))
1391
1392 * (((
1393 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1394 )))
1395
1396 (((
1397 There are two kinds of commands to configure LHT65N/S, they are:
1398 )))
1399
1400 * (((
1401 (% style="color:#4f81bd" %)**General Commands**.
1402 )))
1403
1404 (((
1405 These commands are to configure:
1406 )))
1407
1408 1. (((
1409 General system settings like: uplink interval.
1410 )))
1411 1. (((
1412 LoRaWAN protocol & radio-related commands.
1413 )))
1414
1415 (((
1416 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1417 )))
1418
1419 * (((
1420 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1421 )))
1422
1423 (((
1424 These commands are only valid for LHT65N/S, as below:
1425 )))
1426
1427
1428 == 4.1 Set Transmit Interval Time ==
1429
1430
1431 Feature: Change LoRaWAN End Node Transmit Interval.
1432
1433
1434 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1435
1436 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1437 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1438 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1439 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1440
1441 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1442
1443 Format: Command Code (0x01) followed by 3 bytes time value.
1444
1445 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1446
1447 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1448
1449 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1450
1451 == 4.2 Set External Sensor Mode ==
1452
1453
1454 Feature: Change External Sensor Mode.
1455
1456 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1457
1458 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500.222px" %)
1459 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:126px" %)**Dowlink Command**
1460 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1461 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1462 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1463 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1464 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1465 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1466 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1467 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1468 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1469
1470 **Response**
1471
1472 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1473
1474 Total bytes: 2 ~~ 5 bytes
1475
1476 **Example:**
1477
1478 * 0xA201: Set external sensor type to E1
1479
1480 * 0xA209: Same as AT+EXT=9
1481
1482 * 0xA20702003c: Same as AT+SETCNT=60
1483
1484 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1485
1486
1487 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1488
1489 * First Packet after OTAA Join
1490 * Every 24 hours since the first packet.
1491
1492 PID is default set to disable (0)
1493
1494 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1495
1496 (% style="color:#4f81bd" %)**AT Command:**
1497
1498 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1499 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1500 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1501
1502 (% style="color:#4f81bd" %)**Downlink Command:**
1503
1504 * **0xA800**  **~-~->** AT+PID=0
1505 * **0xA801**     **~-~->** AT+PID=1
1506
1507 == 4.4 Set Password ==
1508
1509
1510 Feature: Set device password, max 9 digits
1511
1512 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1513
1514 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1515 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1516 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1517 123456
1518
1519 OK
1520 )))
1521 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1522
1523 (% style="color:#4f81bd" %)**Downlink Command:**
1524
1525 No downlink command for this feature.
1526
1527
1528 == 4.5 Quit AT Command ==
1529
1530
1531 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1532
1533 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1534
1535 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1536 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1537 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1538
1539 (% style="color:#4f81bd" %)**Downlink Command:**
1540
1541 No downlink command for this feature.
1542
1543
1544 == 4.6 Set to sleep mode ==
1545
1546
1547 Feature: Set device to sleep mode
1548
1549 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1550 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1551
1552 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1553
1554 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1555 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1556 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1557 Clear all stored sensor data…
1558
1559 OK
1560 )))
1561
1562 (% style="color:#4f81bd" %)**Downlink Command:**
1563
1564 * There is no downlink command to set to Sleep mode.
1565
1566 == 4.7 Set system time ==
1567
1568
1569 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1570
1571 (% style="color:#4f81bd" %)**AT Command:**
1572
1573 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1574 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1575 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1576 OK
1577
1578 Set System time to 2021-01-20 00:59:12
1579 )))
1580
1581 (% style="color:#4f81bd" %)**Downlink Command:**
1582
1583 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1584
1585
1586 == 4.8 Set Time Sync Mode ==
1587
1588
1589 (((
1590 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1591 )))
1592
1593 (((
1594 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1595 )))
1596
1597 (% style="color:#4f81bd" %)**AT Command:**
1598
1599 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1600 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1601 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1602
1603 (% style="color:#4f81bd" %)**Downlink Command:**
1604
1605 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1606 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1607
1608
1609 == 4.9 Set Time Sync Interval ==
1610
1611
1612 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1613
1614 (% style="color:#4f81bd" %)**AT Command:**
1615
1616 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1617 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1618 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1619
1620 (% style="color:#4f81bd" %)**Downlink Command:**
1621
1622 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1623
1624
1625 == 4.10 Get data ==
1626
1627
1628 Feature: Get the current sensor data.
1629
1630 (% style="color:#4f81bd" %)**AT Command:**
1631
1632 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1633 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1634
1635 == 4.11 Print data entries base on page ==
1636
1637
1638 Feature: Print the sector data from start page to stop page (max is 416 pages).
1639
1640 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1641
1642 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1643 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1644 |(% style="width:156px" %)(((
1645 AT+PDTA=1,3
1646 Print page 1 to 3
1647 )))|(% style="width:311px" %)(((
1648 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1649 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1650 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1651 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1652 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1653 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1654 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1655 8019570
1656 8019580
1657 8019590
1658 80195A0
1659 80195B0
1660 80195C0
1661 80195D0
1662 80195E0
1663 80195F0
1664
1665 OK
1666 )))
1667
1668 (% style="color:#4f81bd" %)**Downlink Command:**
1669
1670 No downlink commands for feature
1671
1672
1673 == 4.12 Print last few data entries ==
1674
1675
1676 Feature: Print the last few data entries
1677
1678 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1679
1680 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1681 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1682 |(% style="width:156px" %)(((
1683 AT+PLDTA=5
1684 Print last 5 entries
1685 )))|(% style="width:311px" %)(((
1686 Stop Tx and RTP events when read sensor data
1687 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1688 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1689 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1690 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1691 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1692 Start Tx and RTP events
1693 OK
1694 )))
1695
1696 (% style="color:#4f81bd" %)**Downlink Command:**
1697
1698 No downlink commands for feature
1699
1700
1701 == 4.13 Clear Flash Record ==
1702
1703
1704 Feature: Clear flash storage for data log feature.
1705
1706 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1707
1708 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1709 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1710 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1711 Clear all stored sensor data…
1712
1713 OK
1714 )))
1715
1716 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1717
1718 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1719
1720 == 4.14 Auto Send None-ACK messages ==
1721
1722
1723 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1724
1725 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1726
1727 The default factory setting is 0
1728
1729 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1730 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1731 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1732
1733 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1734
1735 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1736
1737 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1738
1739
1740 Feature: Set internal and external temperature sensor alarms.
1741
1742 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1743 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1744 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1745
1746 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1747
1748 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1749
1750 0): Cancel
1751
1752 1): Threshold alarm
1753
1754 2): Fluctuation alarm
1755
1756 3): Sampling multiple times and uplink together
1757
1758
1759 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1760
1761 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1762
1763
1764 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1765
1766 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1767
1768 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1769
1770
1771 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1772
1773 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1774
1775 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1776
1777
1778 **3): If Alarm Mode is set to 3:**
1779
1780 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1781 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1782 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1783 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1784 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1785 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1786
1787 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1788
1789 0xA5 00 ~-~- AT+WMOD=0.
1790
1791 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1792
1793 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1794
1795 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1796
1797 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1798
1799 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1800
1801
1802 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1803
1804
1805 Feature: use downlink to get firmware version.
1806
1807 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1808
1809 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1810 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1811 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1812
1813 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1814
1815 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1816
1817 (% style="color:#037691" %)**Sensor model**
1818
1819 0x0b: LHT65N/S
1820
1821
1822 (% style="color:#037691" %)**Firmware version**
1823
1824 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1825
1826 Example: 0x0140=V1.4.0
1827
1828
1829 (% style="color:#037691" %)** Frequency Band:**
1830
1831 * 0x01: EU868
1832 * 0x02: US915
1833 * 0x03: IN865
1834 * 0x04: AU915
1835 * 0x05: KZ865
1836 * 0x06: RU864
1837 * 0x07: AS923
1838 * 0x08: AS923-1
1839 * 0x09: AS923-2
1840 * 0xa0: AS923-3
1841
1842 (% style="color:#037691" %)**Subband**
1843
1844 value 0x00 ~~ 0x08
1845
1846 Example: 0xFF ~-~--> " NULL"
1847
1848
1849 (% style="color:#037691" %)**Battery**
1850
1851 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1852
1853 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1854
1855
1856 == 4.17 Setting LEDAlarm ==
1857
1858 Feature: Setting LEDAlarm
1859
1860 The default factory setting is 0
1861
1862 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1863 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1864 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1865
1866 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1867
1868 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1869
1870 = 5. Battery & How to replace =
1871
1872 == 5.1 Battery Type ==
1873
1874
1875 (((
1876 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1877 )))
1878
1879 (((
1880 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1881
1882 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1883 )))
1884
1885 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1886
1887 == 5.2 Replace Battery ==
1888
1889
1890 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1891
1892 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1893
1894
1895 == 5.3 Battery Life Analyze ==
1896
1897
1898 (((
1899 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1900 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1901 )))
1902
1903
1904 (((
1905 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1906 )))
1907
1908
1909 = 6. FAQ =
1910
1911 == 6.1 How to connect to LHT65N/S UART interface? ==
1912
1913
1914 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1915
1916 * Send AT Commands, and get output from LHT65N/S
1917 * Upgrade firmwre of LHT65N/S.
1918
1919 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1920
1921
1922 **Option of USB TTL adapter:**
1923
1924 * CP2101 USB TTL Adapter
1925 * CH340 USB TTL Adapter
1926 * FT232 USB TTL Adapter
1927
1928 **Option of Type-C Adapter:**
1929
1930 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1931
1932
1933 **Connection:**
1934
1935 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1936 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1937 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1938
1939 (((
1940
1941
1942 Connection Example:
1943
1944 [[image:1655802313617-381.png||_mstalt="293917"]]
1945
1946
1947 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1948
1949
1950 == 6.2 How to use AT Commands? ==
1951
1952
1953 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1954
1955 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1956 )))
1957
1958
1959 Input password and ATZ to activate LHT65N/S, As shown below:
1960
1961 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1962
1963
1964 AT Command List is as below:
1965
1966 AT+<CMD>? :  Help on <CMD>
1967
1968 AT+<CMD> :  Run <CMD>
1969
1970 AT+<CMD>=<value> :  Set the value
1971
1972 AT+<CMD>=? :  Get the value
1973
1974 AT+DEBUG:  Set more info output
1975
1976 ATZ:  Trig a reset of the MCU
1977
1978 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1979
1980 AT+DEUI:  Get or Set the Device EUI
1981
1982 AT+DADDR:  Get or Set the Device Address
1983
1984 AT+APPKEY:  Get or Set the Application Key
1985
1986 AT+NWKSKEY:  Get or Set the Network Session Key
1987
1988 AT+APPSKEY:  Get or Set the Application Session Key
1989
1990 AT+APPEUI:  Get or Set the Application EUI
1991
1992 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1993
1994 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1995
1996 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1997
1998 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1999
2000 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2001
2002 AT+RX2FQ:  Get or Set the Rx2 window frequency
2003
2004 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2005
2006 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2007
2008 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2009
2010 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2011
2012 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2013
2014 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2015
2016 AT+NWKID:  Get or Set the Network ID
2017
2018 AT+FCU:  Get or Set the Frame Counter Uplink
2019
2020 AT+FCD:  Get or Set the Frame Counter Downlink
2021
2022 AT+CLASS:  Get or Set the Device Class
2023
2024 AT+JOIN:  Join network
2025
2026 AT+NJS:  Get the join status
2027
2028 AT+SENDB:  Send hexadecimal data along with the application port
2029
2030 AT+SEND:  Send text data along with the application port
2031
2032 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2033
2034 AT+RECV:  Print last received data in raw format
2035
2036 AT+VER:  Get current image version and Frequency Band
2037
2038 AT+CFM:  Get or Set the confirmation mode (0-1)
2039
2040 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2041
2042 AT+SNR:  Get the SNR of the last received packet
2043
2044 AT+RSSI:  Get the RSSI of the last received packet
2045
2046 AT+TDC:  Get or set the application data transmission interval in ms
2047
2048 AT+PORT:  Get or set the application port
2049
2050 AT+DISAT:  Disable AT commands
2051
2052 AT+PWORD: Set password, max 9 digits
2053
2054 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2055
2056 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2057
2058 AT+PDTA:  Print the sector data from start page to stop page
2059
2060 AT+PLDTA:  Print the last few sets of data
2061
2062 AT+CLRDTA:  Clear the storage, record position back to 1st
2063
2064 AT+SLEEP:  Set sleep mode
2065
2066 AT+EXT:  Get or Set external sensor model
2067
2068 AT+BAT:  Get the current battery voltage in mV
2069
2070 AT+CFG:  Print all configurations
2071
2072 AT+WMOD:  Get or Set Work Mode
2073
2074 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2075
2076 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2077
2078 AT+SETCNT:  Set the count at present
2079
2080 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2081
2082 AT+RPL:  Get or set response level
2083
2084 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2085
2086 AT+LEAPSEC:  Get or Set Leap Second
2087
2088 AT+SYNCMOD:  Get or Set time synchronization method
2089
2090 AT+SYNCTDC:  Get or set time synchronization interval in day
2091
2092 AT+PID:  Get or set the PID
2093
2094
2095 == 6.3 How to use Downlink commands? ==
2096
2097
2098 **Downlink commands:**
2099
2100
2101 (% style="color:blue" %)**TTN:**
2102
2103 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2104
2105
2106
2107 (% style="color:blue" %)**Helium: **
2108
2109 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2110
2111
2112
2113 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2114
2115
2116 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2117
2118
2119 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2120
2121
2122
2123 (% style="color:blue" %)**AWS-IOT :**
2124
2125 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2126
2127
2128 == 6.4 How to change the uplink interval? ==
2129
2130
2131 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2132
2133
2134 == 6.5 How to upgrade firmware? ==
2135
2136
2137 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2138 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2139
2140
2141 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2142
2143
2144 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2145
2146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2147
2148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2149
2150 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2151
2152 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2153
2154 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2155
2156 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2157
2158 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2159
2160 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2161
2162 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2163
2164 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2165
2166
2167 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2168
2169 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2170
2171 [[image:image-20240716174308-1.png||height="523" width="410"]]
2172
2173
2174 === 6.5.2 Updated firmware for V1.4 and above ===
2175
2176
2177 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2178
2179 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2180 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2181
2182 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2183
2184
2185 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2186
2187
2188 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2189
2190 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2191
2192
2193 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2194
2195
2196 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2197
2198
2199 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2200
2201 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2202
2203 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2204
2205
2206
2207 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2208
2209 Connect PC and LHT65N/S via USB TTL adapter .
2210
2211 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2212
2213 **Connection method:**
2214
2215 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2216
2217 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2218
2219 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2220
2221 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2222
2223 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2224
2225
2226 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2227
2228 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2229
2230
2231 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2232
2233 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2234
2235
2236 When this interface appears, it indicates that the download has been completed.
2237
2238 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2239
2240
2241 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2242
2243
2244 == 6.6 Why can't I see the datalog information ==
2245
2246
2247 ~1. The time is not aligned, and the correct query command is not used.
2248
2249 2. Decoder error, did not parse the datalog data, the data was filtered.
2250
2251
2252 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2253
2254
2255 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2256
2257 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2258
2259
2260 After there is UART Connectio, run below commands:
2261
2262 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2263
2264 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2265
2266 Example output:
2267
2268 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2269
2270
2271 = 7. Order Info =
2272
2273
2274 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2275
2276 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2277
2278 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2279 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2280 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2281 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2282 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2283 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2284 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2285 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2286
2287 = 8. Packing Info =
2288
2289
2290 **Package Includes**:
2291
2292 * LHT65N/S Temperature & Humidity Sensor x 1
2293 * 1 x External Lora Antenna for LHT65S
2294 * Optional external sensor
2295
2296 = 9. Reference material =
2297
2298
2299 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2300
2301 = 10. FCC Warning =
2302
2303
2304 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2305
2306 (1) This device may not cause harmful interference;
2307
2308 (2) this device must accept any interference received, including interference that may cause undesired operation.