Version 330.1 by Bei Jinggeng on 2024/08/13 17:12

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device on TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20240710153745-4.png||height="406" width="735"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input JoinEUI(APPEUI),  DEVEUI and APPKEY:
179
180
181 [[image:image-20240710154010-5.png||height="598" width="644"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
429
430
431 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
435 **2**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 2
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 **2**
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 1
442 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))
447 |(% style="width:110px" %)(((
448 Value
449 )))|(% style="width:71px" %)(((
450 BAT & BAT Status
451 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
452 Status & Ext
453 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
454
455 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
456
457 be used to power the external ADC sensor; user can control the power on time for this
458
459 (% style="color:blue" %)**sensor by setting:**
460
461 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
462
463 **For example:**
464
465 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
466
467
468 Or use **downlink command A2** to set the same.
469
470 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
471
472 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
473
474 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
475
476
477 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
478
479 [[image:image-20220628150714-4.png||_mstalt="431054"]]
480
481
482 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
483
484
485 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
486
487 [[image:image-20220628151005-5.png||_mstalt="429546"]]
488
489
490 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
491
492 [[image:image-20220628151056-6.png||_mstalt="431873"]]
493
494
495 3) Within range
496
497 [[image:image-20220628151143-7.png||_mstalt="431210"]]
498
499
500 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
501
502
503 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
504
505
506 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
507
508
509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
510 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
513 **2**
514 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
515 2
516 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
517 **2**
518 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
519 1
520 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
521 2
522 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
523 2
524 )))
525 |(% style="width:110px" %)(((
526 Value
527 )))|(% style="width:71px" %)(((
528 BAT & BAT Status
529 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
530 Status & Ext
531 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
532
533 [[image:image-20220906102307-7.png||_mstalt="430443"]]
534
535 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
536
537 The external cable NE2 can be use for MOD4 and MOD8
538
539
540 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
541
542
543 [[image:image-20230717151245-7.png||_mstalt="432133" height="510" width="509"]]
544
545 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
548 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
551 **2**
552 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
553 2
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 **2**
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 1
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))
563 |(% style="width:110px" %)(((
564 Value
565 )))|(% style="width:71px" %)(((
566 BAT & BAT Status
567 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
568 Status & Ext
569 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
570
571 [[image:SHT31.png||_mstalt="104715"]]
572
573
574 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
575
576
577 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
578
579
580 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
581
582 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
583
584 In Open State, the power consumption is the same as if there is no probe
585
586 In Close state, the power consumption will be 3uA higher than normal.
587
588 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
589
590
591 Ext=4,Interrupt Sensor:
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
594 |(% style="width:101px" %)(((
595 **AT+EXT=4,1**
596 )))|(% style="width:395px" %)(((
597 **Sent uplink packet in both rising and falling interrupt**
598 )))
599 |(% style="width:101px" %)(((
600 **AT+EXT=4,2**
601 )))|(% style="width:395px" %)(((
602 **Sent uplink packet only in falling interrupt**
603 )))
604 |(% style="width:101px" %)(((
605 **AT+EXT=4,3**
606 )))|(% style="width:395px" %)(((
607 **Sent uplink packet only in rising interrupt**
608 )))
609
610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
611 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
612 **Size(bytes)**
613 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
614 **2**
615 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
616 2
617 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
618 **2**
619 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
620 1
621 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
622 1
623 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
624 1
625 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
626 2
627 )))
628 |(% style="width:110px" %)(((
629 Value
630 )))|(% style="width:71px" %)(((
631 BAT & BAT Status
632 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
633 Status & Ext
634 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
635
636 Trigger by falling edge:
637
638 [[image:image-20220906101145-2.png||_mstalt="428324"]]
639
640
641 Trigger by raising edge:
642
643 [[image:image-20220906101145-3.png||_mstalt="428688"]]
644
645
646 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
647
648
649 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
650
651
652 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
653
654 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
655
656
657 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
658
659 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
660
661
662 Ext=8, Counting Sensor ( 4 bytes):
663
664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
665 |(% style="width:131px" %)(((
666 **AT+EXT=8,0**
667 )))|(% style="width:195px" %)(((
668 **Count at falling interrupt**
669 )))
670 |(% style="width:131px" %)(((
671 **AT+EXT=8,1**
672 )))|(% style="width:195px" %)(((
673 **Count at rising interrupt**
674 )))
675 |(% style="width:131px" %)(((
676 **AT+SETCNT=60**
677 )))|(% style="width:195px" %)(((
678 **Sent current count to 60**
679 )))
680
681 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
682 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
683 **Size(bytes)**
684 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
685 **2**
686 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
687 2
688 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
689 **2**
690 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
691 1
692 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
693 4
694 )))
695 |(% style="width:110px" %)(((
696 Value
697 )))|(% style="width:71px" %)(((
698 BAT & BAT Status
699 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
700 Status & Ext
701 )))|(% style="width:64px" %)Exit_count
702
703 [[image:image-20220906101320-6.png||_mstalt="428064"]]
704
705
706 (% style="color:blue" %)**A2 downlink Command:**
707
708 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
709
710 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
711
712 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
713
714 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
715
716 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
717
718
719 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
720
721
722 (((
723 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
724 )))
725
726 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
727 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
728 **Size(bytes)**
729 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
730 **2**
731 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
732 **2**
733 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
734 **2**
735 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
736 **1**
737 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
738 **4**
739 )))
740 |(% style="width:110px" %)(((
741 Value
742 )))|(% style="width:71px" %)(((
743 External temperature
744 )))|(% style="width:99px" %)(((
745 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
746 )))|(% style="width:132px" %)(((
747 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
748 )))|(% style="width:54px" %)(((
749 Status & Ext
750 )))|(% style="width:64px" %)(((
751 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
752 )))
753
754 * **Battery status & Built-in Humidity**
755
756 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
757 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
758 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
759 BAT Status
760 00(b): Ultra Low ( BAT <= 2.50v)
761 01(b): Low  (2.50v <=BAT <= 2.55v)
762 10(b): OK   (2.55v <= BAT <=2.65v)
763 11(b): Good   (BAT >= 2.65v)
764 )))|(% style="width:132px" %)(((
765 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
766 )))
767
768 * **Status & Ext Byte**
769
770 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
771 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
772 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
773
774 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
775 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
776 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
777
778 == 2.5 Show data on Datacake ==
779
780
781 (((
782 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
783 )))
784
785
786 (((
787 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
788 )))
789
790 (((
791 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
792 )))
793
794
795 (((
796 Add Datacake:
797 )))
798
799 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
800
801
802 Select default key as Access Key:
803
804
805 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
806
807
808 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
809
810 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
811
812
813 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
814
815
816 == 2.6 Datalog Feature ==
817
818
819 (((
820 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
821 )))
822
823
824 === 2.6.1 Ways to get datalog via LoRaWAN ===
825
826
827 There are two methods:
828
829 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
830
831
832 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
833
834
835 (% style="color:red" %)**Note for method 2:**
836
837 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
838 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
839
840 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
841
842 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
843
844
845 === 2.6.2 Unix TimeStamp ===
846
847
848 LHT65N uses Unix TimeStamp format based on
849
850
851 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
852
853
854 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
855
856 Below is the converter example
857
858 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
859
860
861 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
862
863
864 === 2.6.3 Set Device Time ===
865
866
867 (((
868 (% style="color:blue" %)**There are two ways to set device's time:**
869 )))
870
871 (((
872 **1.  Through LoRaWAN MAC Command (Default settings)**
873 )))
874
875 (((
876 User need to set SYNCMOD=1 to enable sync time via MAC command.
877 )))
878
879 (((
880 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
881 )))
882
883 (((
884 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
885 )))
886
887
888 (((
889 **2. Manually Set Time**
890 )))
891
892 (((
893 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
894 )))
895
896
897 === 2.6.4 Poll sensor value ===
898
899
900 User can poll sensor value based on timestamps from the server. Below is the downlink command.
901
902 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
903 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
904 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
905
906 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
907
908 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
909
910 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
911
912 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
913
914
915 === 2.6.5 Datalog Uplink payload ===
916
917
918 The Datalog poll reply uplink will use below payload format.
919
920 **Retrieval data payload:**
921
922 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
923 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
924 **Size(bytes)**
925 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
926 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
927
928 **Poll message flag & Ext:**
929
930 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
931 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
932 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
933
934 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
935
936 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
937
938 * Poll Message Flag is set to 1.
939
940 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
941
942 For example, in US915 band, the max payload for different DR is:
943
944 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
945
946 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
947
948 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
949
950 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
951
952 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
953
954
955 **Example:**
956
957 If LHT65N has below data inside Flash:
958
959 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
960 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
961 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
962 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
963 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
964 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
965 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
966 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
967 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
968 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
969
970 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
971
972 Where : Start time: 60065F97 = time 21/1/19 04:27:03
973
974 Stop time: 60066DA7= time 21/1/19 05:27:03
975
976
977 **LHT65N will uplink this payload.**
978
979 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
980
981
982 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
983
984 Where the first 11 bytes is for the first entry:
985
986 7FFF089801464160065F97
987
988 Ext sensor data=0x7FFF/100=327.67
989
990 Temp=0x088E/100=22.00
991
992 Hum=0x014B/10=32.6
993
994 poll message flag & Ext=0x41,means reply data,Ext=1
995
996 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
997
998
999 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1000
1001
1002 (((
1003 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1004 )))
1005
1006 (((
1007 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1008
1009
1010 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1011
1012 (((
1013 (% class="box infomessage" %)
1014 (((
1015 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1016 )))
1017 )))
1018
1019 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1020
1021 **~ AT+WMOD=1,60,-10,20**
1022
1023
1024 Explain:
1025
1026 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1027 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1028 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1029
1030 (% style="color:#4f81bd" %)**Downlink Command:**
1031
1032 **Example: **A5013CFC180014
1033
1034 MOD=01
1035
1036 CITEMP=3C(S) =60(S)
1037
1038 TEMPlow=FC18 = -10(℃)
1039
1040 TEMPhigh=0014=20(℃)
1041
1042
1043 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1044
1045 **AT+WMOD=2,60,5** 
1046
1047 Explain:
1048
1049 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1050 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1051 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1052
1053 (% style="color:#4f81bd" %)**Downlink Command**
1054
1055 **Example: **A5023C05
1056
1057 MOD=02
1058
1059 CITEMP=3C(S)=60(S)
1060
1061 temperature fluctuation=05(℃)
1062
1063
1064 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1065
1066 **AT+WMOD=3,1,60,20,-16,32,1**   
1067
1068 Explain:
1069
1070 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1071 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1072 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1073 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1074 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1075 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1076
1077 (% style="color:#4f81bd" %)**Downlink Command:**
1078
1079 **Example: **A50301003C14FFF0002001
1080
1081 MOD=03
1082
1083 TEMP=DS18B20
1084
1085 CITEMP=003C(S)=60(S)
1086
1087 Total number of acquisitions=14
1088
1089 TEMPlow=FFF0=-16(℃)
1090
1091 TEMPhigh=0020=20(℃)
1092
1093 ARTEMP=01
1094
1095
1096 **Uplink payload( Fport=3)**
1097
1098 **Example: CBEA**01**0992**//0A41//**09C4**
1099
1100 BatV=CBEA
1101
1102 TEMP=DS18B20
1103
1104 Temp1=0992  ~/~/ 24.50℃
1105
1106 Temp2=0A41  ~/~/ 26.25℃
1107
1108 Temp3=09C4  ~/~/ 25.00℃
1109
1110 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1111
1112 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1113 )))
1114
1115
1116 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1117
1118
1119 (% class="box infomessage" %)
1120 (((
1121 (((
1122 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1123 )))
1124
1125 (((
1126 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1127 )))
1128
1129 (((
1130 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1131 )))
1132
1133 (((
1134 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1135 )))
1136
1137 (((
1138 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1139 )))
1140 )))
1141
1142 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1143
1144 Total bytes: 8 bytes
1145
1146 **Example:**AA0100010001003C
1147
1148 WMOD=01
1149
1150 CITEMP=0001
1151
1152 TEMPlow=0001
1153
1154 TEMPhigh=003C
1155
1156
1157 == 2.8 LED Indicator ==
1158
1159
1160 The LHT65 has a triple color LED which for easy showing different stage .
1161
1162 While user press ACT button, the LED will work as per LED status with ACT button.
1163
1164 In a normal working state:
1165
1166 * For each uplink, the BLUE LED or RED LED will blink once.
1167 BLUE LED when external sensor is connected.
1168 * RED LED when external sensor is not connected
1169 * For each success downlink, the PURPLE LED will blink once
1170
1171 == 2.9 installation ==
1172
1173
1174 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1175
1176
1177 = 3. Sensors and Accessories =
1178
1179 == 3.1 E2 Extension Cable ==
1180
1181
1182 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1183
1184
1185 **1m long breakout cable for LHT65N. Features:**
1186
1187 * (((
1188 Use for AT Command, works for both LHT52/LHT65N
1189 )))
1190 * (((
1191 Update firmware for LHT65N, works for both LHT52/LHT65N
1192 )))
1193 * (((
1194 Supports ADC mode to monitor external ADC
1195 )))
1196 * (((
1197 Supports Interrupt mode
1198 )))
1199 * (((
1200 Exposed All pins from the LHT65N Type-C connector.
1201
1202
1203
1204 )))
1205
1206 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1207
1208
1209 == 3.2 E3 Temperature Probe ==
1210
1211
1212 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1213
1214
1215 Temperature sensor with 2 meters cable long
1216
1217 * Resolution: 0.0625 °C
1218 * ±0.5°C accuracy from -10°C to +85°C
1219 * ±2°C accuracy from -55°C to +125°C
1220 * Operating Range: -40 ~~ 125 °C
1221 * Working voltage 2.35v ~~ 5v
1222
1223 == 3.3 E31F Temperature Probe ==
1224
1225
1226 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1227
1228
1229 Temperature sensor with 1 meters cable long
1230
1231
1232 **Built-in Temperature Sensor:**
1233
1234 * Resolution: 0.01 °C
1235 * Accuracy Tolerance : Typ ±0.3 °C
1236 * Long Term Drift: < 0.02 °C/yr
1237 * Operating Range: -40 ~~ 80 °C
1238
1239 **Built-in Humidity Sensor:**
1240
1241 * Resolution: 0.04 % RH
1242 * Accuracy Tolerance : Typ ±3 % RH
1243 * Long Term Drift: < 0.02 °C/yr
1244 * Operating Range: 0 ~~ 96 % RH
1245
1246 **External Temperature Sensor :**
1247
1248 * Resolution: 0.01 °C
1249 * Accuracy Tolerance : Typical ±0.3 °C
1250 * Long Term Drift: < 0.02 °C/yr
1251 * Operating Range: -40 ~~ 125 °C
1252
1253 **External Humidity Sensor :**
1254
1255 * Resolution: 0.04 % RH
1256 * Accuracy Tolerance : Typ ±3 % RH
1257 * Long Term Drift: < 0.02 °C/yr
1258 * Operating Range: 0 ~~ 96 % RH
1259
1260 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1261
1262
1263 External Temperature Sensor – NE117:
1264 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1265
1266 * Silica gel cable
1267 * ±0.1 °C (maximum) from –20 °C to 50 °C
1268 * ±0.2 °C (maximum) from –40 °C to 100 °C
1269 * ±0.3 °C (maximum) from –55 °C to 150 °C
1270
1271 [[image:image-20240422093011-1.png||height="349" width="350"]]
1272
1273
1274 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1275
1276
1277 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1278 * 3 wires: VCC/GND/INT
1279 * Cable Lenght: 1 meter
1280
1281 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1282
1283 LHT65-DC can be used to connect various types of external sensor. below.
1284
1285 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1286
1287 [[image:image-20240422100149-5.png||height="163" width="510"]]
1288
1289 [[image:image-20240422100217-6.png||height="141" width="507"]]
1290
1291
1292 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1293
1294
1295 * Aluminum Alloy Door Sensor
1296 * Detect Distance: ~~3cm
1297 * Cable Lenght: 1 meter
1298
1299 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1300
1301 [[image:image-20240705144054-2.png||height="423" width="343"]]
1302
1303
1304 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1305
1306
1307 External Probe:
1308
1309 * Unique NIST Certi cate for each probe
1310 * External NIST Traceable probe with unique ID
1311
1312 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1313
1314 [[image:image-20240705145640-3.png]]
1315
1316
1317 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1318
1319
1320 (((
1321 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1322 )))
1323
1324 * (((
1325 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1326 )))
1327
1328 * (((
1329 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1330 )))
1331
1332 (((
1333 There are two kinds of commands to configure LHT65N, they are:
1334 )))
1335
1336 * (((
1337 (% style="color:#4f81bd" %)**General Commands**.
1338 )))
1339
1340 (((
1341 These commands are to configure:
1342 )))
1343
1344 1. (((
1345 General system settings like: uplink interval.
1346 )))
1347 1. (((
1348 LoRaWAN protocol & radio-related commands.
1349 )))
1350
1351 (((
1352 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1353 )))
1354
1355 * (((
1356 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1357 )))
1358
1359 (((
1360 These commands are only valid for LHT65N, as below:
1361 )))
1362
1363
1364 == 4.1 Set Transmit Interval Time ==
1365
1366
1367 Feature: Change LoRaWAN End Node Transmit Interval.
1368
1369
1370 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1371
1372 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1373 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1374 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1375 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1376
1377 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1378
1379 Format: Command Code (0x01) followed by 3 bytes time value.
1380
1381 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1382
1383 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1384
1385 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1386
1387 == 4.2 Set External Sensor Mode ==
1388
1389
1390 Feature: Change External Sensor Mode.
1391
1392 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1393
1394 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1395 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1396 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1397 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1398 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1399
1400 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1401
1402 Total bytes: 2 ~~ 5 bytes
1403
1404 **Example:**
1405
1406 * 0xA201: Set external sensor type to E1
1407
1408 * 0xA209: Same as AT+EXT=9
1409
1410 * 0xA20702003c: Same as AT+SETCNT=60
1411
1412 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1413
1414
1415 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1416
1417 * First Packet after OTAA Join
1418 * Every 24 hours since the first packet.
1419
1420 PID is default set to disable (0)
1421
1422 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1423
1424 (% style="color:#4f81bd" %)**AT Command:**
1425
1426 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1427 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1428 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1429
1430 (% style="color:#4f81bd" %)**Downlink Command:**
1431
1432 * **0xA800**  **~-~->** AT+PID=0
1433 * **0xA801**     **~-~->** AT+PID=1
1434
1435 == 4.4 Set Password ==
1436
1437
1438 Feature: Set device password, max 9 digits
1439
1440 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1441
1442 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1443 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1444 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1445 123456
1446
1447 OK
1448 )))
1449 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1450
1451 (% style="color:#4f81bd" %)**Downlink Command:**
1452
1453 No downlink command for this feature.
1454
1455
1456 == 4.5 Quit AT Command ==
1457
1458
1459 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1460
1461 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1462
1463 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1464 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1465 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1466
1467 (% style="color:#4f81bd" %)**Downlink Command:**
1468
1469 No downlink command for this feature.
1470
1471
1472 == 4.6 Set to sleep mode ==
1473
1474
1475 Feature: Set device to sleep mode
1476
1477 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1478 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1479
1480 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1481
1482 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1483 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1484 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1485 Clear all stored sensor data…
1486
1487 OK
1488 )))
1489
1490 (% style="color:#4f81bd" %)**Downlink Command:**
1491
1492 * There is no downlink command to set to Sleep mode.
1493
1494 == 4.7 Set system time ==
1495
1496
1497 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1498
1499 (% style="color:#4f81bd" %)**AT Command:**
1500
1501 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1502 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1503 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1504 OK
1505
1506 Set System time to 2021-01-20 00:59:12
1507 )))
1508
1509 (% style="color:#4f81bd" %)**Downlink Command:**
1510
1511 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1512
1513
1514 == 4.8 Set Time Sync Mode ==
1515
1516
1517 (((
1518 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1519 )))
1520
1521 (((
1522 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1523 )))
1524
1525 (% style="color:#4f81bd" %)**AT Command:**
1526
1527 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1528 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1529 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1530
1531 (% style="color:#4f81bd" %)**Downlink Command:**
1532
1533 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1534 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1535
1536
1537 == 4.9 Set Time Sync Interval ==
1538
1539
1540 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1541
1542 (% style="color:#4f81bd" %)**AT Command:**
1543
1544 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1545 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1546 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1547
1548 (% style="color:#4f81bd" %)**Downlink Command:**
1549
1550 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1551
1552
1553 == 4.10 Get data ==
1554
1555
1556 Feature: Get the current sensor data.
1557
1558 (% style="color:#4f81bd" %)**AT Command:**
1559
1560 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1561 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1562
1563 == 4.11 Print data entries base on page ==
1564
1565
1566 Feature: Print the sector data from start page to stop page (max is 416 pages).
1567
1568 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1569
1570 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1571 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1572 |(% style="width:156px" %)(((
1573 AT+PDTA=1,3
1574 Print page 1 to 3
1575 )))|(% style="width:311px" %)(((
1576 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1577 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1578 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1579 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1580 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1581 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1582 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1583 8019570
1584 8019580
1585 8019590
1586 80195A0
1587 80195B0
1588 80195C0
1589 80195D0
1590 80195E0
1591 80195F0
1592
1593 OK
1594 )))
1595
1596 (% style="color:#4f81bd" %)**Downlink Command:**
1597
1598 No downlink commands for feature
1599
1600
1601 == 4.12 Print last few data entries ==
1602
1603
1604 Feature: Print the last few data entries
1605
1606 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1607
1608 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1609 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1610 |(% style="width:156px" %)(((
1611 AT+PLDTA=5
1612 Print last 5 entries
1613 )))|(% style="width:311px" %)(((
1614 Stop Tx and RTP events when read sensor data
1615 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1616 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1617 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1618 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1619 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1620 Start Tx and RTP events
1621 OK
1622 )))
1623
1624 (% style="color:#4f81bd" %)**Downlink Command:**
1625
1626 No downlink commands for feature
1627
1628
1629 == 4.13 Clear Flash Record ==
1630
1631
1632 Feature: Clear flash storage for data log feature.
1633
1634 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1635
1636 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1637 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1638 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1639 Clear all stored sensor data…
1640
1641 OK
1642 )))
1643
1644 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1645
1646 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1647
1648 == 4.14 Auto Send None-ACK messages ==
1649
1650
1651 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1652
1653 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1654
1655 The default factory setting is 0
1656
1657 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1658 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1659 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1660
1661 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1662
1663 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1664
1665 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1666
1667
1668 Feature: Set internal and external temperature sensor alarms.
1669
1670 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1671 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1672 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1673
1674 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1675
1676 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1677
1678 0): Cancel
1679
1680 1): Threshold alarm
1681
1682 2): Fluctuation alarm
1683
1684 3): Sampling multiple times and uplink together
1685
1686
1687 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1688
1689 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1690
1691
1692 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1693
1694 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1695
1696 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1697
1698
1699 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1700
1701 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1702
1703 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1704
1705
1706 **3): If Alarm Mode is set to 3:**
1707
1708 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1709 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1710 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1711 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1712 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1713 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1714
1715 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1716
1717 0xA5 00 ~-~- AT+WMOD=0.
1718
1719 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1720
1721 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1722
1723 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1724
1725 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1726
1727 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1728
1729
1730 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1731
1732
1733 Feature: use downlink to get firmware version.
1734
1735 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1736
1737 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:360px" %)
1738 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1739 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1740
1741 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1742
1743 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1744
1745 (% style="color:#037691" %)**Sensor model**
1746
1747 0x0b: LHT65N
1748
1749
1750 (% style="color:#037691" %)**Firmware version**
1751
1752 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1753
1754 Example: 0x0140=V1.4.0
1755
1756
1757 (% style="color:#037691" %)** Frequency Band:**
1758
1759 * 0x01: EU868
1760 * 0x02: US915
1761 * 0x03: IN865
1762 * 0x04: AU915
1763 * 0x05: KZ865
1764 * 0x06: RU864
1765 * 0x07: AS923
1766 * 0x08: AS923-1
1767 * 0x09: AS923-2
1768 * 0xa0: AS923-3
1769
1770 (% style="color:#037691" %)**Subband**
1771
1772 value 0x00 ~~ 0x08
1773
1774 Example: 0xFF ~-~--> " NULL"
1775
1776
1777 (% style="color:#037691" %)**Battery**
1778
1779 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1780
1781 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1782
1783
1784 == 4.17 Setting LEDAlarm ==
1785
1786 Feature: Setting LEDAlarm
1787
1788 The default factory setting is 0
1789
1790 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1791 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1792 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1793
1794 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1795
1796 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1797
1798 = 5. Battery & How to replace =
1799
1800 == 5.1 Battery Type ==
1801
1802
1803 (((
1804 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1805 )))
1806
1807 (((
1808 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1809
1810 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1811 )))
1812
1813 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1814
1815
1816 == 5.2 Replace Battery ==
1817
1818
1819 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1820
1821 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1822
1823
1824 == 5.3 Battery Life Analyze ==
1825
1826
1827 (((
1828 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1829 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1830 )))
1831
1832
1833 (((
1834 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1835 )))
1836
1837
1838 = 6. FAQ =
1839
1840 == 6.1 How to connect to LHT65N UART interface? ==
1841
1842
1843 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1844
1845 * Send AT Commands, and get output from LHT65N
1846 * Upgrade firmwre of LHT65N.
1847
1848 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1849
1850
1851 **Option of USB TTL adapter:**
1852
1853 * CP2101 USB TTL Adapter
1854 * CH340 USB TTL Adapter
1855 * FT232 USB TTL Adapter
1856
1857 **Option of Type-C Adapter:**
1858
1859 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1860
1861
1862 **Connection:**
1863
1864 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1865 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1866 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1867
1868 (((
1869
1870
1871 Connection Example:
1872
1873 [[image:1655802313617-381.png||_mstalt="293917"]]
1874
1875
1876 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1877
1878
1879 == 6.2 How to use AT Commands? ==
1880
1881
1882 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1883
1884 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1885 )))
1886
1887
1888 Input password and ATZ to activate LHT65N,As shown below:
1889
1890 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1891
1892
1893 AT Command List is as below:
1894
1895 AT+<CMD>? :  Help on <CMD>
1896
1897 AT+<CMD> :  Run <CMD>
1898
1899 AT+<CMD>=<value> :  Set the value
1900
1901 AT+<CMD>=? :  Get the value
1902
1903 AT+DEBUG:  Set more info output
1904
1905 ATZ:  Trig a reset of the MCU
1906
1907 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1908
1909 AT+DEUI:  Get or Set the Device EUI
1910
1911 AT+DADDR:  Get or Set the Device Address
1912
1913 AT+APPKEY:  Get or Set the Application Key
1914
1915 AT+NWKSKEY:  Get or Set the Network Session Key
1916
1917 AT+APPSKEY:  Get or Set the Application Session Key
1918
1919 AT+APPEUI:  Get or Set the Application EUI
1920
1921 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1922
1923 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1924
1925 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1926
1927 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1928
1929 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1930
1931 AT+RX2FQ:  Get or Set the Rx2 window frequency
1932
1933 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1934
1935 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1936
1937 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1938
1939 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1940
1941 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1942
1943 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1944
1945 AT+NWKID:  Get or Set the Network ID
1946
1947 AT+FCU:  Get or Set the Frame Counter Uplink
1948
1949 AT+FCD:  Get or Set the Frame Counter Downlink
1950
1951 AT+CLASS:  Get or Set the Device Class
1952
1953 AT+JOIN:  Join network
1954
1955 AT+NJS:  Get the join status
1956
1957 AT+SENDB:  Send hexadecimal data along with the application port
1958
1959 AT+SEND:  Send text data along with the application port
1960
1961 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1962
1963 AT+RECV:  Print last received data in raw format
1964
1965 AT+VER:  Get current image version and Frequency Band
1966
1967 AT+CFM:  Get or Set the confirmation mode (0-1)
1968
1969 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1970
1971 AT+SNR:  Get the SNR of the last received packet
1972
1973 AT+RSSI:  Get the RSSI of the last received packet
1974
1975 AT+TDC:  Get or set the application data transmission interval in ms
1976
1977 AT+PORT:  Get or set the application port
1978
1979 AT+DISAT:  Disable AT commands
1980
1981 AT+PWORD: Set password, max 9 digits
1982
1983 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1984
1985 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1986
1987 AT+PDTA:  Print the sector data from start page to stop page
1988
1989 AT+PLDTA:  Print the last few sets of data
1990
1991 AT+CLRDTA:  Clear the storage, record position back to 1st
1992
1993 AT+SLEEP:  Set sleep mode
1994
1995 AT+EXT:  Get or Set external sensor model
1996
1997 AT+BAT:  Get the current battery voltage in mV
1998
1999 AT+CFG:  Print all configurations
2000
2001 AT+WMOD:  Get or Set Work Mode
2002
2003 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2004
2005 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2006
2007 AT+SETCNT:  Set the count at present
2008
2009 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2010
2011 AT+RPL:  Get or set response level
2012
2013 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2014
2015 AT+LEAPSEC:  Get or Set Leap Second
2016
2017 AT+SYNCMOD:  Get or Set time synchronization method
2018
2019 AT+SYNCTDC:  Get or set time synchronization interval in day
2020
2021 AT+PID:  Get or set the PID
2022
2023
2024 == 6.3 How to use Downlink commands? ==
2025
2026
2027 **Downlink commands:**
2028
2029
2030 (% style="color:blue" %)**TTN:**
2031
2032 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2033
2034
2035
2036 (% style="color:blue" %)**Helium: **
2037
2038 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2039
2040
2041
2042 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2043
2044
2045 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2046
2047
2048 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2049
2050
2051
2052 (% style="color:blue" %)**AWS-IOT :**
2053
2054 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2055
2056
2057 == 6.4 How to change the uplink interval? ==
2058
2059
2060 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2061
2062
2063 == 6.5 How to upgrade firmware? ==
2064
2065
2066 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2067 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2068
2069
2070 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2071
2072
2073 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2074
2075 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2076
2077 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2078
2079 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N.**
2080
2081 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2082
2083 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2084
2085 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2086
2087 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2088
2089 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2090
2091 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2092
2093 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2094
2095
2096 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2097
2098 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2099
2100 [[image:image-20240716174308-1.png||height="523" width="410"]]
2101
2102
2103 === 6.5.2 Updated firmware for V1.4 and above ===
2104
2105
2106 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2107
2108 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2109 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2110
2111 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2112
2113
2114 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2115
2116
2117 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2118
2119 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2120
2121
2122 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2123
2124
2125 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2126
2127
2128 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2129
2130 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2131
2132 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2133
2134
2135
2136 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2137
2138 Connect PC and LHT65N via USB TTL adapter .
2139
2140 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2141
2142 **Connection method:**
2143
2144 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2145
2146 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2147
2148 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2149
2150 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2151
2152 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2153
2154
2155 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2156
2157 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2158
2159
2160 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2161
2162 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2163
2164
2165 When this interface appears, it indicates that the download has been completed.
2166
2167 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2168
2169
2170 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2171
2172
2173 == 6.6 Why can't I see the datalog information ==
2174
2175
2176 ~1. The time is not aligned, and the correct query command is not used.
2177
2178 2. Decoder error, did not parse the datalog data, the data was filtered.
2179
2180
2181 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2182
2183
2184 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2185
2186 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2187
2188
2189 After there is UART Connectio, run below commands:
2190
2191 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2192
2193 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2194
2195 Example output:
2196
2197 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2198
2199
2200 = 7. Order Info =
2201
2202
2203 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2204
2205 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2206
2207 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2208 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2209 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2210 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2211 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2212 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2213 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2214 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2215
2216 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2217
2218 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2219
2220 = 8. Packing Info =
2221
2222
2223 **Package Includes**:
2224
2225 * LHT65N Temperature & Humidity Sensor x 1
2226 * Optional external sensor
2227
2228 = 9. Reference material =
2229
2230
2231 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2232
2233 = 10. FCC Warning =
2234
2235
2236 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2237
2238 (1) This device may not cause harmful interference;
2239
2240 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0