Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device on TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20240710153745-4.png||height="406" width="735"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input JoinEUI(APPEUI),  DEVEUI and APPKEY:
179
180
181 [[image:image-20240710154010-5.png||height="598" width="644"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
429
430
431 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
435 **2**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 2
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 **2**
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 1
442 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))
447 |(% style="width:110px" %)(((
448 Value
449 )))|(% style="width:71px" %)(((
450 BAT & BAT Status
451 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
452 Status & Ext
453 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
454
455 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
456
457 be used to power the external ADC sensor; user can control the power on time for this
458
459 (% style="color:blue" %)**sensor by setting:**
460
461 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
462
463 **For example:**
464
465 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
466
467
468 Or use **downlink command A2** to set the same.
469
470 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
471
472 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
473
474 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
475
476
477 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
478
479 [[image:image-20220628150714-4.png||_mstalt="431054"]]
480
481
482 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
483
484
485 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
486
487 [[image:image-20220628151005-5.png||_mstalt="429546"]]
488
489
490 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
491
492 [[image:image-20220628151056-6.png||_mstalt="431873"]]
493
494
495 3) Within range
496
497 [[image:image-20220628151143-7.png||_mstalt="431210"]]
498
499
500 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
501
502
503 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
504
505
506 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
507
508
509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
510 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
513 **2**
514 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
515 2
516 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
517 **2**
518 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
519 1
520 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
521 2
522 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
523 2
524 )))
525 |(% style="width:110px" %)(((
526 Value
527 )))|(% style="width:71px" %)(((
528 BAT & BAT Status
529 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
530 Status & Ext
531 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
532
533 [[image:image-20220906102307-7.png||_mstalt="430443"]]
534
535 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
536
537 The external cable NE2 can be use for MOD4 and MOD8
538
539
540 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
541
542
543 [[image:image-20230717151245-7.png||_mstalt="432133" height="510" width="509"]]
544
545 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
548 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
551 **2**
552 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
553 2
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 **2**
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 1
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))
563 |(% style="width:110px" %)(((
564 Value
565 )))|(% style="width:71px" %)(((
566 BAT & BAT Status
567 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
568 Status & Ext
569 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
570
571 [[image:SHT31.png||_mstalt="104715"]]
572
573
574 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
575
576
577 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
578
579
580 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
581
582 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
583
584 In Open State, the power consumption is the same as if there is no probe
585
586 In Close state, the power consumption will be 3uA higher than normal.
587
588 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
589
590
591 Ext=4,Interrupt Sensor:
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
594 |(% style="width:101px" %)(((
595 **AT+EXT=4,1**
596 )))|(% style="width:395px" %)(((
597 **Sent uplink packet in both rising and falling interrupt**
598 )))
599 |(% style="width:101px" %)(((
600 **AT+EXT=4,2**
601 )))|(% style="width:395px" %)(((
602 **Sent uplink packet only in falling interrupt**
603 )))
604 |(% style="width:101px" %)(((
605 **AT+EXT=4,3**
606 )))|(% style="width:395px" %)(((
607 **Sent uplink packet only in rising interrupt**
608 )))
609
610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
611 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
612 **Size(bytes)**
613 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
614 **2**
615 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
616 2
617 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
618 **2**
619 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
620 1
621 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
622 1
623 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
624 1
625 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
626 3
627 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
628 3
629 )))
630 |(% style="width:110px" %)(((
631 Value
632 )))|(% style="width:71px" %)(((
633 BAT & BAT Status
634 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
635 Status & Ext
636 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
637
638 Trigger by falling edge:
639
640 [[image:image-20220906101145-2.png||_mstalt="428324"]]
641
642
643 Trigger by raising edge:
644
645 [[image:image-20220906101145-3.png||_mstalt="428688"]]
646
647
648 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
649
650
651 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
652
653
654 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
655
656 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
657
658
659 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
660
661 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
662
663
664 Ext=8, Counting Sensor ( 4 bytes):
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
667 |(% style="width:131px" %)(((
668 **AT+EXT=8,0**
669 )))|(% style="width:195px" %)(((
670 **Count at falling interrupt**
671 )))
672 |(% style="width:131px" %)(((
673 **AT+EXT=8,1**
674 )))|(% style="width:195px" %)(((
675 **Count at rising interrupt**
676 )))
677 |(% style="width:131px" %)(((
678 **AT+SETCNT=60**
679 )))|(% style="width:195px" %)(((
680 **Sent current count to 60**
681 )))
682
683 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
684 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
685 **Size(bytes)**
686 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
687 **2**
688 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
689 2
690 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
691 **2**
692 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
693 1
694 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
695 4
696 )))
697 |(% style="width:110px" %)(((
698 Value
699 )))|(% style="width:71px" %)(((
700 BAT & BAT Status
701 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
702 Status & Ext
703 )))|(% style="width:64px" %)Exit_count
704
705 [[image:image-20220906101320-6.png||_mstalt="428064"]]
706
707
708 (% style="color:blue" %)**A2 downlink Command:**
709
710 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
711
712 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
713
714 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
715
716 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
717
718 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
719
720
721 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
722
723
724 (((
725 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
726 )))
727
728 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
729 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
730 **Size(bytes)**
731 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
732 **2**
733 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
734 **2**
735 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
736 **2**
737 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
738 **1**
739 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
740 **4**
741 )))
742 |(% style="width:110px" %)(((
743 Value
744 )))|(% style="width:71px" %)(((
745 External temperature
746 )))|(% style="width:99px" %)(((
747 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
748 )))|(% style="width:132px" %)(((
749 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
750 )))|(% style="width:54px" %)(((
751 Status & Ext
752 )))|(% style="width:64px" %)(((
753 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
754 )))
755
756 * **Battery status & Built-in Humidity**
757
758 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
759 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
760 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
761 BAT Status
762 00(b): Ultra Low ( BAT <= 2.50v)
763 01(b): Low  (2.50v <=BAT <= 2.55v)
764 10(b): OK   (2.55v <= BAT <=2.65v)
765 11(b): Good   (BAT >= 2.65v)
766 )))|(% style="width:132px" %)(((
767 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
768 )))
769
770 * **Status & Ext Byte**
771
772 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
773 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
774 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
775
776 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
777 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
778 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
779
780 == 2.5 Show data on Datacake ==
781
782
783 (((
784 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
785 )))
786
787
788 (((
789 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
790 )))
791
792 (((
793 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
794 )))
795
796
797 (((
798 Add Datacake:
799 )))
800
801 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
802
803
804 Select default key as Access Key:
805
806
807 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
808
809
810 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
811
812 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
813
814
815 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
816
817
818 == 2.6 Datalog Feature ==
819
820
821 (((
822 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
823 )))
824
825
826 === 2.6.1 Ways to get datalog via LoRaWAN ===
827
828
829 There are two methods:
830
831 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
832
833
834 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
835
836
837 (% style="color:red" %)**Note for method 2:**
838
839 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
840 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
841
842 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
843
844 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
845
846
847 === 2.6.2 Unix TimeStamp ===
848
849
850 LHT65N uses Unix TimeStamp format based on
851
852
853 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
854
855
856 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
857
858 Below is the converter example
859
860 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
861
862
863 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
864
865
866 === 2.6.3 Set Device Time ===
867
868
869 (((
870 (% style="color:blue" %)**There are two ways to set device's time:**
871 )))
872
873 (((
874 **1.  Through LoRaWAN MAC Command (Default settings)**
875 )))
876
877 (((
878 User need to set SYNCMOD=1 to enable sync time via MAC command.
879 )))
880
881 (((
882 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
883 )))
884
885 (((
886 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
887 )))
888
889
890 (((
891 **2. Manually Set Time**
892 )))
893
894 (((
895 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
896 )))
897
898
899 === 2.6.4 Poll sensor value ===
900
901
902 User can poll sensor value based on timestamps from the server. Below is the downlink command.
903
904 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
905 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
906 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
907
908 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
909
910 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
911
912 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
913
914 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
915
916
917 === 2.6.5 Datalog Uplink payload ===
918
919
920 The Datalog poll reply uplink will use below payload format.
921
922 **Retrieval data payload:**
923
924 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
925 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
926 **Size(bytes)**
927 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
928 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
929
930 **Poll message flag & Ext:**
931
932 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
933 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
934 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
935
936 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
937
938 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
939
940 * Poll Message Flag is set to 1.
941
942 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
943
944 For example, in US915 band, the max payload for different DR is:
945
946 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
947
948 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
949
950 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
951
952 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
953
954 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
955
956
957 **Example:**
958
959 If LHT65N has below data inside Flash:
960
961 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
962 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
963 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
964 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
965 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
966 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
967 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
968 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
969 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
970 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
971
972 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
973
974 Where : Start time: 60065F97 = time 21/1/19 04:27:03
975
976 Stop time: 60066DA7= time 21/1/19 05:27:03
977
978
979 **LHT65N will uplink this payload.**
980
981 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
982
983
984 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
985
986 Where the first 11 bytes is for the first entry:
987
988 7FFF089801464160065F97
989
990 Ext sensor data=0x7FFF/100=327.67
991
992 Temp=0x088E/100=22.00
993
994 Hum=0x014B/10=32.6
995
996 poll message flag & Ext=0x41,means reply data,Ext=1
997
998 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
999
1000
1001 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1002
1003
1004 (((
1005 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1006 )))
1007
1008 (((
1009 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1010
1011
1012 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1013
1014 (((
1015 (% class="box infomessage" %)
1016 (((
1017 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1018 )))
1019 )))
1020
1021 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1022
1023 **~ AT+WMOD=1,60,-10,20**
1024
1025
1026 Explain:
1027
1028 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1029 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1030 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1031
1032 (% style="color:#4f81bd" %)**Downlink Command:**
1033
1034 **Example: **A5013CFC180014
1035
1036 MOD=01
1037
1038 CITEMP=3C(S) =60(S)
1039
1040 TEMPlow=FC18 = -10(℃)
1041
1042 TEMPhigh=0014=20(℃)
1043
1044
1045 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1046
1047 **AT+WMOD=2,60,5** 
1048
1049 Explain:
1050
1051 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1052 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1053 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1054
1055 (% style="color:#4f81bd" %)**Downlink Command**
1056
1057 **Example: **A5023C05
1058
1059 MOD=02
1060
1061 CITEMP=3C(S)=60(S)
1062
1063 temperature fluctuation=05(℃)
1064
1065
1066 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1067
1068 **AT+WMOD=3,1,60,20,-16,32,1**   
1069
1070 Explain:
1071
1072 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1073 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1074 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1075 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1076 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1077 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1078
1079 (% style="color:#4f81bd" %)**Downlink Command:**
1080
1081 **Example: **A50301003C14FFF0002001
1082
1083 MOD=03
1084
1085 TEMP=DS18B20
1086
1087 CITEMP=003C(S)=60(S)
1088
1089 Total number of acquisitions=14
1090
1091 TEMPlow=FFF0=-16(℃)
1092
1093 TEMPhigh=0020=20(℃)
1094
1095 ARTEMP=01
1096
1097
1098 **Uplink payload( Fport=3)**
1099
1100 **Example: CBEA**01**0992**//0A41//**09C4**
1101
1102 BatV=CBEA
1103
1104 TEMP=DS18B20
1105
1106 Temp1=0992  ~/~/ 24.50℃
1107
1108 Temp2=0A41  ~/~/ 26.25℃
1109
1110 Temp3=09C4  ~/~/ 25.00℃
1111
1112 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1113
1114 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1115 )))
1116
1117
1118 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1119
1120
1121 (% class="box infomessage" %)
1122 (((
1123 (((
1124 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1125 )))
1126
1127 (((
1128 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1129 )))
1130
1131 (((
1132 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1133 )))
1134
1135 (((
1136 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1137 )))
1138
1139 (((
1140 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1141 )))
1142 )))
1143
1144 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1145
1146 Total bytes: 8 bytes
1147
1148 **Example:**AA0100010001003C
1149
1150 WMOD=01
1151
1152 CITEMP=0001
1153
1154 TEMPlow=0001
1155
1156 TEMPhigh=003C
1157
1158
1159 == 2.8 LED Indicator ==
1160
1161
1162 The LHT65 has a triple color LED which for easy showing different stage .
1163
1164 While user press ACT button, the LED will work as per LED status with ACT button.
1165
1166 In a normal working state:
1167
1168 * For each uplink, the BLUE LED or RED LED will blink once.
1169 BLUE LED when external sensor is connected.
1170 * RED LED when external sensor is not connected
1171 * For each success downlink, the PURPLE LED will blink once
1172
1173 == 2.9 installation ==
1174
1175
1176 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1177
1178
1179 = 3. Sensors and Accessories =
1180
1181 == 3.1 E2 Extension Cable ==
1182
1183
1184 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1185
1186
1187 **1m long breakout cable for LHT65N. Features:**
1188
1189 * (((
1190 Use for AT Command, works for both LHT52/LHT65N
1191 )))
1192 * (((
1193 Update firmware for LHT65N, works for both LHT52/LHT65N
1194 )))
1195 * (((
1196 Supports ADC mode to monitor external ADC
1197 )))
1198 * (((
1199 Supports Interrupt mode
1200 )))
1201 * (((
1202 Exposed All pins from the LHT65N Type-C connector.
1203
1204
1205
1206 )))
1207
1208 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1209
1210
1211 == 3.2 E3 Temperature Probe ==
1212
1213
1214 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1215
1216
1217 Temperature sensor with 2 meters cable long
1218
1219 * Resolution: 0.0625 °C
1220 * ±0.5°C accuracy from -10°C to +85°C
1221 * ±2°C accuracy from -55°C to +125°C
1222 * Operating Range: -40 ~~ 125 °C
1223 * Working voltage 2.35v ~~ 5v
1224
1225 == 3.3 E31F Temperature Probe ==
1226
1227
1228 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1229
1230
1231 Temperature sensor with 1 meters cable long
1232
1233
1234 **Built-in Temperature Sensor:**
1235
1236 * Resolution: 0.01 °C
1237 * Accuracy Tolerance : Typ ±0.3 °C
1238 * Long Term Drift: < 0.02 °C/yr
1239 * Operating Range: -40 ~~ 80 °C
1240
1241 **Built-in Humidity Sensor:**
1242
1243 * Resolution: 0.04 % RH
1244 * Accuracy Tolerance : Typ ±3 % RH
1245 * Long Term Drift: < 0.02 °C/yr
1246 * Operating Range: 0 ~~ 96 % RH
1247
1248 **External Temperature Sensor :**
1249
1250 * Resolution: 0.01 °C
1251 * Accuracy Tolerance : Typical ±0.3 °C
1252 * Long Term Drift: < 0.02 °C/yr
1253 * Operating Range: -40 ~~ 125 °C
1254
1255 **External Humidity Sensor :**
1256
1257 * Resolution: 0.04 % RH
1258 * Accuracy Tolerance : Typ ±3 % RH
1259 * Long Term Drift: < 0.02 °C/yr
1260 * Operating Range: 0 ~~ 96 % RH
1261
1262 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1263
1264
1265 External Temperature Sensor – NE117:
1266 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1267
1268 * Silica gel cable
1269 * ±0.1 °C (maximum) from –20 °C to 50 °C
1270 * ±0.2 °C (maximum) from –40 °C to 100 °C
1271 * ±0.3 °C (maximum) from –55 °C to 150 °C
1272
1273 [[image:image-20240422093011-1.png||height="349" width="350"]]
1274
1275
1276 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1277
1278
1279 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1280 * 3 wires: VCC/GND/INT
1281 * Cable Lenght: 1 meter
1282
1283 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1284
1285 LHT65-DC can be used to connect various types of external sensor. below.
1286
1287 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1288
1289 [[image:image-20240422100149-5.png||height="163" width="510"]]
1290
1291 [[image:image-20240422100217-6.png||height="141" width="507"]]
1292
1293
1294 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1295
1296
1297 * Aluminum Alloy Door Sensor
1298 * Detect Distance: ~~3cm
1299 * Cable Lenght: 1 meter
1300
1301 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1302
1303 [[image:image-20240705144054-2.png||height="423" width="343"]]
1304
1305
1306 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1307
1308
1309 External Probe:
1310
1311 * Unique NIST Certi cate for each probe
1312 * External NIST Traceable probe with unique ID
1313
1314 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1315
1316 [[image:image-20240705145640-3.png]]
1317
1318
1319 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1320
1321
1322 (((
1323 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1324 )))
1325
1326 * (((
1327 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1328 )))
1329
1330 * (((
1331 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1332 )))
1333
1334 (((
1335 There are two kinds of commands to configure LHT65N, they are:
1336 )))
1337
1338 * (((
1339 (% style="color:#4f81bd" %)**General Commands**.
1340 )))
1341
1342 (((
1343 These commands are to configure:
1344 )))
1345
1346 1. (((
1347 General system settings like: uplink interval.
1348 )))
1349 1. (((
1350 LoRaWAN protocol & radio-related commands.
1351 )))
1352
1353 (((
1354 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1355 )))
1356
1357 * (((
1358 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1359 )))
1360
1361 (((
1362 These commands are only valid for LHT65N, as below:
1363 )))
1364
1365
1366 == 4.1 Set Transmit Interval Time ==
1367
1368
1369 Feature: Change LoRaWAN End Node Transmit Interval.
1370
1371
1372 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1373
1374 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1375 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1376 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1377 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1378
1379 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1380
1381 Format: Command Code (0x01) followed by 3 bytes time value.
1382
1383 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1384
1385 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1386
1387 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1388
1389 == 4.2 Set External Sensor Mode ==
1390
1391
1392 Feature: Change External Sensor Mode.
1393
1394 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1395
1396 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1397 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1398 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1399 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1400 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1401
1402 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1403
1404 Total bytes: 2 ~~ 5 bytes
1405
1406 **Example:**
1407
1408 * 0xA201: Set external sensor type to E1
1409
1410 * 0xA209: Same as AT+EXT=9
1411
1412 * 0xA20702003c: Same as AT+SETCNT=60
1413
1414 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1415
1416
1417 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1418
1419 * First Packet after OTAA Join
1420 * Every 24 hours since the first packet.
1421
1422 PID is default set to disable (0)
1423
1424 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1425
1426 (% style="color:#4f81bd" %)**AT Command:**
1427
1428 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1429 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1430 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1431
1432 (% style="color:#4f81bd" %)**Downlink Command:**
1433
1434 * **0xA800**  **~-~->** AT+PID=0
1435 * **0xA801**     **~-~->** AT+PID=1
1436
1437 == 4.4 Set Password ==
1438
1439
1440 Feature: Set device password, max 9 digits
1441
1442 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1443
1444 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1445 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1446 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1447 123456
1448
1449 OK
1450 )))
1451 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1452
1453 (% style="color:#4f81bd" %)**Downlink Command:**
1454
1455 No downlink command for this feature.
1456
1457
1458 == 4.5 Quit AT Command ==
1459
1460
1461 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1462
1463 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1464
1465 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1466 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1467 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1468
1469 (% style="color:#4f81bd" %)**Downlink Command:**
1470
1471 No downlink command for this feature.
1472
1473
1474 == 4.6 Set to sleep mode ==
1475
1476
1477 Feature: Set device to sleep mode
1478
1479 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1480 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1481
1482 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1483
1484 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1485 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1486 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1487 Clear all stored sensor data…
1488
1489 OK
1490 )))
1491
1492 (% style="color:#4f81bd" %)**Downlink Command:**
1493
1494 * There is no downlink command to set to Sleep mode.
1495
1496 == 4.7 Set system time ==
1497
1498
1499 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1500
1501 (% style="color:#4f81bd" %)**AT Command:**
1502
1503 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1504 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1505 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1506 OK
1507
1508 Set System time to 2021-01-20 00:59:12
1509 )))
1510
1511 (% style="color:#4f81bd" %)**Downlink Command:**
1512
1513 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1514
1515
1516 == 4.8 Set Time Sync Mode ==
1517
1518
1519 (((
1520 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1521 )))
1522
1523 (((
1524 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1525 )))
1526
1527 (% style="color:#4f81bd" %)**AT Command:**
1528
1529 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1530 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1531 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1532
1533 (% style="color:#4f81bd" %)**Downlink Command:**
1534
1535 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1536 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1537
1538
1539 == 4.9 Set Time Sync Interval ==
1540
1541
1542 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1543
1544 (% style="color:#4f81bd" %)**AT Command:**
1545
1546 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1547 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1548 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1549
1550 (% style="color:#4f81bd" %)**Downlink Command:**
1551
1552 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1553
1554
1555 == 4.10 Get data ==
1556
1557
1558 Feature: Get the current sensor data.
1559
1560 (% style="color:#4f81bd" %)**AT Command:**
1561
1562 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1563 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1564
1565 == 4.11 Print data entries base on page ==
1566
1567
1568 Feature: Print the sector data from start page to stop page (max is 416 pages).
1569
1570 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1571
1572 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1573 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1574 |(% style="width:156px" %)(((
1575 AT+PDTA=1,3
1576 Print page 1 to 3
1577 )))|(% style="width:311px" %)(((
1578 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1579 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1580 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1581 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1582 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1583 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1584 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1585 8019570
1586 8019580
1587 8019590
1588 80195A0
1589 80195B0
1590 80195C0
1591 80195D0
1592 80195E0
1593 80195F0
1594
1595 OK
1596 )))
1597
1598 (% style="color:#4f81bd" %)**Downlink Command:**
1599
1600 No downlink commands for feature
1601
1602
1603 == 4.12 Print last few data entries ==
1604
1605
1606 Feature: Print the last few data entries
1607
1608 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1609
1610 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1611 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1612 |(% style="width:156px" %)(((
1613 AT+PLDTA=5
1614 Print last 5 entries
1615 )))|(% style="width:311px" %)(((
1616 Stop Tx and RTP events when read sensor data
1617 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1618 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1619 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1620 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1621 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1622 Start Tx and RTP events
1623 OK
1624 )))
1625
1626 (% style="color:#4f81bd" %)**Downlink Command:**
1627
1628 No downlink commands for feature
1629
1630
1631 == 4.13 Clear Flash Record ==
1632
1633
1634 Feature: Clear flash storage for data log feature.
1635
1636 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1637
1638 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1639 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1640 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1641 Clear all stored sensor data…
1642
1643 OK
1644 )))
1645
1646 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1647
1648 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1649
1650 == 4.14 Auto Send None-ACK messages ==
1651
1652
1653 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1654
1655 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1656
1657 The default factory setting is 0
1658
1659 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1660 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1661 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1662
1663 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1664
1665 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1666
1667 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1668
1669
1670 Feature: Set internal and external temperature sensor alarms.
1671
1672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1673 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1674 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1675
1676 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1677
1678 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1679
1680 0): Cancel
1681
1682 1): Threshold alarm
1683
1684 2): Fluctuation alarm
1685
1686 3): Sampling multiple times and uplink together
1687
1688
1689 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1690
1691 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1692
1693
1694 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1695
1696 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1697
1698 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1699
1700
1701 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1702
1703 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1704
1705 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1706
1707
1708 **3): If Alarm Mode is set to 3:**
1709
1710 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1711 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1712 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1713 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1714 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1715 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1716
1717 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1718
1719 0xA5 00 ~-~- AT+WMOD=0.
1720
1721 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1722
1723 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1724
1725 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1726
1727 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1728
1729 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1730
1731
1732 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1733
1734
1735 Feature: use downlink to get firmware version.
1736
1737 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1738
1739 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:360px" %)
1740 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1741 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1742
1743 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1744
1745 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1746
1747 (% style="color:#037691" %)**Sensor model**
1748
1749 0x0b: LHT65N
1750
1751
1752 (% style="color:#037691" %)**Firmware version**
1753
1754 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1755
1756 Example: 0x0140=V1.4.0
1757
1758
1759 (% style="color:#037691" %)** Frequency Band:**
1760
1761 * 0x01: EU868
1762 * 0x02: US915
1763 * 0x03: IN865
1764 * 0x04: AU915
1765 * 0x05: KZ865
1766 * 0x06: RU864
1767 * 0x07: AS923
1768 * 0x08: AS923-1
1769 * 0x09: AS923-2
1770 * 0xa0: AS923-3
1771
1772 (% style="color:#037691" %)**Subband**
1773
1774 value 0x00 ~~ 0x08
1775
1776 Example: 0xFF ~-~--> " NULL"
1777
1778
1779 (% style="color:#037691" %)**Battery**
1780
1781 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1782
1783 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1784
1785
1786 = 5. Battery & How to replace =
1787
1788 == 5.1 Battery Type ==
1789
1790
1791 (((
1792 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1793 )))
1794
1795 (((
1796 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1797
1798 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1799 )))
1800
1801 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1802
1803
1804 == 5.2 Replace Battery ==
1805
1806
1807 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1808
1809 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1810
1811
1812 == 5.3 Battery Life Analyze ==
1813
1814
1815 (((
1816 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1817 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1818 )))
1819
1820
1821 (((
1822 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1823 )))
1824
1825
1826 = 6. FAQ =
1827
1828 == 6.1 How to connect to LHT65N UART interface? ==
1829
1830
1831 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1832
1833 * Send AT Commands, and get output from LHT65N
1834 * Upgrade firmwre of LHT65N.
1835
1836 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1837
1838
1839 **Option of USB TTL adapter:**
1840
1841 * CP2101 USB TTL Adapter
1842 * CH340 USB TTL Adapter
1843 * FT232 USB TTL Adapter
1844
1845 **Option of Type-C Adapter:**
1846
1847 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1848
1849
1850 **Connection:**
1851
1852 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1853 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1854 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1855
1856 (((
1857
1858
1859 Connection Example:
1860
1861 [[image:1655802313617-381.png||_mstalt="293917"]]
1862
1863
1864 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1865
1866
1867 == 6.2 How to use AT Commands? ==
1868
1869
1870 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1871
1872 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1873 )))
1874
1875
1876 Input password and ATZ to activate LHT65N,As shown below:
1877
1878 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1879
1880
1881 AT Command List is as below:
1882
1883 AT+<CMD>? :  Help on <CMD>
1884
1885 AT+<CMD> :  Run <CMD>
1886
1887 AT+<CMD>=<value> :  Set the value
1888
1889 AT+<CMD>=? :  Get the value
1890
1891 AT+DEBUG:  Set more info output
1892
1893 ATZ:  Trig a reset of the MCU
1894
1895 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1896
1897 AT+DEUI:  Get or Set the Device EUI
1898
1899 AT+DADDR:  Get or Set the Device Address
1900
1901 AT+APPKEY:  Get or Set the Application Key
1902
1903 AT+NWKSKEY:  Get or Set the Network Session Key
1904
1905 AT+APPSKEY:  Get or Set the Application Session Key
1906
1907 AT+APPEUI:  Get or Set the Application EUI
1908
1909 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1910
1911 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1912
1913 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1914
1915 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1916
1917 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1918
1919 AT+RX2FQ:  Get or Set the Rx2 window frequency
1920
1921 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1922
1923 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1924
1925 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1926
1927 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1928
1929 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1930
1931 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1932
1933 AT+NWKID:  Get or Set the Network ID
1934
1935 AT+FCU:  Get or Set the Frame Counter Uplink
1936
1937 AT+FCD:  Get or Set the Frame Counter Downlink
1938
1939 AT+CLASS:  Get or Set the Device Class
1940
1941 AT+JOIN:  Join network
1942
1943 AT+NJS:  Get the join status
1944
1945 AT+SENDB:  Send hexadecimal data along with the application port
1946
1947 AT+SEND:  Send text data along with the application port
1948
1949 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1950
1951 AT+RECV:  Print last received data in raw format
1952
1953 AT+VER:  Get current image version and Frequency Band
1954
1955 AT+CFM:  Get or Set the confirmation mode (0-1)
1956
1957 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1958
1959 AT+SNR:  Get the SNR of the last received packet
1960
1961 AT+RSSI:  Get the RSSI of the last received packet
1962
1963 AT+TDC:  Get or set the application data transmission interval in ms
1964
1965 AT+PORT:  Get or set the application port
1966
1967 AT+DISAT:  Disable AT commands
1968
1969 AT+PWORD: Set password, max 9 digits
1970
1971 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1972
1973 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1974
1975 AT+PDTA:  Print the sector data from start page to stop page
1976
1977 AT+PLDTA:  Print the last few sets of data
1978
1979 AT+CLRDTA:  Clear the storage, record position back to 1st
1980
1981 AT+SLEEP:  Set sleep mode
1982
1983 AT+EXT:  Get or Set external sensor model
1984
1985 AT+BAT:  Get the current battery voltage in mV
1986
1987 AT+CFG:  Print all configurations
1988
1989 AT+WMOD:  Get or Set Work Mode
1990
1991 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1992
1993 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1994
1995 AT+SETCNT:  Set the count at present
1996
1997 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1998
1999 AT+RPL:  Get or set response level
2000
2001 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2002
2003 AT+LEAPSEC:  Get or Set Leap Second
2004
2005 AT+SYNCMOD:  Get or Set time synchronization method
2006
2007 AT+SYNCTDC:  Get or set time synchronization interval in day
2008
2009 AT+PID:  Get or set the PID
2010
2011
2012 == 6.3 How to use Downlink commands? ==
2013
2014
2015 **Downlink commands:**
2016
2017
2018 (% style="color:blue" %)**TTN:**
2019
2020 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2021
2022
2023
2024 (% style="color:blue" %)**Helium: **
2025
2026 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2027
2028
2029
2030 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2031
2032
2033 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2034
2035
2036 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2037
2038
2039
2040 (% style="color:blue" %)**AWS-IOT :**
2041
2042 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2043
2044
2045 == 6.4 How to change the uplink interval? ==
2046
2047
2048 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2049
2050
2051 == 6.5 How to upgrade firmware? ==
2052
2053
2054 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2055
2056 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
2057
2058
2059 === 6.5.1 Update firmware (Assume device already have bootloader) ===
2060
2061
2062 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2063
2064 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2065
2066
2067 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2068
2069
2070 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
2071
2072
2073 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
2074
2075 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2076
2077 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2078
2079
2080
2081 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2082
2083 Connect PC and LHT65N via USB TTL adapter .
2084
2085 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2086
2087 **Connection method:**
2088
2089 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2090
2091 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2092
2093 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2094
2095 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2096
2097 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2098
2099
2100 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2101
2102 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2103
2104
2105 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2106
2107 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2108
2109
2110 When this interface appears, it indicates that the download has been completed.
2111
2112 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2113
2114
2115 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2116
2117
2118 == 6.6 Why can't I see the datalog information ==
2119
2120
2121 ~1. The time is not aligned, and the correct query command is not used.
2122
2123 2. Decoder error, did not parse the datalog data, the data was filtered.
2124
2125
2126 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2127
2128
2129 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2130
2131 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2132
2133
2134 After there is UART Connectio, run below commands:
2135
2136 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2137
2138 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2139
2140 Example output:
2141
2142 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2143
2144
2145 = 7. Order Info =
2146
2147
2148 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2149
2150 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2151
2152 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2153 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2154 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2155 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2156 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2157 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2158 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2159 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2160
2161 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2162
2163 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2164
2165 = 8. Packing Info =
2166
2167
2168 **Package Includes**:
2169
2170 * LHT65N Temperature & Humidity Sensor x 1
2171 * Optional external sensor
2172
2173 = 9. Reference material =
2174
2175
2176 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2177
2178 = 10. FCC Warning =
2179
2180
2181 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2182
2183 (1) This device may not cause harmful interference;
2184
2185 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0