Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device on TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20240710153745-4.png||height="406" width="735"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input JoinEUI(APPEUI),  DEVEUI and APPKEY:
179
180
181 [[image:image-20240710154010-5.png||height="598" width="644"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
429
430
431 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
435 **2**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 2
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 **2**
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 1
442 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))
447 |(% style="width:110px" %)(((
448 Value
449 )))|(% style="width:71px" %)(((
450 BAT & BAT Status
451 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
452 Status & Ext
453 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
454
455 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
456
457 be used to power the external ADC sensor; user can control the power on time for this
458
459 (% style="color:blue" %)**sensor by setting:**
460
461 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
462
463 **For example:**
464
465 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
466
467
468 Or use **downlink command A2** to set the same.
469
470 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
471
472 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
473
474 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
475
476
477 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
478
479 [[image:image-20220628150714-4.png||_mstalt="431054"]]
480
481
482 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
483
484
485 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
486
487 [[image:image-20220628151005-5.png||_mstalt="429546"]]
488
489
490 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
491
492 [[image:image-20220628151056-6.png||_mstalt="431873"]]
493
494
495 3) Within range
496
497 [[image:image-20220628151143-7.png||_mstalt="431210"]]
498
499
500 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
501
502
503 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
504
505
506 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
507
508
509 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
510 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
513 **2**
514 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
515 2
516 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
517 **2**
518 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
519 1
520 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
521 2
522 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
523 2
524 )))
525 |(% style="width:110px" %)(((
526 Value
527 )))|(% style="width:71px" %)(((
528 BAT & BAT Status
529 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
530 Status & Ext
531 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
532
533 [[image:image-20220906102307-7.png||_mstalt="430443"]]
534
535 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
536
537 The external cable NE2 can be use for MOD4 and MOD8
538
539
540 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
541
542
543 [[image:image-20230717151245-7.png||_mstalt="432133" height="467" width="466"]]
544
545 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
546
547 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
548 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
551 **2**
552 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
553 2
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 **2**
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 1
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))
563 |(% style="width:110px" %)(((
564 Value
565 )))|(% style="width:71px" %)(((
566 BAT & BAT Status
567 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
568 Status & Ext
569 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
570
571 [[image:SHT31.png||_mstalt="104715"]]
572
573
574 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
575
576
577 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
578
579
580 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
581
582 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
583
584 In Open State, the power consumption is the same as if there is no probe
585
586 In Close state, the power consumption will be 3uA higher than normal.
587
588 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
589
590
591 Ext=4,Interrupt Sensor:
592
593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
594 |(% style="width:101px" %)(((
595 **AT+EXT=4,1**
596 )))|(% style="width:395px" %)(((
597 **Sent uplink packet in both rising and falling interrupt**
598 )))
599 |(% style="width:101px" %)(((
600 **AT+EXT=4,2**
601 )))|(% style="width:395px" %)(((
602 **Sent uplink packet only in falling interrupt**
603 )))
604 |(% style="width:101px" %)(((
605 **AT+EXT=4,3**
606 )))|(% style="width:395px" %)(((
607 **Sent uplink packet only in rising interrupt**
608 )))
609
610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
611 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
612 **Size(bytes)**
613 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
614 **2**
615 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
616 2
617 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
618 **2**
619 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
620 1
621 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
622 1
623 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
624 2
625 )))
626 |(% style="width:110px" %)(((
627 Value
628 )))|(% style="width:71px" %)(((
629 BAT & BAT Status
630 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
631 Status & Ext
632 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
633
634 Trigger by falling edge:
635
636 [[image:image-20220906101145-2.png||_mstalt="428324"]]
637
638
639 Trigger by raising edge:
640
641 [[image:image-20220906101145-3.png||_mstalt="428688"]]
642
643
644 (% style="color:blue" %)**BAT & BAT Status :**
645
646 Check the battery voltage.
647
648 Ex1: 0x0B45 = 2885mV
649
650 Ex2: 0x0B49 = 2889mV
651
652
653 (% style="color:blue" %)**TempC_SHT :**
654
655 The temperature detected by the built-in temperature and humidity sensor SHT31.
656
657 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
658
659 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
660
661 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
662
663
664 (% style="color:blue" %)**Hum_SHT :**
665
666 The humidity detected by the built-in temperature and humidity sensor SHT31.
667
668 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
669
670
671 (% style="color:blue" %)**Status & Ext :**
672
673 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
674 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
675 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
676
677 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
678 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
679 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
680
681 (% style="color:blue" %)**Exti_pin_level : **
682
683 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
684 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
685
686 (% style="color:blue" %)**Exti_status :**
687
688 Determines whether the uplink packet is generated by an interrupt.
689
690 1: Interrupt packet
691
692 0: Normal TDC uplink packet
693
694
695 (% style="color:blue" %)**senseless :**
696
697 Reserved position, meaningless. The value is fixed to 0x7FFF.
698
699
700 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
701
702
703 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
704
705
706 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
707
708 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
709
710
711 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
712
713 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
714
715
716 Ext=8, Counting Sensor ( 4 bytes):
717
718 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
719 |(% style="width:131px" %)(((
720 **AT+EXT=8,0**
721 )))|(% style="width:195px" %)(((
722 **Count at falling interrupt**
723 )))
724 |(% style="width:131px" %)(((
725 **AT+EXT=8,1**
726 )))|(% style="width:195px" %)(((
727 **Count at rising interrupt**
728 )))
729 |(% style="width:131px" %)(((
730 **AT+SETCNT=60**
731 )))|(% style="width:195px" %)(((
732 **Sent current count to 60**
733 )))
734
735 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
736 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
737 **Size(bytes)**
738 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
739 **2**
740 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
741 2
742 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
743 **2**
744 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
745 1
746 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
747 4
748 )))
749 |(% style="width:110px" %)(((
750 Value
751 )))|(% style="width:71px" %)(((
752 BAT & BAT Status
753 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
754 Status & Ext
755 )))|(% style="width:64px" %)Exit_count
756
757 [[image:image-20220906101320-6.png||_mstalt="428064"]]
758
759
760 (% style="color:blue" %)**A2 downlink Command:**
761
762 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
763
764 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
765
766 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
767
768 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
769
770 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
771
772
773 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
774
775
776 (((
777 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
778 )))
779
780 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
781 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
782 **Size(bytes)**
783 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
784 **2**
785 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
786 **2**
787 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
788 **2**
789 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
790 **1**
791 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
792 **4**
793 )))
794 |(% style="width:110px" %)(((
795 Value
796 )))|(% style="width:71px" %)(((
797 External temperature
798 )))|(% style="width:99px" %)(((
799 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
800 )))|(% style="width:132px" %)(((
801 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
802 )))|(% style="width:54px" %)(((
803 Status & Ext
804 )))|(% style="width:64px" %)(((
805 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
806 )))
807
808 * **Battery status & Built-in Humidity**
809
810 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
811 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
812 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
813 BAT Status
814 00(b): Ultra Low ( BAT <= 2.50v)
815 01(b): Low  (2.50v <=BAT <= 2.55v)
816 10(b): OK   (2.55v <= BAT <=2.65v)
817 11(b): Good   (BAT >= 2.65v)
818 )))|(% style="width:132px" %)(((
819 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
820 )))
821
822 * **Status & Ext Byte**
823
824 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
825 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
826 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
827
828 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
829 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
830 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
831
832 == 2.5 Show data on Datacake ==
833
834
835 (((
836 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
837 )))
838
839
840 (((
841 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
842 )))
843
844 (((
845 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
846 )))
847
848
849 (((
850 Add Datacake:
851 )))
852
853 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
854
855
856 Select default key as Access Key:
857
858
859 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
860
861
862 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
863
864 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
865
866
867 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
868
869
870 == 2.6 Datalog Feature ==
871
872
873 (((
874 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
875 )))
876
877
878 === 2.6.1 Ways to get datalog via LoRaWAN ===
879
880
881 There are two methods:
882
883 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
884
885
886 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
887
888
889 (% style="color:red" %)**Note for method 2:**
890
891 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
892 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
893
894 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
895
896 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
897
898
899 === 2.6.2 Unix TimeStamp ===
900
901
902 LHT65N uses Unix TimeStamp format based on
903
904
905 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
906
907
908 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
909
910 Below is the converter example
911
912 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
913
914
915 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
916
917
918 === 2.6.3 Set Device Time ===
919
920
921 (((
922 (% style="color:blue" %)**There are two ways to set device's time:**
923 )))
924
925 (((
926 **1.  Through LoRaWAN MAC Command (Default settings)**
927 )))
928
929 (((
930 User need to set SYNCMOD=1 to enable sync time via MAC command.
931 )))
932
933 (((
934 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
935 )))
936
937 (((
938 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
939 )))
940
941
942 (((
943 **2. Manually Set Time**
944 )))
945
946 (((
947 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
948 )))
949
950
951 === 2.6.4 Poll sensor value ===
952
953
954 User can poll sensor value based on timestamps from the server. Below is the downlink command.
955
956 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
957 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
958 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
959
960 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
961
962 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
963
964 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
965
966 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
967
968
969 === 2.6.5 Datalog Uplink payload ===
970
971
972 The Datalog poll reply uplink will use below payload format.
973
974 **Retrieval data payload:**
975
976 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
977 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
978 **Size(bytes)**
979 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
980 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
981
982 **Poll message flag & Ext:**
983
984 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
985 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
986 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
987
988 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
989
990 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
991
992 * Poll Message Flag is set to 1.
993
994 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
995
996 For example, in US915 band, the max payload for different DR is:
997
998 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
999
1000 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1001
1002 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1003
1004 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1005
1006 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1007
1008
1009 **Example:**
1010
1011 If LHT65N has below data inside Flash:
1012
1013 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1014 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1015 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1016 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1017 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1018 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1019 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1020 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1021 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1022 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1023
1024 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1025
1026 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1027
1028 Stop time: 60066DA7= time 21/1/19 05:27:03
1029
1030
1031 **LHT65N will uplink this payload.**
1032
1033 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1034
1035
1036 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1037
1038 Where the first 11 bytes is for the first entry:
1039
1040 7FFF089801464160065F97
1041
1042 Ext sensor data=0x7FFF/100=327.67
1043
1044 Temp=0x088E/100=22.00
1045
1046 Hum=0x014B/10=32.6
1047
1048 poll message flag & Ext=0x41,means reply data,Ext=1
1049
1050 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1051
1052
1053 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1054
1055
1056 (((
1057 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1058 )))
1059
1060 (((
1061 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1062
1063
1064 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1065
1066 (((
1067 (% class="box infomessage" %)
1068 (((
1069 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1070 )))
1071 )))
1072
1073 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1074
1075 **~ AT+WMOD=1,60,-10,20**
1076
1077
1078 Explain:
1079
1080 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1081 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1082 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1083
1084 (% style="color:#4f81bd" %)**Downlink Command:**
1085
1086 **Example: **A5013CFC1807D0
1087
1088 MOD=01
1089
1090 CITEMP=3C(S) =60(S)
1091
1092 TEMPlow=FC18 = -1000/100=-10(℃)
1093
1094 TEMPhigh=07D0=2000/100=20(℃)
1095
1096
1097 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1098
1099 **AT+WMOD=2,60,5** 
1100
1101 Explain:
1102
1103 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1104 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1105 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1106
1107 (% style="color:#4f81bd" %)**Downlink Command**
1108
1109 **Example: **A5023C05
1110
1111 MOD=02
1112
1113 CITEMP=3C(S)=60(S)
1114
1115 temperature fluctuation=05(℃)
1116
1117
1118 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1119
1120 **AT+WMOD=3,1,60,20,-16,32,1**   
1121
1122 Explain:
1123
1124 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1125 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1126 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1127 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1128 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1129 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1130
1131 (% style="color:#4f81bd" %)**Downlink Command:**
1132
1133 **Example: **A50301003C14FFF0002001
1134
1135 MOD=03
1136
1137 TEMP=DS18B20
1138
1139 CITEMP=003C(S)=60(S)
1140
1141 Total number of acquisitions=14
1142
1143 TEMPlow=FFF0=-16(℃)
1144
1145 TEMPhigh=0020=20(℃)
1146
1147 ARTEMP=01
1148
1149
1150 **Uplink payload( Fport=3)**
1151
1152 **Example: CBEA**01**0992**//0A41//**09C4**
1153
1154 BatV=CBEA
1155
1156 TEMP=DS18B20
1157
1158 Temp1=0992  ~/~/ 24.50℃
1159
1160 Temp2=0A41  ~/~/ 26.25℃
1161
1162 Temp3=09C4  ~/~/ 25.00℃
1163
1164 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1165
1166 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1167 )))
1168
1169
1170 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1171
1172
1173 (% class="box infomessage" %)
1174 (((
1175 (((
1176 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1177 )))
1178
1179 (((
1180 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1181 )))
1182
1183 (((
1184 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1185 )))
1186
1187 (((
1188 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1189 )))
1190
1191 (((
1192 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1193 )))
1194 )))
1195
1196 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1197
1198 Total bytes: 8 bytes
1199
1200 **Example:**AA0100010001003C
1201
1202 WMOD=01
1203
1204 CITEMP=0001
1205
1206 TEMPlow=0001
1207
1208 TEMPhigh=003C
1209
1210
1211 == 2.8 LED Indicator ==
1212
1213
1214 The LHT65 has a triple color LED which for easy showing different stage .
1215
1216 While user press ACT button, the LED will work as per LED status with ACT button.
1217
1218 In a normal working state:
1219
1220 * For each uplink, the BLUE LED or RED LED will blink once.
1221 BLUE LED when external sensor is connected.
1222 * RED LED when external sensor is not connected
1223 * For each success downlink, the PURPLE LED will blink once
1224
1225 == 2.9 installation ==
1226
1227
1228 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1229
1230
1231 = 3. Sensors and Accessories =
1232
1233 == 3.1 E2 Extension Cable ==
1234
1235
1236 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1237
1238
1239 **1m long breakout cable for LHT65N. Features:**
1240
1241 * (((
1242 Use for AT Command, works for both LHT52/LHT65N
1243 )))
1244 * (((
1245 Update firmware for LHT65N, works for both LHT52/LHT65N
1246 )))
1247 * (((
1248 Supports ADC mode to monitor external ADC
1249 )))
1250 * (((
1251 Supports Interrupt mode
1252 )))
1253 * (((
1254 Exposed All pins from the LHT65N Type-C connector.
1255
1256
1257
1258 )))
1259
1260 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1261
1262
1263 == 3.2 E3 Temperature Probe ==
1264
1265
1266 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1267
1268
1269 Temperature sensor with 2 meters cable long
1270
1271 * Resolution: 0.0625 °C
1272 * ±0.5°C accuracy from -10°C to +85°C
1273 * ±2°C accuracy from -55°C to +125°C
1274 * Operating Range: -40 ~~ 125 °C
1275 * Working voltage 2.35v ~~ 5v
1276
1277 == 3.3 E31F Temperature Probe ==
1278
1279
1280 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1281
1282
1283 Temperature sensor with 1 meters cable long
1284
1285
1286 **Built-in Temperature Sensor:**
1287
1288 * Resolution: 0.01 °C
1289 * Accuracy Tolerance : Typ ±0.3 °C
1290 * Long Term Drift: < 0.02 °C/yr
1291 * Operating Range: -40 ~~ 80 °C
1292
1293 **Built-in Humidity Sensor:**
1294
1295 * Resolution: 0.04 % RH
1296 * Accuracy Tolerance : Typ ±3 % RH
1297 * Long Term Drift: < 0.25 RH/yr
1298 * Operating Range: 0 ~~ 96 % RH
1299
1300 **External Temperature Sensor :**
1301
1302 * Resolution: 0.01 °C
1303 * Accuracy Tolerance : Typical ±0.3 °C
1304 * Long Term Drift: < 0.02 °C/yr
1305 * Operating Range: -40 ~~ 125 °C
1306
1307 **External Humidity Sensor :**
1308
1309 * Resolution: 0.04 % RH
1310 * Accuracy Tolerance : Typ ±3 % RH
1311 * Long Term Drift: < 0.25 RH/yr
1312 * Operating Range: 0 ~~ 96 % RH
1313
1314 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1315
1316
1317 External Temperature Sensor – NE117:
1318 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1319
1320 * Silica gel cable
1321 * ±0.1 °C (maximum) from –20 °C to 50 °C
1322 * ±0.2 °C (maximum) from –40 °C to 100 °C
1323 * ±0.3 °C (maximum) from –55 °C to 150 °C
1324
1325 [[image:image-20240422093011-1.png||height="349" width="350"]]
1326
1327
1328 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1329
1330
1331 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1332 * 3 wires: VCC/GND/INT
1333 * Cable Lenght: 1 meter
1334
1335 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1336
1337 LHT65-DC can be used to connect various types of external sensor. below.
1338
1339 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1340
1341 [[image:image-20240422100149-5.png||height="163" width="510"]]
1342
1343 [[image:image-20240422100217-6.png||height="141" width="507"]]
1344
1345
1346 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1347
1348
1349 * Aluminum Alloy Door Sensor
1350 * Detect Distance: ~~3cm
1351 * Cable Lenght: 1 meter
1352
1353 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1354
1355 [[image:image-20240705144054-2.png||height="423" width="343"]]
1356
1357
1358 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1359
1360
1361 External Probe:
1362
1363 * Unique NIST Certi cate for each probe
1364 * External NIST Traceable probe with unique ID
1365
1366 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1367
1368 [[image:image-20240705145640-3.png]]
1369
1370
1371 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1372
1373
1374 (((
1375 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1376 )))
1377
1378 * (((
1379 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1380 )))
1381
1382 * (((
1383 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1384 )))
1385
1386 (((
1387 There are two kinds of commands to configure LHT65N, they are:
1388 )))
1389
1390 * (((
1391 (% style="color:#4f81bd" %)**General Commands**.
1392 )))
1393
1394 (((
1395 These commands are to configure:
1396 )))
1397
1398 1. (((
1399 General system settings like: uplink interval.
1400 )))
1401 1. (((
1402 LoRaWAN protocol & radio-related commands.
1403 )))
1404
1405 (((
1406 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1407 )))
1408
1409 * (((
1410 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1411 )))
1412
1413 (((
1414 These commands are only valid for LHT65N, as below:
1415 )))
1416
1417
1418 == 4.1 Set Transmit Interval Time ==
1419
1420
1421 Feature: Change LoRaWAN End Node Transmit Interval.
1422
1423
1424 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1425
1426 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1427 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1428 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1429 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1430
1431 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1432
1433 Format: Command Code (0x01) followed by 3 bytes time value.
1434
1435 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1436
1437 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1438
1439 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1440
1441 == 4.2 Set External Sensor Mode ==
1442
1443
1444 Feature: Change External Sensor Mode.
1445
1446 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1447
1448 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500.222px" %)
1449 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:126px" %)**Dowlink Command**
1450 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1451 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1452 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1453 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1454 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1455 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1456 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1457 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1458 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1459
1460 **Response**
1461
1462 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1463
1464 Total bytes: 2 ~~ 5 bytes
1465
1466 **Example:**
1467
1468 * 0xA201: Set external sensor type to E1
1469
1470 * 0xA209: Same as AT+EXT=9
1471
1472 * 0xA20702003c: Same as AT+SETCNT=60
1473
1474 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1475
1476
1477 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1478
1479 * First Packet after OTAA Join
1480 * Every 24 hours since the first packet.
1481
1482 PID is default set to disable (0)
1483
1484 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1485
1486 (% style="color:#4f81bd" %)**AT Command:**
1487
1488 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1489 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1490 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1491
1492 (% style="color:#4f81bd" %)**Downlink Command:**
1493
1494 * **0xA800**  **~-~->** AT+PID=0
1495 * **0xA801**     **~-~->** AT+PID=1
1496
1497 == 4.4 Set Password ==
1498
1499
1500 Feature: Set device password, max 9 digits
1501
1502 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1503
1504 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1505 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1506 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1507 123456
1508
1509 OK
1510 )))
1511 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1512
1513 (% style="color:#4f81bd" %)**Downlink Command:**
1514
1515 No downlink command for this feature.
1516
1517
1518 == 4.5 Quit AT Command ==
1519
1520
1521 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1522
1523 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1524
1525 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1526 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1527 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1528
1529 (% style="color:#4f81bd" %)**Downlink Command:**
1530
1531 No downlink command for this feature.
1532
1533
1534 == 4.6 Set to sleep mode ==
1535
1536
1537 Feature: Set device to sleep mode
1538
1539 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1540 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1541
1542 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1543
1544 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1545 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1546 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1547 Clear all stored sensor data…
1548
1549 OK
1550 )))
1551
1552 (% style="color:#4f81bd" %)**Downlink Command:**
1553
1554 * There is no downlink command to set to Sleep mode.
1555
1556 == 4.7 Set system time ==
1557
1558
1559 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1560
1561 (% style="color:#4f81bd" %)**AT Command:**
1562
1563 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1564 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1565 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1566 OK
1567
1568 Set System time to 2021-01-20 00:59:12
1569 )))
1570
1571 (% style="color:#4f81bd" %)**Downlink Command:**
1572
1573 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1574
1575
1576 == 4.8 Set Time Sync Mode ==
1577
1578
1579 (((
1580 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1581 )))
1582
1583 (((
1584 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1585 )))
1586
1587 (% style="color:#4f81bd" %)**AT Command:**
1588
1589 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1590 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1591 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1592
1593 (% style="color:#4f81bd" %)**Downlink Command:**
1594
1595 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1596 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1597
1598
1599 == 4.9 Set Time Sync Interval ==
1600
1601
1602 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1603
1604 (% style="color:#4f81bd" %)**AT Command:**
1605
1606 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1607 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1608 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1609
1610 (% style="color:#4f81bd" %)**Downlink Command:**
1611
1612 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1613
1614
1615 == 4.10 Get data ==
1616
1617
1618 Feature: Get the current sensor data.
1619
1620 (% style="color:#4f81bd" %)**AT Command:**
1621
1622 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1623 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1624
1625 == 4.11 Print data entries base on page ==
1626
1627
1628 Feature: Print the sector data from start page to stop page (max is 416 pages).
1629
1630 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1631
1632 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1633 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1634 |(% style="width:156px" %)(((
1635 AT+PDTA=1,3
1636 Print page 1 to 3
1637 )))|(% style="width:311px" %)(((
1638 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1639 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1640 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1641 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1642 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1643 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1644 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1645 8019570
1646 8019580
1647 8019590
1648 80195A0
1649 80195B0
1650 80195C0
1651 80195D0
1652 80195E0
1653 80195F0
1654
1655 OK
1656 )))
1657
1658 (% style="color:#4f81bd" %)**Downlink Command:**
1659
1660 No downlink commands for feature
1661
1662
1663 == 4.12 Print last few data entries ==
1664
1665
1666 Feature: Print the last few data entries
1667
1668 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1669
1670 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1671 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1672 |(% style="width:156px" %)(((
1673 AT+PLDTA=5
1674 Print last 5 entries
1675 )))|(% style="width:311px" %)(((
1676 Stop Tx and RTP events when read sensor data
1677 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1678 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1679 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1680 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1681 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1682 Start Tx and RTP events
1683 OK
1684 )))
1685
1686 (% style="color:#4f81bd" %)**Downlink Command:**
1687
1688 No downlink commands for feature
1689
1690
1691 == 4.13 Clear Flash Record ==
1692
1693
1694 Feature: Clear flash storage for data log feature.
1695
1696 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1697
1698 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1699 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1700 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1701 Clear all stored sensor data…
1702
1703 OK
1704 )))
1705
1706 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1707
1708 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1709
1710
1711
1712 == 4.14 Auto Send None-ACK messages ==
1713
1714
1715 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1716
1717 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1718
1719 The default factory setting is 0
1720
1721 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1722 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1723 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1724
1725 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1726
1727 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1728
1729 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1730
1731
1732 Feature: Set internal and external temperature sensor alarms.
1733
1734 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1735 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1736 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1737
1738 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1739
1740 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1741
1742 0): Cancel
1743
1744 1): Threshold alarm
1745
1746 2): Fluctuation alarm
1747
1748 3): Sampling multiple times and uplink together
1749
1750
1751 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1752
1753 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1754
1755
1756 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1757
1758 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1759
1760 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1761
1762
1763 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1764
1765 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1766
1767 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1768
1769
1770 **3): If Alarm Mode is set to 3:**
1771
1772 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1773 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1774 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1775 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1776 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1777 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1778
1779 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1780
1781 0xA5 00 ~-~- AT+WMOD=0.
1782
1783 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1784
1785 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1786
1787 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1788
1789 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1790
1791 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1792
1793
1794 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1795
1796
1797 Feature: use downlink to get firmware version.
1798
1799 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1800
1801 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1802 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1803 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1804
1805 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1806
1807 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1808
1809 (% style="color:#037691" %)**Sensor model**
1810
1811 0x0b: LHT65N
1812
1813
1814 (% style="color:#037691" %)**Firmware version**
1815
1816 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1817
1818 Example: 0x0140=V1.4.0
1819
1820
1821 (% style="color:#037691" %)** Frequency Band:**
1822
1823 * 0x01: EU868
1824 * 0x02: US915
1825 * 0x03: IN865
1826 * 0x04: AU915
1827 * 0x05: KZ865
1828 * 0x06: RU864
1829 * 0x07: AS923
1830 * 0x08: AS923-1
1831 * 0x09: AS923-2
1832 * 0xa0: AS923-3
1833
1834 (% style="color:#037691" %)**Subband**
1835
1836 value 0x00 ~~ 0x08
1837
1838 Example: 0xFF ~-~--> " NULL"
1839
1840
1841 (% style="color:#037691" %)**Battery**
1842
1843 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1844
1845 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1846
1847
1848 == 4.17 Setting LEDAlarm ==
1849
1850 Feature: Setting LEDAlarm
1851
1852 The default factory setting is 0
1853
1854 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1855 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1856 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1857
1858 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1859
1860 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1861
1862 = 5. Battery & How to replace =
1863
1864 == 5.1 Battery Type ==
1865
1866
1867 (((
1868 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1869 )))
1870
1871 (((
1872 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1873
1874 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1875 )))
1876
1877 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1878
1879
1880 == 5.2 Replace Battery ==
1881
1882
1883 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1884
1885 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1886
1887
1888 == 5.3 Battery Life Analyze ==
1889
1890
1891 (((
1892 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1893 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1894 )))
1895
1896
1897 (((
1898 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1899 )))
1900
1901
1902 = 6. FAQ =
1903
1904 == 6.1 How to connect to LHT65N UART interface? ==
1905
1906
1907 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1908
1909 * Send AT Commands, and get output from LHT65N
1910 * Upgrade firmwre of LHT65N.
1911
1912 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1913
1914
1915 **Option of USB TTL adapter:**
1916
1917 * CP2101 USB TTL Adapter
1918 * CH340 USB TTL Adapter
1919 * FT232 USB TTL Adapter
1920
1921 **Option of Type-C Adapter:**
1922
1923 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1924
1925
1926 **Connection:**
1927
1928 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1929 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1930 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1931
1932 (((
1933
1934
1935 Connection Example:
1936
1937 [[image:1655802313617-381.png||_mstalt="293917"]]
1938
1939
1940 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1941
1942
1943 == 6.2 How to use AT Commands? ==
1944
1945
1946 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1947
1948 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1949 )))
1950
1951
1952 Input password and ATZ to activate LHT65N,As shown below:
1953
1954 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1955
1956
1957 AT Command List is as below:
1958
1959 AT+<CMD>? :  Help on <CMD>
1960
1961 AT+<CMD> :  Run <CMD>
1962
1963 AT+<CMD>=<value> :  Set the value
1964
1965 AT+<CMD>=? :  Get the value
1966
1967 AT+DEBUG:  Set more info output
1968
1969 ATZ:  Trig a reset of the MCU
1970
1971 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1972
1973 AT+DEUI:  Get or Set the Device EUI
1974
1975 AT+DADDR:  Get or Set the Device Address
1976
1977 AT+APPKEY:  Get or Set the Application Key
1978
1979 AT+NWKSKEY:  Get or Set the Network Session Key
1980
1981 AT+APPSKEY:  Get or Set the Application Session Key
1982
1983 AT+APPEUI:  Get or Set the Application EUI
1984
1985 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1986
1987 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1988
1989 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1990
1991 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1992
1993 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1994
1995 AT+RX2FQ:  Get or Set the Rx2 window frequency
1996
1997 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1998
1999 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2000
2001 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2002
2003 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2004
2005 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2006
2007 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2008
2009 AT+NWKID:  Get or Set the Network ID
2010
2011 AT+FCU:  Get or Set the Frame Counter Uplink
2012
2013 AT+FCD:  Get or Set the Frame Counter Downlink
2014
2015 AT+CLASS:  Get or Set the Device Class
2016
2017 AT+JOIN:  Join network
2018
2019 AT+NJS:  Get the join status
2020
2021 AT+SENDB:  Send hexadecimal data along with the application port
2022
2023 AT+SEND:  Send text data along with the application port
2024
2025 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2026
2027 AT+RECV:  Print last received data in raw format
2028
2029 AT+VER:  Get current image version and Frequency Band
2030
2031 AT+CFM:  Get or Set the confirmation mode (0-1)
2032
2033 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2034
2035 AT+SNR:  Get the SNR of the last received packet
2036
2037 AT+RSSI:  Get the RSSI of the last received packet
2038
2039 AT+TDC:  Get or set the application data transmission interval in ms
2040
2041 AT+PORT:  Get or set the application port
2042
2043 AT+DISAT:  Disable AT commands
2044
2045 AT+PWORD: Set password, max 9 digits
2046
2047 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2048
2049 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2050
2051 AT+PDTA:  Print the sector data from start page to stop page
2052
2053 AT+PLDTA:  Print the last few sets of data
2054
2055 AT+CLRDTA:  Clear the storage, record position back to 1st
2056
2057 AT+SLEEP:  Set sleep mode
2058
2059 AT+EXT:  Get or Set external sensor model
2060
2061 AT+BAT:  Get the current battery voltage in mV
2062
2063 AT+CFG:  Print all configurations
2064
2065 AT+WMOD:  Get or Set Work Mode
2066
2067 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2068
2069 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2070
2071 AT+SETCNT:  Set the count at present
2072
2073 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2074
2075 AT+RPL:  Get or set response level
2076
2077 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2078
2079 AT+LEAPSEC:  Get or Set Leap Second
2080
2081 AT+SYNCMOD:  Get or Set time synchronization method
2082
2083 AT+SYNCTDC:  Get or set time synchronization interval in day
2084
2085 AT+PID:  Get or set the PID
2086
2087
2088 == 6.3 How to use Downlink commands? ==
2089
2090
2091 **Downlink commands:**
2092
2093
2094 (% style="color:blue" %)**TTN:**
2095
2096 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2097
2098
2099
2100 (% style="color:blue" %)**Helium: **
2101
2102 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2103
2104
2105
2106 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2107
2108
2109 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2110
2111
2112 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2113
2114
2115
2116 (% style="color:blue" %)**AWS-IOT :**
2117
2118 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2119
2120
2121 == 6.4 How to change the uplink interval? ==
2122
2123
2124 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2125
2126
2127 == 6.5 How to upgrade firmware? ==
2128
2129
2130 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2131 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2132
2133
2134 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2135
2136
2137 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2138
2139 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2140
2141 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2142
2143 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N.**
2144
2145 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2146
2147 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2148
2149 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2150
2151 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2152
2153 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2154
2155 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2156
2157 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2158
2159
2160 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2161
2162 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2163
2164 [[image:image-20240716174308-1.png||height="523" width="410"]]
2165
2166
2167 === 6.5.2 Updated firmware for V1.4 and above ===
2168
2169
2170 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2171
2172 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2173 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2174
2175 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2176
2177
2178 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2179
2180
2181 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2182
2183 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2184
2185
2186 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2187
2188
2189 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2190
2191
2192 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2193
2194 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2195
2196 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2197
2198
2199
2200 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2201
2202 Connect PC and LHT65N via USB TTL adapter .
2203
2204 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2205
2206 **Connection method:**
2207
2208 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2209
2210 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2211
2212 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2213
2214 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2215
2216 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2217
2218
2219 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2220
2221 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2222
2223
2224 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2225
2226 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2227
2228
2229 When this interface appears, it indicates that the download has been completed.
2230
2231 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2232
2233
2234 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2235
2236
2237 == 6.6 Why can't I see the datalog information ==
2238
2239
2240 ~1. The time is not aligned, and the correct query command is not used.
2241
2242 2. Decoder error, did not parse the datalog data, the data was filtered.
2243
2244
2245 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2246
2247
2248 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2249
2250 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2251
2252
2253 After there is UART Connectio, run below commands:
2254
2255 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2256
2257 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2258
2259 Example output:
2260
2261 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2262
2263
2264 = 7. Order Info =
2265
2266
2267 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2268
2269 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2270
2271 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2272 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2273 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2274 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2275 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2276 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2277 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2278 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2279
2280 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2281
2282 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2283
2284 = 8. Packing Info =
2285
2286
2287 **Package Includes**:
2288
2289 * LHT65N Temperature & Humidity Sensor x 1
2290 * Optional external sensor
2291
2292 = 9. Reference material =
2293
2294
2295 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2296
2297 = 10. FCC Warning =
2298
2299
2300 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2301
2302 (1) This device may not cause harmful interference;
2303
2304 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0