Version 332.1 by Xiaoling on 2024/08/15 18:11

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device on TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20240710153745-4.png||height="406" width="735"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input JoinEUI(APPEUI),  DEVEUI and APPKEY:
179
180
181 [[image:image-20240710154010-5.png||height="598" width="644"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
429
430
431 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
435 **2**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 2
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 **2**
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 1
442 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))
447 |(% style="width:110px" %)(((
448 Value
449 )))|(% style="width:71px" %)(((
450 BAT & BAT Status
451 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
452 Status & Ext
453 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
454
455 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
456
457 be used to power the external ADC sensor; user can control the power on time for this
458
459 (% style="color:blue" %)**sensor by setting:**
460
461 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
462
463 **For example:**
464
465 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
466
467
468 Or use **downlink command A2** to set the same.
469
470 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
471
472 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
473
474 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
475
476
477 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
478
479 [[image:image-20220628150714-4.png||_mstalt="431054"]]
480
481
482 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
483
484
485 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
486
487 [[image:image-20220628151005-5.png||_mstalt="429546"]]
488
489
490 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
491
492 [[image:image-20220628151056-6.png||_mstalt="431873"]]
493
494
495 3) Within range
496
497 [[image:image-20220628151143-7.png||_mstalt="431210"]]
498
499
500 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
501
502
503 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
504
505
506 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
507
508
509 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
510 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
513 **2**
514 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
515 2
516 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
517 **2**
518 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
519 1
520 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
521 2
522 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
523 2
524 )))
525 |(% style="width:110px" %)(((
526 Value
527 )))|(% style="width:71px" %)(((
528 BAT & BAT Status
529 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
530 Status & Ext
531 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
532
533 [[image:image-20220906102307-7.png||_mstalt="430443"]]
534
535 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
536
537 The external cable NE2 can be use for MOD4 and MOD8
538
539
540 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
541
542
543 [[image:image-20230717151245-7.png||_mstalt="432133" height="467" width="466"]]
544
545 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
546
547 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
548 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
551 **2**
552 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
553 2
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 **2**
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 1
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))
563 |(% style="width:110px" %)(((
564 Value
565 )))|(% style="width:71px" %)(((
566 BAT & BAT Status
567 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
568 Status & Ext
569 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
570
571 [[image:SHT31.png||_mstalt="104715"]]
572
573
574 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
575
576
577 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
578
579
580 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
581
582 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
583
584 In Open State, the power consumption is the same as if there is no probe
585
586 In Close state, the power consumption will be 3uA higher than normal.
587
588 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
589
590
591 Ext=4,Interrupt Sensor:
592
593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
594 |(% style="width:101px" %)(((
595 **AT+EXT=4,1**
596 )))|(% style="width:395px" %)(((
597 **Sent uplink packet in both rising and falling interrupt**
598 )))
599 |(% style="width:101px" %)(((
600 **AT+EXT=4,2**
601 )))|(% style="width:395px" %)(((
602 **Sent uplink packet only in falling interrupt**
603 )))
604 |(% style="width:101px" %)(((
605 **AT+EXT=4,3**
606 )))|(% style="width:395px" %)(((
607 **Sent uplink packet only in rising interrupt**
608 )))
609
610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
611 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
612 **Size(bytes)**
613 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
614 **2**
615 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
616 2
617 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
618 **2**
619 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
620 1
621 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
622 1
623 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
624 2
625 )))
626 |(% style="width:110px" %)(((
627 Value
628 )))|(% style="width:71px" %)(((
629 BAT & BAT Status
630 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
631 Status & Ext
632 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
633
634
635 Trigger by falling edge:
636
637 [[image:image-20220906101145-2.png||_mstalt="428324"]]
638
639
640 Trigger by raising edge:
641
642 [[image:image-20220906101145-3.png||_mstalt="428688"]]
643
644
645 (% style="color:blue" %)**BAT & BAT Status :**
646
647 Check the battery voltage.
648
649 Ex1: 0x0B45 = 2885mV
650
651 Ex2: 0x0B49 = 2889mV
652
653
654 (% style="color:blue" %)**TempC_SHT :**
655
656 The temperature detected by the built-in temperature and humidity sensor SHT31.
657
658 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
659
660 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
661
662 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
663
664
665 (% style="color:blue" %)**Hum_SHT :**
666
667 The humidity detected by the built-in temperature and humidity sensor SHT31.
668
669 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
670
671
672 (% style="color:blue" %)**Status & Ext :**
673
674 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
675 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
676 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
677
678 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
679 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
680 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
681
682 (% style="color:blue" %)**Exti_pin_level : **
683
684 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
685 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
686
687 (% style="color:blue" %)**Exti_status :**
688
689 Determines whether the uplink packet is generated by an interrupt.
690
691 1: Interrupt packet
692
693 0: Normal TDC uplink packet
694
695
696 (% style="color:blue" %)**senseless :**
697
698 Reserved position, meaningless. The value is fixed to 0x7FFF.
699
700
701 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
702
703
704 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
705
706
707 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
708
709 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
710
711
712 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
713
714 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
715
716
717 Ext=8, Counting Sensor ( 4 bytes):
718
719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
720 |(% style="width:131px" %)(((
721 **AT+EXT=8,0**
722 )))|(% style="width:195px" %)(((
723 **Count at falling interrupt**
724 )))
725 |(% style="width:131px" %)(((
726 **AT+EXT=8,1**
727 )))|(% style="width:195px" %)(((
728 **Count at rising interrupt**
729 )))
730 |(% style="width:131px" %)(((
731 **AT+SETCNT=60**
732 )))|(% style="width:195px" %)(((
733 **Sent current count to 60**
734 )))
735
736 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
737 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
738 **Size(bytes)**
739 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
740 **2**
741 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
742 2
743 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
744 **2**
745 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
746 1
747 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
748 4
749 )))
750 |(% style="width:110px" %)(((
751 Value
752 )))|(% style="width:71px" %)(((
753 BAT & BAT Status
754 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
755 Status & Ext
756 )))|(% style="width:64px" %)Exit_count
757
758 [[image:image-20220906101320-6.png||_mstalt="428064"]]
759
760
761 (% style="color:blue" %)**A2 downlink Command:**
762
763 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
764
765 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
766
767 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
768
769 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
770
771 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
772
773
774 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
775
776
777 (((
778 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
779 )))
780
781 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
782 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
783 **Size(bytes)**
784 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
785 **2**
786 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
787 **2**
788 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
789 **2**
790 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
791 **1**
792 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
793 **4**
794 )))
795 |(% style="width:110px" %)(((
796 Value
797 )))|(% style="width:71px" %)(((
798 External temperature
799 )))|(% style="width:99px" %)(((
800 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
801 )))|(% style="width:132px" %)(((
802 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
803 )))|(% style="width:54px" %)(((
804 Status & Ext
805 )))|(% style="width:64px" %)(((
806 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
807 )))
808
809 * **Battery status & Built-in Humidity**
810
811 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
812 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
813 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
814 BAT Status
815 00(b): Ultra Low ( BAT <= 2.50v)
816 01(b): Low  (2.50v <=BAT <= 2.55v)
817 10(b): OK   (2.55v <= BAT <=2.65v)
818 11(b): Good   (BAT >= 2.65v)
819 )))|(% style="width:132px" %)(((
820 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
821 )))
822
823 * **Status & Ext Byte**
824
825 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
826 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
827 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
828
829 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
830 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
831 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
832
833 == 2.5 Show data on Datacake ==
834
835
836 (((
837 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
838 )))
839
840
841 (((
842 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
843 )))
844
845 (((
846 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
847 )))
848
849
850 (((
851 Add Datacake:
852 )))
853
854 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
855
856
857 Select default key as Access Key:
858
859
860 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
861
862
863 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
864
865 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
866
867
868 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
869
870
871 == 2.6 Datalog Feature ==
872
873
874 (((
875 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
876 )))
877
878
879 === 2.6.1 Ways to get datalog via LoRaWAN ===
880
881
882 There are two methods:
883
884 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
885
886
887 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
888
889
890 (% style="color:red" %)**Note for method 2:**
891
892 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
893 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
894
895 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
896
897 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
898
899
900 === 2.6.2 Unix TimeStamp ===
901
902
903 LHT65N uses Unix TimeStamp format based on
904
905
906 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
907
908
909 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
910
911 Below is the converter example
912
913 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
914
915
916 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
917
918
919 === 2.6.3 Set Device Time ===
920
921
922 (((
923 (% style="color:blue" %)**There are two ways to set device's time:**
924 )))
925
926 (((
927 **1.  Through LoRaWAN MAC Command (Default settings)**
928 )))
929
930 (((
931 User need to set SYNCMOD=1 to enable sync time via MAC command.
932 )))
933
934 (((
935 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
936 )))
937
938 (((
939 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
940 )))
941
942
943 (((
944 **2. Manually Set Time**
945 )))
946
947 (((
948 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
949 )))
950
951
952 === 2.6.4 Poll sensor value ===
953
954
955 User can poll sensor value based on timestamps from the server. Below is the downlink command.
956
957 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
958 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
959 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
960
961 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
962
963 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
964
965 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
966
967 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
968
969
970 === 2.6.5 Datalog Uplink payload ===
971
972
973 The Datalog poll reply uplink will use below payload format.
974
975 **Retrieval data payload:**
976
977 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
978 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
979 **Size(bytes)**
980 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
981 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
982
983 **Poll message flag & Ext:**
984
985 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
986 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
987 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
988
989 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
990
991 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
992
993 * Poll Message Flag is set to 1.
994
995 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
996
997 For example, in US915 band, the max payload for different DR is:
998
999 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1000
1001 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1002
1003 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1004
1005 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1006
1007 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1008
1009
1010 **Example:**
1011
1012 If LHT65N has below data inside Flash:
1013
1014 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1015 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1016 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1017 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1018 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1019 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1020 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1021 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1022 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1023 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1024
1025 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1026
1027 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1028
1029 Stop time: 60066DA7= time 21/1/19 05:27:03
1030
1031
1032 **LHT65N will uplink this payload.**
1033
1034 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1035
1036
1037 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1038
1039 Where the first 11 bytes is for the first entry:
1040
1041 7FFF089801464160065F97
1042
1043 Ext sensor data=0x7FFF/100=327.67
1044
1045 Temp=0x088E/100=22.00
1046
1047 Hum=0x014B/10=32.6
1048
1049 poll message flag & Ext=0x41,means reply data,Ext=1
1050
1051 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1052
1053
1054 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1055
1056
1057 (((
1058 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1059 )))
1060
1061 (((
1062 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1063
1064
1065 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1066
1067 (((
1068 (% class="box infomessage" %)
1069 (((
1070 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1071 )))
1072 )))
1073
1074 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1075
1076 **~ AT+WMOD=1,60,-10,20**
1077
1078
1079 Explain:
1080
1081 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1082 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1083 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1084
1085 (% style="color:#4f81bd" %)**Downlink Command:**
1086
1087 **Example: **A5013CFC180014
1088
1089 MOD=01
1090
1091 CITEMP=3C(S) =60(S)
1092
1093 TEMPlow=FC18 = -10(℃)
1094
1095 TEMPhigh=0014=20(℃)
1096
1097
1098 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1099
1100 **AT+WMOD=2,60,5** 
1101
1102 Explain:
1103
1104 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1105 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1106 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1107
1108 (% style="color:#4f81bd" %)**Downlink Command**
1109
1110 **Example: **A5023C05
1111
1112 MOD=02
1113
1114 CITEMP=3C(S)=60(S)
1115
1116 temperature fluctuation=05(℃)
1117
1118
1119 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1120
1121 **AT+WMOD=3,1,60,20,-16,32,1**   
1122
1123 Explain:
1124
1125 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1126 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1127 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1128 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1129 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1130 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1131
1132 (% style="color:#4f81bd" %)**Downlink Command:**
1133
1134 **Example: **A50301003C14FFF0002001
1135
1136 MOD=03
1137
1138 TEMP=DS18B20
1139
1140 CITEMP=003C(S)=60(S)
1141
1142 Total number of acquisitions=14
1143
1144 TEMPlow=FFF0=-16(℃)
1145
1146 TEMPhigh=0020=20(℃)
1147
1148 ARTEMP=01
1149
1150
1151 **Uplink payload( Fport=3)**
1152
1153 **Example: CBEA**01**0992**//0A41//**09C4**
1154
1155 BatV=CBEA
1156
1157 TEMP=DS18B20
1158
1159 Temp1=0992  ~/~/ 24.50℃
1160
1161 Temp2=0A41  ~/~/ 26.25℃
1162
1163 Temp3=09C4  ~/~/ 25.00℃
1164
1165 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1166
1167 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1168 )))
1169
1170
1171 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1172
1173
1174 (% class="box infomessage" %)
1175 (((
1176 (((
1177 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1178 )))
1179
1180 (((
1181 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1182 )))
1183
1184 (((
1185 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1186 )))
1187
1188 (((
1189 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1190 )))
1191
1192 (((
1193 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1194 )))
1195 )))
1196
1197 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1198
1199 Total bytes: 8 bytes
1200
1201 **Example:**AA0100010001003C
1202
1203 WMOD=01
1204
1205 CITEMP=0001
1206
1207 TEMPlow=0001
1208
1209 TEMPhigh=003C
1210
1211
1212 == 2.8 LED Indicator ==
1213
1214
1215 The LHT65 has a triple color LED which for easy showing different stage .
1216
1217 While user press ACT button, the LED will work as per LED status with ACT button.
1218
1219 In a normal working state:
1220
1221 * For each uplink, the BLUE LED or RED LED will blink once.
1222 BLUE LED when external sensor is connected.
1223 * RED LED when external sensor is not connected
1224 * For each success downlink, the PURPLE LED will blink once
1225
1226 == 2.9 installation ==
1227
1228
1229 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1230
1231
1232 = 3. Sensors and Accessories =
1233
1234 == 3.1 E2 Extension Cable ==
1235
1236
1237 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1238
1239
1240 **1m long breakout cable for LHT65N. Features:**
1241
1242 * (((
1243 Use for AT Command, works for both LHT52/LHT65N
1244 )))
1245 * (((
1246 Update firmware for LHT65N, works for both LHT52/LHT65N
1247 )))
1248 * (((
1249 Supports ADC mode to monitor external ADC
1250 )))
1251 * (((
1252 Supports Interrupt mode
1253 )))
1254 * (((
1255 Exposed All pins from the LHT65N Type-C connector.
1256
1257
1258
1259 )))
1260
1261 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1262
1263
1264 == 3.2 E3 Temperature Probe ==
1265
1266
1267 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1268
1269
1270 Temperature sensor with 2 meters cable long
1271
1272 * Resolution: 0.0625 °C
1273 * ±0.5°C accuracy from -10°C to +85°C
1274 * ±2°C accuracy from -55°C to +125°C
1275 * Operating Range: -40 ~~ 125 °C
1276 * Working voltage 2.35v ~~ 5v
1277
1278 == 3.3 E31F Temperature Probe ==
1279
1280
1281 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1282
1283
1284 Temperature sensor with 1 meters cable long
1285
1286
1287 **Built-in Temperature Sensor:**
1288
1289 * Resolution: 0.01 °C
1290 * Accuracy Tolerance : Typ ±0.3 °C
1291 * Long Term Drift: < 0.02 °C/yr
1292 * Operating Range: -40 ~~ 80 °C
1293
1294 **Built-in Humidity Sensor:**
1295
1296 * Resolution: 0.04 % RH
1297 * Accuracy Tolerance : Typ ±3 % RH
1298 * Long Term Drift: < 0.02 °C/yr
1299 * Operating Range: 0 ~~ 96 % RH
1300
1301 **External Temperature Sensor :**
1302
1303 * Resolution: 0.01 °C
1304 * Accuracy Tolerance : Typical ±0.3 °C
1305 * Long Term Drift: < 0.02 °C/yr
1306 * Operating Range: -40 ~~ 125 °C
1307
1308 **External Humidity Sensor :**
1309
1310 * Resolution: 0.04 % RH
1311 * Accuracy Tolerance : Typ ±3 % RH
1312 * Long Term Drift: < 0.02 °C/yr
1313 * Operating Range: 0 ~~ 96 % RH
1314
1315 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1316
1317
1318 External Temperature Sensor – NE117:
1319 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1320
1321 * Silica gel cable
1322 * ±0.1 °C (maximum) from –20 °C to 50 °C
1323 * ±0.2 °C (maximum) from –40 °C to 100 °C
1324 * ±0.3 °C (maximum) from –55 °C to 150 °C
1325
1326 [[image:image-20240422093011-1.png||height="349" width="350"]]
1327
1328
1329 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1330
1331
1332 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1333 * 3 wires: VCC/GND/INT
1334 * Cable Lenght: 1 meter
1335
1336 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1337
1338 LHT65-DC can be used to connect various types of external sensor. below.
1339
1340 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1341
1342 [[image:image-20240422100149-5.png||height="163" width="510"]]
1343
1344 [[image:image-20240422100217-6.png||height="141" width="507"]]
1345
1346
1347 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1348
1349
1350 * Aluminum Alloy Door Sensor
1351 * Detect Distance: ~~3cm
1352 * Cable Lenght: 1 meter
1353
1354 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1355
1356 [[image:image-20240705144054-2.png||height="423" width="343"]]
1357
1358
1359 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1360
1361
1362 External Probe:
1363
1364 * Unique NIST Certi cate for each probe
1365 * External NIST Traceable probe with unique ID
1366
1367 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1368
1369 [[image:image-20240705145640-3.png]]
1370
1371
1372 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1373
1374
1375 (((
1376 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1377 )))
1378
1379 * (((
1380 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1381 )))
1382
1383 * (((
1384 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1385 )))
1386
1387 (((
1388 There are two kinds of commands to configure LHT65N, they are:
1389 )))
1390
1391 * (((
1392 (% style="color:#4f81bd" %)**General Commands**.
1393 )))
1394
1395 (((
1396 These commands are to configure:
1397 )))
1398
1399 1. (((
1400 General system settings like: uplink interval.
1401 )))
1402 1. (((
1403 LoRaWAN protocol & radio-related commands.
1404 )))
1405
1406 (((
1407 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1408 )))
1409
1410 * (((
1411 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1412 )))
1413
1414 (((
1415 These commands are only valid for LHT65N, as below:
1416 )))
1417
1418
1419 == 4.1 Set Transmit Interval Time ==
1420
1421
1422 Feature: Change LoRaWAN End Node Transmit Interval.
1423
1424
1425 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1426
1427 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1428 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1429 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1430 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1431
1432 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1433
1434 Format: Command Code (0x01) followed by 3 bytes time value.
1435
1436 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1437
1438 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1439
1440 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1441
1442 == 4.2 Set External Sensor Mode ==
1443
1444
1445 Feature: Change External Sensor Mode.
1446
1447 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1448
1449 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1450 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1451 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1452 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1453 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1454
1455 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1456
1457 Total bytes: 2 ~~ 5 bytes
1458
1459 **Example:**
1460
1461 * 0xA201: Set external sensor type to E1
1462
1463 * 0xA209: Same as AT+EXT=9
1464
1465 * 0xA20702003c: Same as AT+SETCNT=60
1466
1467 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1468
1469
1470 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1471
1472 * First Packet after OTAA Join
1473 * Every 24 hours since the first packet.
1474
1475 PID is default set to disable (0)
1476
1477 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1478
1479 (% style="color:#4f81bd" %)**AT Command:**
1480
1481 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1482 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1483 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1484
1485 (% style="color:#4f81bd" %)**Downlink Command:**
1486
1487 * **0xA800**  **~-~->** AT+PID=0
1488 * **0xA801**     **~-~->** AT+PID=1
1489
1490 == 4.4 Set Password ==
1491
1492
1493 Feature: Set device password, max 9 digits
1494
1495 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1496
1497 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1498 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1499 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1500 123456
1501
1502 OK
1503 )))
1504 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1505
1506 (% style="color:#4f81bd" %)**Downlink Command:**
1507
1508 No downlink command for this feature.
1509
1510
1511 == 4.5 Quit AT Command ==
1512
1513
1514 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1515
1516 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1517
1518 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1519 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1520 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1521
1522 (% style="color:#4f81bd" %)**Downlink Command:**
1523
1524 No downlink command for this feature.
1525
1526
1527 == 4.6 Set to sleep mode ==
1528
1529
1530 Feature: Set device to sleep mode
1531
1532 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1533 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1534
1535 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1536
1537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1538 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1539 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1540 Clear all stored sensor data…
1541
1542 OK
1543 )))
1544
1545 (% style="color:#4f81bd" %)**Downlink Command:**
1546
1547 * There is no downlink command to set to Sleep mode.
1548
1549 == 4.7 Set system time ==
1550
1551
1552 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1553
1554 (% style="color:#4f81bd" %)**AT Command:**
1555
1556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1557 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1558 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1559 OK
1560
1561 Set System time to 2021-01-20 00:59:12
1562 )))
1563
1564 (% style="color:#4f81bd" %)**Downlink Command:**
1565
1566 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1567
1568
1569 == 4.8 Set Time Sync Mode ==
1570
1571
1572 (((
1573 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1574 )))
1575
1576 (((
1577 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1578 )))
1579
1580 (% style="color:#4f81bd" %)**AT Command:**
1581
1582 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1583 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1584 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1585
1586 (% style="color:#4f81bd" %)**Downlink Command:**
1587
1588 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1589 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1590
1591
1592 == 4.9 Set Time Sync Interval ==
1593
1594
1595 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1596
1597 (% style="color:#4f81bd" %)**AT Command:**
1598
1599 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1600 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1601 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1602
1603 (% style="color:#4f81bd" %)**Downlink Command:**
1604
1605 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1606
1607
1608 == 4.10 Get data ==
1609
1610
1611 Feature: Get the current sensor data.
1612
1613 (% style="color:#4f81bd" %)**AT Command:**
1614
1615 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1616 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1617
1618 == 4.11 Print data entries base on page ==
1619
1620
1621 Feature: Print the sector data from start page to stop page (max is 416 pages).
1622
1623 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1624
1625 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1626 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1627 |(% style="width:156px" %)(((
1628 AT+PDTA=1,3
1629 Print page 1 to 3
1630 )))|(% style="width:311px" %)(((
1631 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1632 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1633 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1634 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1635 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1636 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1637 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1638 8019570
1639 8019580
1640 8019590
1641 80195A0
1642 80195B0
1643 80195C0
1644 80195D0
1645 80195E0
1646 80195F0
1647
1648 OK
1649 )))
1650
1651 (% style="color:#4f81bd" %)**Downlink Command:**
1652
1653 No downlink commands for feature
1654
1655
1656 == 4.12 Print last few data entries ==
1657
1658
1659 Feature: Print the last few data entries
1660
1661 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1662
1663 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1664 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1665 |(% style="width:156px" %)(((
1666 AT+PLDTA=5
1667 Print last 5 entries
1668 )))|(% style="width:311px" %)(((
1669 Stop Tx and RTP events when read sensor data
1670 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1671 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1672 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1673 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1674 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1675 Start Tx and RTP events
1676 OK
1677 )))
1678
1679 (% style="color:#4f81bd" %)**Downlink Command:**
1680
1681 No downlink commands for feature
1682
1683
1684 == 4.13 Clear Flash Record ==
1685
1686
1687 Feature: Clear flash storage for data log feature.
1688
1689 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1690
1691 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1692 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1693 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1694 Clear all stored sensor data…
1695
1696 OK
1697 )))
1698
1699 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1700
1701 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1702
1703 == 4.14 Auto Send None-ACK messages ==
1704
1705
1706 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1707
1708 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1709
1710 The default factory setting is 0
1711
1712 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1713 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1714 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1715
1716 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1717
1718 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1719
1720 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1721
1722
1723 Feature: Set internal and external temperature sensor alarms.
1724
1725 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1726 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1727 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1728
1729 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1730
1731 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1732
1733 0): Cancel
1734
1735 1): Threshold alarm
1736
1737 2): Fluctuation alarm
1738
1739 3): Sampling multiple times and uplink together
1740
1741
1742 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1743
1744 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1745
1746
1747 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1748
1749 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1750
1751 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1752
1753
1754 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1755
1756 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1757
1758 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1759
1760
1761 **3): If Alarm Mode is set to 3:**
1762
1763 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1764 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1765 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1766 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1767 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1768 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1769
1770 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1771
1772 0xA5 00 ~-~- AT+WMOD=0.
1773
1774 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1775
1776 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1777
1778 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1779
1780 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1781
1782 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1783
1784
1785 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1786
1787
1788 Feature: use downlink to get firmware version.
1789
1790 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1791
1792 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1793 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1794 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1795
1796 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1797
1798 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1799
1800 (% style="color:#037691" %)**Sensor model**
1801
1802 0x0b: LHT65N
1803
1804
1805 (% style="color:#037691" %)**Firmware version**
1806
1807 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1808
1809 Example: 0x0140=V1.4.0
1810
1811
1812 (% style="color:#037691" %)** Frequency Band:**
1813
1814 * 0x01: EU868
1815 * 0x02: US915
1816 * 0x03: IN865
1817 * 0x04: AU915
1818 * 0x05: KZ865
1819 * 0x06: RU864
1820 * 0x07: AS923
1821 * 0x08: AS923-1
1822 * 0x09: AS923-2
1823 * 0xa0: AS923-3
1824
1825 (% style="color:#037691" %)**Subband**
1826
1827 value 0x00 ~~ 0x08
1828
1829 Example: 0xFF ~-~--> " NULL"
1830
1831
1832 (% style="color:#037691" %)**Battery**
1833
1834 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1835
1836 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1837
1838
1839 == 4.17 Setting LEDAlarm ==
1840
1841 Feature: Setting LEDAlarm
1842
1843 The default factory setting is 0
1844
1845 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1846 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1847 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1848
1849 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1850
1851 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1852
1853 = 5. Battery & How to replace =
1854
1855 == 5.1 Battery Type ==
1856
1857
1858 (((
1859 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1860 )))
1861
1862 (((
1863 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1864
1865 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1866 )))
1867
1868 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1869
1870
1871 == 5.2 Replace Battery ==
1872
1873
1874 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1875
1876 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1877
1878
1879 == 5.3 Battery Life Analyze ==
1880
1881
1882 (((
1883 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1884 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1885 )))
1886
1887
1888 (((
1889 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1890 )))
1891
1892
1893 = 6. FAQ =
1894
1895 == 6.1 How to connect to LHT65N UART interface? ==
1896
1897
1898 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1899
1900 * Send AT Commands, and get output from LHT65N
1901 * Upgrade firmwre of LHT65N.
1902
1903 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1904
1905
1906 **Option of USB TTL adapter:**
1907
1908 * CP2101 USB TTL Adapter
1909 * CH340 USB TTL Adapter
1910 * FT232 USB TTL Adapter
1911
1912 **Option of Type-C Adapter:**
1913
1914 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1915
1916
1917 **Connection:**
1918
1919 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1920 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1921 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1922
1923 (((
1924
1925
1926 Connection Example:
1927
1928 [[image:1655802313617-381.png||_mstalt="293917"]]
1929
1930
1931 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1932
1933
1934 == 6.2 How to use AT Commands? ==
1935
1936
1937 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1938
1939 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1940 )))
1941
1942
1943 Input password and ATZ to activate LHT65N,As shown below:
1944
1945 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1946
1947
1948 AT Command List is as below:
1949
1950 AT+<CMD>? :  Help on <CMD>
1951
1952 AT+<CMD> :  Run <CMD>
1953
1954 AT+<CMD>=<value> :  Set the value
1955
1956 AT+<CMD>=? :  Get the value
1957
1958 AT+DEBUG:  Set more info output
1959
1960 ATZ:  Trig a reset of the MCU
1961
1962 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1963
1964 AT+DEUI:  Get or Set the Device EUI
1965
1966 AT+DADDR:  Get or Set the Device Address
1967
1968 AT+APPKEY:  Get or Set the Application Key
1969
1970 AT+NWKSKEY:  Get or Set the Network Session Key
1971
1972 AT+APPSKEY:  Get or Set the Application Session Key
1973
1974 AT+APPEUI:  Get or Set the Application EUI
1975
1976 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1977
1978 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1979
1980 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1981
1982 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1983
1984 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1985
1986 AT+RX2FQ:  Get or Set the Rx2 window frequency
1987
1988 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1989
1990 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1991
1992 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1993
1994 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1995
1996 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1997
1998 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1999
2000 AT+NWKID:  Get or Set the Network ID
2001
2002 AT+FCU:  Get or Set the Frame Counter Uplink
2003
2004 AT+FCD:  Get or Set the Frame Counter Downlink
2005
2006 AT+CLASS:  Get or Set the Device Class
2007
2008 AT+JOIN:  Join network
2009
2010 AT+NJS:  Get the join status
2011
2012 AT+SENDB:  Send hexadecimal data along with the application port
2013
2014 AT+SEND:  Send text data along with the application port
2015
2016 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2017
2018 AT+RECV:  Print last received data in raw format
2019
2020 AT+VER:  Get current image version and Frequency Band
2021
2022 AT+CFM:  Get or Set the confirmation mode (0-1)
2023
2024 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2025
2026 AT+SNR:  Get the SNR of the last received packet
2027
2028 AT+RSSI:  Get the RSSI of the last received packet
2029
2030 AT+TDC:  Get or set the application data transmission interval in ms
2031
2032 AT+PORT:  Get or set the application port
2033
2034 AT+DISAT:  Disable AT commands
2035
2036 AT+PWORD: Set password, max 9 digits
2037
2038 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2039
2040 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2041
2042 AT+PDTA:  Print the sector data from start page to stop page
2043
2044 AT+PLDTA:  Print the last few sets of data
2045
2046 AT+CLRDTA:  Clear the storage, record position back to 1st
2047
2048 AT+SLEEP:  Set sleep mode
2049
2050 AT+EXT:  Get or Set external sensor model
2051
2052 AT+BAT:  Get the current battery voltage in mV
2053
2054 AT+CFG:  Print all configurations
2055
2056 AT+WMOD:  Get or Set Work Mode
2057
2058 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2059
2060 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2061
2062 AT+SETCNT:  Set the count at present
2063
2064 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2065
2066 AT+RPL:  Get or set response level
2067
2068 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2069
2070 AT+LEAPSEC:  Get or Set Leap Second
2071
2072 AT+SYNCMOD:  Get or Set time synchronization method
2073
2074 AT+SYNCTDC:  Get or set time synchronization interval in day
2075
2076 AT+PID:  Get or set the PID
2077
2078
2079 == 6.3 How to use Downlink commands? ==
2080
2081
2082 **Downlink commands:**
2083
2084
2085 (% style="color:blue" %)**TTN:**
2086
2087 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2088
2089
2090
2091 (% style="color:blue" %)**Helium: **
2092
2093 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2094
2095
2096
2097 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2098
2099
2100 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2101
2102
2103 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2104
2105
2106
2107 (% style="color:blue" %)**AWS-IOT :**
2108
2109 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2110
2111
2112 == 6.4 How to change the uplink interval? ==
2113
2114
2115 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2116
2117
2118 == 6.5 How to upgrade firmware? ==
2119
2120
2121 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2122 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2123
2124
2125 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2126
2127
2128 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2129
2130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2131
2132 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2133
2134 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N.**
2135
2136 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2137
2138 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2139
2140 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2141
2142 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2143
2144 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2145
2146 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2147
2148 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2149
2150
2151 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2152
2153 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2154
2155 [[image:image-20240716174308-1.png||height="523" width="410"]]
2156
2157
2158 === 6.5.2 Updated firmware for V1.4 and above ===
2159
2160
2161 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2162
2163 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2164 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2165
2166 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2167
2168
2169 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2170
2171
2172 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2173
2174 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2175
2176
2177 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2178
2179
2180 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2181
2182
2183 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2184
2185 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2186
2187 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2188
2189
2190
2191 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2192
2193 Connect PC and LHT65N via USB TTL adapter .
2194
2195 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2196
2197 **Connection method:**
2198
2199 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2200
2201 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2202
2203 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2204
2205 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2206
2207 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2208
2209
2210 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2211
2212 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2213
2214
2215 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2216
2217 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2218
2219
2220 When this interface appears, it indicates that the download has been completed.
2221
2222 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2223
2224
2225 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2226
2227
2228 == 6.6 Why can't I see the datalog information ==
2229
2230
2231 ~1. The time is not aligned, and the correct query command is not used.
2232
2233 2. Decoder error, did not parse the datalog data, the data was filtered.
2234
2235
2236 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2237
2238
2239 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2240
2241 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2242
2243
2244 After there is UART Connectio, run below commands:
2245
2246 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2247
2248 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2249
2250 Example output:
2251
2252 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2253
2254
2255 = 7. Order Info =
2256
2257
2258 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2259
2260 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2261
2262 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2263 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2264 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2265 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2266 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2267 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2268 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2269 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2270
2271 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2272
2273 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2274
2275 = 8. Packing Info =
2276
2277
2278 **Package Includes**:
2279
2280 * LHT65N Temperature & Humidity Sensor x 1
2281 * Optional external sensor
2282
2283 = 9. Reference material =
2284
2285
2286 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2287
2288 = 10. FCC Warning =
2289
2290
2291 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2292
2293 (1) This device may not cause harmful interference;
2294
2295 (2) this device must accept any interference received, including interference that may cause undesired operation.