Version 267.22 by Xiaoling on 2024/01/16 15:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN (% style="display:none" %) (%%)Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino LHT65N (% style="display:none" %) (%%)Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114
115 [[image:image-20230717144740-2.png||height="391" width="267"]]
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
118 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
119 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
120 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
121 )))
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
124 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
125 )))
126 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
127
128 == 2.3 Example to join LoRaWAN network ==
129
130
131 (% class="wikigeneratedid" %)
132 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
133
134
135 (% class="wikigeneratedid" %)
136 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
137
138
139 (((
140 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
141 )))
142
143
144 === 2.3.1 Step 1: Create Device n TTN ===
145
146
147 (((
148 Create a device in TTN V3 with the OTAA keys from LHT65N.
149 )))
150
151 (((
152 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
153 )))
154
155 [[image:image-20230426083319-1.png||height="258" width="556"]]
156
157 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
158
159 Add APP EUI in the application.
160
161
162 [[image:image-20220522232916-3.png||_mstalt="430495"]]
163
164
165 [[image:image-20220522232932-4.png||_mstalt="430157"]]
166
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355
356
357 [[image:image-20220522235639-6.png||_mstalt="433212"]]
358
359
360 * External temperature= (0xF54F-65536)/100=-27.37℃
361
362 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
363
364 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
365
366 The last 2 bytes of data are meaningless
367
368 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
369
370
371
372 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
373
374
375 (((
376 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
377 )))
378
379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
380 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
381 **Size(bytes)**
382 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
383 **2**
384 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
385 **2**
386 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
387 **2**
388 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **1**
390 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
391 **4**
392 )))
393 |(% style="width:110px" %)(((
394 Value
395 )))|(% style="width:71px" %)(((
396 External temperature
397 )))|(% style="width:99px" %)(((
398 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
399 )))|(% style="width:132px" %)(((
400 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
401 )))|(% style="width:54px" %)(((
402 Status & Ext
403 )))|(% style="width:64px" %)(((
404 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
405 )))
406
407 * **Battery status & Built-in Humidity**
408
409 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
410 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
411 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
412 BAT Status
413 00(b): Ultra Low ( BAT <= 2.50v)
414 01(b): Low  (2.50v <=BAT <= 2.55v)
415 10(b): OK   (2.55v <= BAT <=2.65v)
416 11(b): Good   (BAT >= 2.65v)
417 )))|(% style="width:132px" %)(((
418 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
419 )))
420
421 * **Status & Ext Byte**
422
423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
424 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
425 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
426
427 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
428 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
429 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
430
431 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
432
433
434 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
435 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
436 **Size(bytes)**
437 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
438 **2**
439 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
440 2
441 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
442 **2**
443 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
444 1
445 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
446 2
447 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
448 2
449 )))
450 |(% style="width:110px" %)(((
451 Value
452 )))|(% style="width:71px" %)(((
453 BAT & BAT Status
454 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
455 Status & Ext
456 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
457
458 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
459
460 be used to power the external ADC sensor; user can control the power on time for this
461
462 (% style="color:blue" %)**sensor by setting:**
463
464 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
465
466 **For example:**
467
468 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
469
470
471 Or use **downlink command A2** to set the same.
472
473 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
474
475 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
476
477 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
478
479
480 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
481
482 [[image:image-20220628150714-4.png||_mstalt="431054"]]
483
484
485 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
486
487
488 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
489
490 [[image:image-20220628151005-5.png||_mstalt="429546"]]
491
492
493 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
494
495 [[image:image-20220628151056-6.png||_mstalt="431873"]]
496
497
498 3) Within range
499
500 [[image:image-20220628151143-7.png||_mstalt="431210"]]
501
502
503
504 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
505
506
507 [[image:image-20230717151328-8.png]]
508
509
510 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
511
512
513 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
514 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
515 **Size(bytes)**
516 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
517 **2**
518 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
519 2
520 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
521 **2**
522 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
523 1
524 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
525 2
526 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
527 2
528 )))
529 |(% style="width:110px" %)(((
530 Value
531 )))|(% style="width:71px" %)(((
532 BAT & BAT Status
533 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
534 Status & Ext
535 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
536
537 [[image:image-20220906102307-7.png||_mstalt="430443"]]
538
539 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
540
541 The external cable NE2 can be use for MOD4 and MOD8
542
543
544
545
546 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
547
548
549 [[image:image-20230717151245-7.png]]
550
551 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
552
553 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
554 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
555 **Size(bytes)**
556 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
557 **2**
558 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
561 **2**
562 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
563 1
564 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
565 2
566 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
567 2
568 )))
569 |(% style="width:110px" %)(((
570 Value
571 )))|(% style="width:71px" %)(((
572 BAT & BAT Status
573 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
574 Status & Ext
575 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
576
577 [[image:SHT31.png]]
578
579
580
581 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
582
583
584 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
585
586
587 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
588
589 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
590
591 In Open State, the power consumption is the same as if there is no probe
592
593 In Close state, the power consumption will be 3uA higher than normal.
594
595 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
596
597
598 Ext=4,Interrupt Sensor:
599
600 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
601 |(% style="width:101px" %)(((
602 **AT+EXT=4,1**
603 )))|(% style="width:395px" %)(((
604 **Sent uplink packet in both rising and falling interrupt**
605 )))
606 |(% style="width:101px" %)(((
607 **AT+EXT=4,2**
608 )))|(% style="width:395px" %)(((
609 **Sent uplink packet only in falling interrupt**
610 )))
611 |(% style="width:101px" %)(((
612 **AT+EXT=4,3**
613 )))|(% style="width:395px" %)(((
614 **Sent uplink packet only in rising interrupt**
615 )))
616
617 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
618 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
619 **Size(bytes)**
620 )))|=(% style="width: 55px;background-color:#D9E2F3;color:#0070C0" %)(((
621 **2**
622 )))|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
623 2
624 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
625 **2**
626 )))|=(% style="width: 55px;background-color:#D9E2F3;color:#0070C0" %)(((
627 1
628 )))|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
629 1
630 )))|=(% style="width: 55px;background-color:#D9E2F3;color:#0070C0" %)(((
631 1
632 )))|=(% style="width: 55px;background-color:#D9E2F3;color:#0070C0" %)(((
633 3
634 )))|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
635 3
636 )))
637 |(% style="width:110px" %)(((
638 Value
639 )))|(% style="width:71px" %)(((
640 BAT & BAT Status
641 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
642 Status & Ext
643 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
644
645 Trigger by falling edge:
646
647 [[image:image-20220906101145-2.png||_mstalt="428324"]]
648
649
650 Trigger by raising edge:
651
652 [[image:image-20220906101145-3.png||_mstalt="428688"]]
653
654
655
656 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
657
658
659 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
660
661
662 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
663
664 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
665
666
667 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
668
669 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
670
671
672 Ext=8, Counting Sensor ( 4 bytes):
673
674 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
675 |(% style="width:131px" %)(((
676 **AT+EXT=8,0**
677 )))|(% style="width:195px" %)(((
678 **Count at falling interrupt**
679 )))
680 |(% style="width:131px" %)(((
681 **AT+EXT=8,1**
682 )))|(% style="width:195px" %)(((
683 **Count at rising interrupt**
684 )))
685 |(% style="width:131px" %)(((
686 **AT+SETCNT=60**
687 )))|(% style="width:195px" %)(((
688 **Sent current count to 60**
689 )))
690
691 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
692 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
693 **Size(bytes)**
694 )))|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)(((
695 **2**
696 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
697 2
698 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
699 **2**
700 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
701 1
702 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
703 4
704 )))
705 |(% style="width:110px" %)(((
706 Value
707 )))|(% style="width:71px" %)(((
708 BAT & BAT Status
709 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
710 Status & Ext
711 )))|(% style="width:64px" %)Exit_count
712
713 [[image:image-20220906101320-6.png||_mstalt="428064"]]
714
715
716 (% style="color:blue" %)**A2 downlink Command:**
717
718 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
719
720 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
721
722 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
723
724 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
725
726 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
727
728
729 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
730
731
732 (((
733 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
734 )))
735
736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
737 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
738 **Size(bytes)**
739 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
740 **2**
741 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
742 **2**
743 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
744 **2**
745 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
746 **1**
747 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
748 **4**
749 )))
750 |(% style="width:110px" %)(((
751 Value
752 )))|(% style="width:71px" %)(((
753 External temperature
754 )))|(% style="width:99px" %)(((
755 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
756 )))|(% style="width:132px" %)(((
757 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
758 )))|(% style="width:54px" %)(((
759 Status & Ext
760 )))|(% style="width:64px" %)(((
761 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
762 )))
763
764 * **Battery status & Built-in Humidity**
765
766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
767 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
768 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
769 BAT Status
770 00(b): Ultra Low ( BAT <= 2.50v)
771 01(b): Low  (2.50v <=BAT <= 2.55v)
772 10(b): OK   (2.55v <= BAT <=2.65v)
773 11(b): Good   (BAT >= 2.65v)
774 )))|(% style="width:132px" %)(((
775 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
776 )))
777
778 * **Status & Ext Byte**
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
781 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
782 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
783
784 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
785 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
786 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
787
788 == 2.5 Show data on Datacake ==
789
790
791 (((
792 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
793 )))
794
795
796 (((
797 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
798 )))
799
800 (((
801 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
802 )))
803
804
805 (((
806 Add Datacake:
807 )))
808
809
810 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
811
812
813
814 Select default key as Access Key:
815
816
817 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
818
819
820 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
821
822
823 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
824
825
826 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
827
828
829 == 2.6 Datalog Feature ==
830
831
832 (((
833 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
834 )))
835
836
837 === 2.6.1 Ways to get datalog via LoRaWAN ===
838
839
840 There are two methods:
841
842 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
843
844
845 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
846
847
848 (% style="color:red" %)**Note for method 2:**
849
850 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
851 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
852
853 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
854
855
856 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
857
858
859 === 2.6.2 Unix TimeStamp ===
860
861
862 LHT65N uses Unix TimeStamp format based on
863
864
865 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
866
867
868
869 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
870
871 Below is the converter example
872
873 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
874
875
876 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
877
878
879 === 2.6.3 Set Device Time ===
880
881
882 (((
883 (% style="color:blue" %)**There are two ways to set device's time:**
884 )))
885
886 (((
887 **1.  Through LoRaWAN MAC Command (Default settings)**
888 )))
889
890 (((
891 User need to set SYNCMOD=1 to enable sync time via MAC command.
892 )))
893
894 (((
895 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
896 )))
897
898 (((
899 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
900 )))
901
902
903 (((
904 **2. Manually Set Time**
905 )))
906
907 (((
908 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
909 )))
910
911
912 === 2.6.4 Poll sensor value ===
913
914
915 User can poll sensor value based on timestamps from the server. Below is the downlink command.
916
917 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
918 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
919 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
920
921 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
922
923 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
924
925 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
926
927 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
928
929
930 === 2.6.5 Datalog Uplink payload ===
931
932
933 The Datalog poll reply uplink will use below payload format.
934
935 **Retrieval data payload:**
936
937 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
938 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
939 **Size(bytes)**
940 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
941 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
942
943 **Poll message flag & Ext:**
944
945 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
946
947 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
948
949 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
950
951 * Poll Message Flag is set to 1.
952
953 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
954
955 For example, in US915 band, the max payload for different DR is:
956
957 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
958
959 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
960
961 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
962
963 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
964
965 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
966
967
968 **Example:**
969
970 If LHT65N has below data inside Flash:
971
972 [[image:image-20230426171833-4.png]]
973
974
975 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
976
977 Where : Start time: 60065F97 = time 21/1/19 04:27:03
978
979 Stop time: 60066DA7= time 21/1/19 05:27:03
980
981
982 **LHT65N will uplink this payload.**
983
984 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
985
986
987 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
988
989 Where the first 11 bytes is for the first entry:
990
991 7FFF089801464160065F97
992
993 Ext sensor data=0x7FFF/100=327.67
994
995 Temp=0x088E/100=22.00
996
997 Hum=0x014B/10=32.6
998
999 poll message flag & Ext=0x41,means reply data,Ext=1
1000
1001 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1002
1003
1004 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1005
1006
1007 (((
1008 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1009 )))
1010
1011 (((
1012 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1013
1014
1015 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1016
1017
1018 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1019
1020 (((
1021 (% class="box infomessage" %)
1022 (((
1023 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1024
1025 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1026
1027 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1028
1029 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1030
1031 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1032
1033 **AT+LEDALARM=1** :       Enable LED visual Alarm.
1034 )))
1035 )))
1036
1037 (% style="color:#4f81bd" %)**Downlink Command:**
1038
1039 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
1040
1041 AT+CITEMP=1 : A60001
1042
1043 AT+ARTEMP=1,60  :  A70001003C
1044
1045 AT+ARTEMP=-16,60 :  A7FFF0003C
1046
1047 AT+LEDALARM=1  :  3601
1048
1049
1050 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1051
1052 Total bytes: 8 bytes
1053
1054 **Example: **AA0100010001003C
1055
1056 WMOD=01
1057
1058 CITEMP=0001
1059
1060 TEMPlow=0001
1061
1062 TEMPhigh=003C
1063
1064
1065 **DS18B20 and TMP117 Threshold Alarm**
1066
1067 **~ AT+WMOD=1,60,-10,20**
1068
1069 (% style="color:#4f81bd" %)**Downlink Command:**
1070
1071 **Example: **A5013CFC180014
1072
1073 MOD=01
1074
1075 CITEMP=3C(S)
1076
1077 TEMPlow=FC18
1078
1079 TEMPhigh=0014
1080
1081
1082 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
1083
1084 **AT+WMOD=2,60,5** 
1085
1086 (% style="color:#4f81bd" %)**Downlink Command:**
1087
1088 **Example: **A5023C05
1089
1090 MOD=02
1091
1092 CITEMP=3C(S)
1093
1094 temperature fluctuation=05
1095
1096
1097 **Sampling multiple times and uplink together**
1098
1099 **AT+WMOD=3,1,60,20,-16,32,1**   
1100
1101 Explain:
1102
1103 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1104 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1105 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1106 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1107 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1108 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1109
1110 (% style="color:#4f81bd" %)**Downlink Command:**
1111
1112 **Example: **A50301003C14FFF0002001
1113
1114 MOD=03
1115
1116 TEMP=DS18B20
1117
1118 CITEMP=003C(S)
1119
1120 Total number of acquisitions=14
1121
1122 TEMPlow=FFF0
1123
1124 TEMPhigh=0020
1125
1126 ARTEMP=01
1127
1128
1129 **Uplink payload( Fport=3)**
1130
1131 **Example: CBEA**01**0992**//0A41//**09C4**
1132
1133 BatV=CBEA
1134
1135 TEMP=DS18B20
1136
1137 Temp1=0992  ~/~/ 24.50℃
1138
1139 Temp2=0A41  ~/~/ 26.25℃
1140
1141 Temp3=09C4  ~/~/ 25.00℃
1142
1143 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1144
1145 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1146 )))
1147
1148
1149 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1150
1151
1152 (% class="box infomessage" %)
1153 (((
1154 (((
1155 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1156 )))
1157
1158 (((
1159 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1160 )))
1161
1162 (((
1163 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1164 )))
1165
1166 (((
1167 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1168 )))
1169
1170 (((
1171 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1172 )))
1173 )))
1174
1175 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1176
1177 Total bytes: 8 bytes
1178
1179 **Example:**AA0100010001003C
1180
1181 WMOD=01
1182
1183 CITEMP=0001
1184
1185 TEMPlow=0001
1186
1187 TEMPhigh=003C
1188
1189
1190 == 2.8 LED Indicator ==
1191
1192
1193 The LHT65 has a triple color LED which for easy showing different stage .
1194
1195 While user press ACT button, the LED will work as per LED status with ACT button.
1196
1197 In a normal working state:
1198
1199 * For each uplink, the BLUE LED or RED LED will blink once.
1200 BLUE LED when external sensor is connected.
1201 * RED LED when external sensor is not connected
1202 * For each success downlink, the PURPLE LED will blink once
1203
1204 == 2.9 installation ==
1205
1206
1207 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1208
1209
1210 = 3. Sensors and Accessories =
1211
1212 == 3.1 E2 Extension Cable ==
1213
1214
1215 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1216
1217
1218 **1m long breakout cable for LHT65N. Features:**
1219
1220 * (((
1221 Use for AT Command, works for both LHT52/LHT65N
1222 )))
1223 * (((
1224 Update firmware for LHT65N, works for both LHT52/LHT65N
1225 )))
1226 * (((
1227 Supports ADC mode to monitor external ADC
1228 )))
1229 * (((
1230 Supports Interrupt mode
1231 )))
1232 * (((
1233 Exposed All pins from the LHT65N Type-C connector.
1234
1235
1236
1237 )))
1238
1239 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1240
1241
1242 == 3.2 E3 Temperature Probe ==
1243
1244
1245 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1246
1247
1248 Temperature sensor with 2 meters cable long
1249
1250 * Resolution: 0.0625 °C
1251 * ±0.5°C accuracy from -10°C to +85°C
1252 * ±2°C accuracy from -55°C to +125°C
1253 * Operating Range: -40 ~~ 125 °C
1254 * Working voltage 2.35v ~~ 5v
1255
1256 == 3.3 E31F Temperature Probe ==
1257
1258
1259 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1260
1261
1262 Temperature sensor with 1 meters cable long
1263
1264
1265 **Built-in Temperature Sensor:**
1266
1267 * Resolution: 0.01 °C
1268 * Accuracy Tolerance : Typ ±0.3 °C
1269 * Long Term Drift: < 0.02 °C/yr
1270 * Operating Range: -40 ~~ 80 °C
1271
1272 **Built-in Humidity Sensor:**
1273
1274 * Resolution: 0.04 % RH
1275 * Accuracy Tolerance : Typ ±3 % RH
1276 * Long Term Drift: < 0.02 °C/yr
1277 * Operating Range: 0 ~~ 96 % RH
1278
1279 **External Temperature Sensor :**
1280
1281 * Resolution: 0.01 °C
1282 * Accuracy Tolerance : Typical ±0.3 °C
1283 * Long Term Drift: < 0.02 °C/yr
1284 * Operating Range: -40 ~~ 125 °C
1285
1286 **External Humidity Sensor :**
1287
1288 * Resolution: 0.04 % RH
1289 * Accuracy Tolerance : Typ ±3 % RH
1290 * Long Term Drift: < 0.02 °C/yr
1291 * Operating Range: 0 ~~ 96 % RH
1292
1293 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1294
1295
1296 (((
1297 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1298 )))
1299
1300 * (((
1301 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1302 )))
1303
1304 * (((
1305 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1306 )))
1307
1308 (((
1309 There are two kinds of commands to configure LHT65N, they are:
1310 )))
1311
1312 * (((
1313 (% style="color:#4f81bd" %)**General Commands**.
1314 )))
1315
1316 (((
1317 These commands are to configure:
1318 )))
1319
1320 1. (((
1321 General system settings like: uplink interval.
1322 )))
1323 1. (((
1324 LoRaWAN protocol & radio-related commands.
1325 )))
1326
1327 (((
1328 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1329 )))
1330
1331 * (((
1332 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1333 )))
1334
1335 (((
1336 These commands are only valid for LHT65N, as below:
1337 )))
1338
1339
1340 == 4.1 Set Transmit Interval Time ==
1341
1342
1343 Feature: Change LoRaWAN End Node Transmit Interval.
1344
1345
1346 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1347
1348 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1349 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1350 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1351 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1352
1353 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1354
1355 Format: Command Code (0x01) followed by 3 bytes time value.
1356
1357 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1358
1359 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1360
1361 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1362
1363 == 4.2 Set External Sensor Mode ==
1364
1365
1366 Feature: Change External Sensor Mode.
1367
1368 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1369
1370 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1371 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1372 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1373 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1374 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1375
1376 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1377
1378 Total bytes: 2 ~~ 5 bytes
1379
1380 **Example:**
1381
1382 * 0xA201: Set external sensor type to E1
1383
1384 * 0xA209: Same as AT+EXT=9
1385
1386 * 0xA20702003c: Same as AT+SETCNT=60
1387
1388 == 4.3 Enable/Disable uplink Temperature probe ID ==
1389
1390
1391 (((
1392 Feature: If PID is enabled, device will send the temperature probe ID on:
1393 )))
1394
1395 * (((
1396 First Packet after OTAA Join
1397 )))
1398 * (((
1399 Every 24 hours since the first packet.
1400 )))
1401
1402 (((
1403 PID is default set to disable (0)
1404
1405
1406 )))
1407
1408 (% style="color:#4f81bd" %)**AT Command:**
1409
1410 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1411 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1412 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1413
1414 (% style="color:#4f81bd" %)**Downlink Command:**
1415
1416 * **0xA800**  **~-~->** AT+PID=0
1417 * **0xA801**     **~-~->** AT+PID=1
1418
1419 == 4.4 Set Password ==
1420
1421
1422 Feature: Set device password, max 9 digits
1423
1424 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1425
1426 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1427 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1428 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1429 123456
1430
1431 OK
1432 )))
1433 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1434
1435 (% style="color:#4f81bd" %)**Downlink Command:**
1436
1437 No downlink command for this feature.
1438
1439
1440 == 4.5 Quit AT Command ==
1441
1442
1443 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1444
1445 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1446
1447 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1448 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1449 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1450
1451 (% style="color:#4f81bd" %)**Downlink Command:**
1452
1453 No downlink command for this feature.
1454
1455
1456 == 4.6 Set to sleep mode ==
1457
1458
1459 Feature: Set device to sleep mode
1460
1461 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1462 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1463
1464 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1465
1466 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1467 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1468 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1469 Clear all stored sensor data…
1470
1471 OK
1472 )))
1473
1474 (% style="color:#4f81bd" %)**Downlink Command:**
1475
1476 * There is no downlink command to set to Sleep mode.
1477
1478 == 4.7 Set system time ==
1479
1480
1481 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1482
1483 (% style="color:#4f81bd" %)**AT Command:**
1484
1485 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1486 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1487 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1488 OK
1489
1490 Set System time to 2021-01-20 00:59:12
1491 )))
1492
1493 (% style="color:#4f81bd" %)**Downlink Command:**
1494
1495 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1496
1497
1498 == 4.8 Set Time Sync Mode ==
1499
1500
1501 (((
1502 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1503 )))
1504
1505 (((
1506 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1507 )))
1508
1509 (% style="color:#4f81bd" %)**AT Command:**
1510
1511 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1512 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1513 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1514
1515 (% style="color:#4f81bd" %)**Downlink Command:**
1516
1517 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1518 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1519
1520
1521 == 4.9 Set Time Sync Interval ==
1522
1523
1524 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1525
1526 (% style="color:#4f81bd" %)**AT Command:**
1527
1528 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1529 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1530 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1531
1532 (% style="color:#4f81bd" %)**Downlink Command:**
1533
1534 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1535
1536
1537 == 4.10 Print data entries base on page. ==
1538
1539
1540 Feature: Print the sector data from start page to stop page (max is 416 pages).
1541
1542 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1543
1544 [[image:image-20230426164330-2.png]]
1545
1546 (% style="color:#4f81bd" %)**Downlink Command:**
1547
1548 No downlink commands for feature
1549
1550
1551 == 4.11 Print last few data entries. ==
1552
1553
1554 Feature: Print the last few data entries
1555
1556 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1557
1558 [[image:image-20230426164932-3.png]]
1559
1560 (% style="color:#4f81bd" %)**Downlink Command:**
1561
1562 No downlink commands for feature
1563
1564
1565 == 4.12 Clear Flash Record ==
1566
1567
1568 Feature: Clear flash storage for data log feature.
1569
1570 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1571
1572 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1573 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1574 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1575 Clear all stored sensor data…
1576
1577 OK
1578 )))
1579
1580 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1581
1582 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1583
1584 == 4.13 Auto Send None-ACK messages ==
1585
1586
1587 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1588
1589 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1590
1591 The default factory setting is 0
1592
1593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1594 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1595 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1596
1597 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1598
1599 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1600
1601 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1602
1603
1604 Feature: Set internal and external temperature sensor alarms.
1605
1606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1607 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1608 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1609
1610 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1611
1612 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1613
1614 0): Cancel
1615
1616 1): Threshold alarm
1617
1618 2): Fluctuation alarm
1619
1620 3): Sampling multiple times and uplink together
1621
1622
1623 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1624
1625 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1626
1627
1628 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1629
1630 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1631
1632 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1633
1634
1635 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1636
1637 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1638
1639 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1640
1641
1642 **3): If Alarm Mode is set to 3:**
1643
1644 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1645 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1646 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1647 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1648 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1649 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1650
1651 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1652
1653 0xA5 00 ~-~- AT+WMOD=0.
1654
1655 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1656
1657 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1658
1659 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1660
1661 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1662
1663 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1664
1665
1666 = 5. Battery & How to replace =
1667
1668 == 5.1 Battery Type ==
1669
1670
1671 (((
1672 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1673 )))
1674
1675 (((
1676 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1677
1678 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1679 )))
1680
1681 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1682
1683
1684 == 5.2 Replace Battery ==
1685
1686
1687 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1688
1689 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1690
1691
1692 == 5.3 Battery Life Analyze ==
1693
1694
1695 (((
1696 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1697 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1698 )))
1699
1700
1701 (((
1702 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1703 )))
1704
1705
1706 = 6. FAQ =
1707
1708 == 6.1 How to use AT Command? ==
1709
1710
1711 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1712
1713 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1714
1715
1716 **Connection:**
1717
1718 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1719 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1720 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1721
1722 (((
1723 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1724
1725 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1726 )))
1727
1728
1729 Input password and ATZ to activate LHT65N,As shown below:
1730
1731 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1732
1733
1734 AT Command List is as below:
1735
1736 AT+<CMD>? :  Help on <CMD>
1737
1738 AT+<CMD> :  Run <CMD>
1739
1740 AT+<CMD>=<value> :  Set the value
1741
1742 AT+<CMD>=? :  Get the value
1743
1744 AT+DEBUG:  Set more info output
1745
1746 ATZ:  Trig a reset of the MCU
1747
1748 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1749
1750 AT+DEUI:  Get or Set the Device EUI
1751
1752 AT+DADDR:  Get or Set the Device Address
1753
1754 AT+APPKEY:  Get or Set the Application Key
1755
1756 AT+NWKSKEY:  Get or Set the Network Session Key
1757
1758 AT+APPSKEY:  Get or Set the Application Session Key
1759
1760 AT+APPEUI:  Get or Set the Application EUI
1761
1762 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1763
1764 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1765
1766 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1767
1768 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1769
1770 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1771
1772 AT+RX2FQ:  Get or Set the Rx2 window frequency
1773
1774 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1775
1776 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1777
1778 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1779
1780 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1781
1782 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1783
1784 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1785
1786 AT+NWKID:  Get or Set the Network ID
1787
1788 AT+FCU:  Get or Set the Frame Counter Uplink
1789
1790 AT+FCD:  Get or Set the Frame Counter Downlink
1791
1792 AT+CLASS:  Get or Set the Device Class
1793
1794 AT+JOIN:  Join network
1795
1796 AT+NJS:  Get the join status
1797
1798 AT+SENDB:  Send hexadecimal data along with the application port
1799
1800 AT+SEND:  Send text data along with the application port
1801
1802 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1803
1804 AT+RECV:  Print last received data in raw format
1805
1806 AT+VER:  Get current image version and Frequency Band
1807
1808 AT+CFM:  Get or Set the confirmation mode (0-1)
1809
1810 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1811
1812 AT+SNR:  Get the SNR of the last received packet
1813
1814 AT+RSSI:  Get the RSSI of the last received packet
1815
1816 AT+TDC:  Get or set the application data transmission interval in ms
1817
1818 AT+PORT:  Get or set the application port
1819
1820 AT+DISAT:  Disable AT commands
1821
1822 AT+PWORD: Set password, max 9 digits
1823
1824 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1825
1826 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1827
1828 AT+PDTA:  Print the sector data from start page to stop page
1829
1830 AT+PLDTA:  Print the last few sets of data
1831
1832 AT+CLRDTA:  Clear the storage, record position back to 1st
1833
1834 AT+SLEEP:  Set sleep mode
1835
1836 AT+EXT:  Get or Set external sensor model
1837
1838 AT+BAT:  Get the current battery voltage in mV
1839
1840 AT+CFG:  Print all configurations
1841
1842 AT+WMOD:  Get or Set Work Mode
1843
1844 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1845
1846 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1847
1848 AT+SETCNT:  Set the count at present
1849
1850 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1851
1852 AT+RPL:  Get or set response level
1853
1854 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1855
1856 AT+LEAPSEC:  Get or Set Leap Second
1857
1858 AT+SYNCMOD:  Get or Set time synchronization method
1859
1860 AT+SYNCTDC:  Get or set time synchronization interval in day
1861
1862 AT+PID:  Get or set the PID
1863
1864
1865 == 6.2 Where to use AT commands and Downlink commands ==
1866
1867
1868 **AT commands: **
1869
1870 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1871
1872
1873 **Downlink commands:**
1874
1875
1876 (% style="color:blue" %)**TTN:**
1877
1878 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1879
1880
1881
1882 (% style="color:blue" %)**Helium: **
1883
1884 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1885
1886
1887
1888 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1889
1890
1891 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1892
1893
1894 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1895
1896
1897
1898 (% style="color:blue" %)**Aws:**
1899
1900 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1901
1902
1903 == 6.3 How to change the uplink interval? ==
1904
1905
1906 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1907
1908
1909 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1910
1911
1912 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1913
1914 [[image:1655802313617-381.png||_mstalt="293917"]]
1915
1916
1917 (((
1918 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1919 )))
1920
1921
1922 Input password and ATZ to activate LHT65N, As shown below:
1923
1924 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1925
1926
1927 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1928
1929
1930 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1931
1932
1933 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1934
1935 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1936
1937
1938
1939 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1940
1941 First connect the four lines;(% style="display:none" %)
1942
1943 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1944
1945
1946 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1947
1948 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1949
1950
1951
1952 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1953
1954 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1955
1956
1957 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1958
1959
1960 When this interface appears, it indicates that the download has been completed.
1961
1962 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1963
1964
1965 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1966
1967
1968 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1969
1970
1971 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1972
1973
1974 **UART Port of LHT65N:**
1975
1976 * (% class="mark" %)**PB0: RXD**
1977 * (% class="mark" %)**PB1: TXD**
1978 * (% class="mark" %)**GND**
1979
1980 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1981
1982
1983 (((
1984 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1985 )))
1986
1987
1988 Input password and ATZ to activate LHT65N,As shown below:
1989
1990 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1991
1992
1993 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1994
1995
1996 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1997
1998
1999 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
2000
2001 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2002
2003
2004
2005 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
2006
2007 First connect the four lines;
2008
2009 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
2010
2011 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
2012
2013
2014
2015 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2016
2017 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2018
2019
2020 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2021
2022
2023 When this interface appears, it indicates that the download has been completed.
2024
2025 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2026
2027
2028 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
2029
2030
2031 == 6.8 Why can't I see the datalog information ==
2032
2033
2034 ~1. The time is not aligned, and the correct query command is not used.
2035
2036 2. Decoder error, did not parse the datalog data, the data was filtered.
2037
2038
2039 = 7. Order Info =
2040
2041
2042 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2043
2044 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2045
2046 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2047 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2048 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2049 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2050 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2051 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2052 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2053 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2054
2055 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2056
2057 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2058
2059 = 8. Packing Info =
2060
2061
2062 **Package Includes**:
2063
2064 * LHT65N Temperature & Humidity Sensor x 1
2065 * Optional external sensor
2066
2067 = 9. Reference material =
2068
2069
2070 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2071
2072 = 10. FCC Warning =
2073
2074
2075 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2076
2077 (1) This device may not cause harmful interference;
2078
2079 (2) this device must accept any interference received, including interference that may cause undesired operation.