Version 382.3 by Xiaoling on 2025/06/10 10:19

Show last authors
1 [[image:image-20250418112554-1.png||data-xwiki-image-style-alignment="center" height="428" width="342"]]
2
3 (% style="display:none" %) (%%)
4
5
6
7 (% style="display:none" %) (%%)
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
23
24
25 (((
26 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
27 )))
28
29 (((
30 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
31 )))
32
33 (((
34 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
35 )))
36
37 (((
38 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
39 )))
40
41 (((
42 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
43 )))
44
45 (((
46 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
47 )))
48
49
50 == 1.2 Features ==
51
52
53 * LoRaWAN v1.0.3 Class A protocol
54 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
55 * AT Commands to change parameters
56 * Remote configure parameters via LoRaWAN Downlink
57 * Firmware upgradeable via program port
58 * Built-in 2400mAh battery for up to 10 years of use.
59 * Built-in Temperature & Humidity sensor
60 * Optional External Sensors
61 * Tri-color LED to indicate working status
62 * Datalog feature (Max 3328 records)
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Built-in Temperature Sensor:**
68
69 * Resolution: 0.01 °C
70 * Accuracy Tolerance : Typ ±0.3 °C
71 * Long Term Drift: < 0.02 °C/yr
72 * Operating Range: -40 ~~ 85 °C
73
74 (% style="color:#037691" %)**Built-in Humidity Sensor:**
75
76 * Resolution: 0.04 %RH
77 * Accuracy Tolerance : Typ ±3 %RH
78 * Long Term Drift: < 0.25 RH/yr
79 * Operating Range: 0 ~~ 96 %RH
80
81 (% style="color:#037691" %)**External Temperature Sensor:**
82
83 * Resolution: 0.0625 °C
84 * ±0.5°C accuracy from -10°C to +85°C
85 * ±2°C accuracy from -55°C to +125°C
86 * Operating Range: -55 °C ~~ 125 °C
87
88 == 1.4 Model Difference ==
89
90
91 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
92
93 (% style="color:#037691" %)**For antenna design: **
94
95 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
96 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
97
98 [[image:image-20250422095731-2.png]]
99
100
101 (% style="color:#037691" %)**For enclosure dimensions:**
102
103 * **LHT65N**
104
105 [[image:image-20250422165135-1.png]]
106
107
108
109 * **LHT65S (Unit: mm)**
110
111 [[image:image-20250422165216-2.png]]
112
113
114 = 2. Connect LHT65N/S to IoT Server =
115
116 == 2.1 How does LHT65N/S work? ==
117
118
119 (((
120 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
121 )))
122
123 (((
124 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
125 )))
126
127
128 == 2.2 How to Activate LHT65N/S? ==
129
130
131 (((
132 The LHT65N/S has two working modes:
133 )))
134
135 * (((
136 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
137 )))
138 * (((
139 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
140 )))
141
142 (((
143 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
144 )))
145
146 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
147
148 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
149 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
150 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521886707-137.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
151 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
152 )))
153 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521908790-585.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
154 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
155 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
156 )))
157 |(% style="background-color:#f2f2f2; width:167px" %)[[image:1749521952296-446.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
158
159 == 2.3 Example to join LoRaWAN network ==
160
161
162 (% class="wikigeneratedid" %)
163 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
164
165 (% class="wikigeneratedid" %)
166 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
167
168
169 (((
170 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
171 )))
172
173
174 === 2.3.1 Step 1: Create Device on TTN ===
175
176
177 (((
178 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
179 )))
180
181 (((
182 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
183 )))
184
185 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
186
187
188 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
189
190 (% style="color:blue" %)**1. Create application**
191
192
193 [[image:image-20250424091200-1.jpeg]]
194
195
196
197
198 [[image:image-20250424091207-2.jpeg]]
199
200
201 (% style="color:blue" %)**2. Add devices to the created Application.**
202
203 [[image:image-20250424091404-3.jpeg]]
204
205
206
207 [[image:image-20250424091412-4.jpeg]]
208
209
210 (% style="color:blue" %)**3. Enter end device specifics manually.**
211
212
213 [[image:image-20250424091458-5.jpeg]]
214
215 [[image:image-20250424091509-6.jpeg]]
216
217
218
219 === 2.3.2 Step 2: Add decoder ===
220
221
222 In TTN, user can add a custom payload so it shows friendly reading.
223
224 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
225
226 Below is TTN screen shot
227
228 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
229
230 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
231
232
233 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
234
235
236 (((
237 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
238 )))
239
240 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
241
242
243 == 2.4 Uplink Payload (Fport~=2) ==
244
245
246 (((
247 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
248 )))
249
250 (((
251 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
252 )))
253
254 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
255 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
256 **Size(bytes)**
257 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
258 **2**
259 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
260 **2**
261 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
262 **2**
263 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
264 **1**
265 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
266 **4**
267 )))
268 |(% style="width:97px" %)(((
269 Value
270 )))|(% style="width:39px" %)(((
271 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
272 )))|(% style="width:100px" %)(((
273 (((
274 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
275 )))
276 )))|(% style="width:77px" %)(((
277 (((
278 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
279 )))
280 )))|(% style="width:47px" %)(((
281 [[Ext>>||anchor="H2.4.5Ext23"]] #
282 )))|(% style="width:51px" %)(((
283 [[Ext value>>||anchor="H2.4.6Extvalue"]]
284 )))
285
286 * The First 6 bytes: has fix meanings for every LHT65N/S.
287
288 * The 7th byte (EXT #): defines the external sensor model.
289
290 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
291
292 === 2.4.1 Decoder in TTN V3 ===
293
294
295 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
296
297 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
298
299 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
300
301
302 === 2.4.2 BAT-Battery Info ===
303
304
305 These two bytes of BAT include the battery state and the actually voltage.
306
307 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
308 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
309 **Bit(bit)**
310 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
311 |(% style="width:66px" %)(((
312 Value
313 )))|(% style="width:250px" %)(((
314 BAT Status
315 00(b): Ultra Low ( BAT <= 2.50v)
316 01(b): Low (2.50v <=BAT <= 2.55v)
317 10(b): OK (2.55v <= BAT <=2.65v)
318 11(b): Good (BAT >= 2.65v)
319 )))|(% style="width:152px" %)Actually BAT voltage
320
321 **(b)stands for binary**
322
323
324 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
325
326
327 Check the battery voltage for LHT65N/S.
328
329 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
330
331 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
332
333 === 2.4.3 Built-in Temperature ===
334
335
336 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
337
338 * Temperature:  0x0ABB/100=27.47℃
339
340 [[image:image-20220522235639-3.png||_mstalt="432120"]]
341
342 * Temperature:  (0xF5C6-65536)/100=-26.18℃
343
344 === 2.4.4 Built-in Humidity ===
345
346
347 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
348
349 * Humidity:    0x025C/10=60.4%
350
351 === 2.4.5 Ext # ===
352
353
354 Bytes for External Sensor:
355
356 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
357 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
358 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
359 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
360 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
361 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
362 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
363 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
364 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
365 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
366
367 === 2.4.6 Ext value ===
368
369 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
370
371
372 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
373 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
374 **Size(bytes)**
375 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
376 **2**
377 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
378 2
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
382 1
383 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
384 2
385 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
386 2
387 )))
388 |(% style="width:110px" %)(((
389 Value
390 )))|(% style="width:71px" %)(((
391 BAT & BAT Status
392 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
393 Status & Ext
394 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
395
396 [[image:image-20220522235639-5.png||_mstalt="432848"]]
397
398
399 * DS18B20 temp=0x0ADD/100=27.81℃
400
401 The last 2 bytes of data are meaningless
402
403 [[image:image-20220522235639-6.png||_mstalt="433212"]]
404
405
406 * External temperature= (0xF54F-65536)/100=-27.37℃
407
408 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
409
410 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
411
412 The last 2 bytes of data are meaningless
413
414 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
415
416
417 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
418
419
420 (((
421 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
422 )))
423
424 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
425 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
426 **Size(bytes)**
427 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
428 **2**
429 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
430 **2**
431 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
432 **2**
433 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
434 **1**
435 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
436 **4**
437 )))
438 |(% style="width:110px" %)(((
439 Value
440 )))|(% style="width:71px" %)(((
441 External temperature
442 )))|(% style="width:99px" %)(((
443 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
444 )))|(% style="width:132px" %)(((
445 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
446 )))|(% style="width:54px" %)(((
447 Status & Ext
448 )))|(% style="width:64px" %)(((
449 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
450 )))
451
452 * **Battery status & Built-in Humidity**
453
454 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
455 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
456 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
457 BAT Status
458 00(b): Ultra Low ( BAT <= 2.50v)
459 01(b): Low  (2.50v <=BAT <= 2.55v)
460 10(b): OK   (2.55v <= BAT <=2.65v)
461 11(b): Good   (BAT >= 2.65v)
462 )))|(% style="width:132px" %)(((
463 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
464 )))
465
466 * **Status & Ext Byte**
467
468 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
469 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
470 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
471
472 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
473 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
474 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
475
476 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
477
478
479 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
480 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
481 **Size(bytes)**
482 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
483 **2**
484 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
485 2
486 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
487 **2**
488 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
489 1
490 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
491 2
492 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
493 2
494 )))
495 |(% style="width:110px" %)(((
496 Value
497 )))|(% style="width:71px" %)(((
498 BAT & BAT Status
499 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
500 Status & Ext
501 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
502
503 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
504
505 be used to power the external ADC sensor; user can control the power on time for this
506
507 (% style="color:blue" %)**sensor by setting:**
508
509 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
510
511 **For example:**
512
513 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
514
515
516 Or use **downlink command A2** to set the same.
517
518 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
519
520 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
521
522 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
523
524
525 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
526
527 [[image:image-20220628150714-4.png||_mstalt="431054"]]
528
529
530 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
531
532
533 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
534
535 [[image:image-20220628151005-5.png||_mstalt="429546"]]
536
537
538 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
539
540 [[image:image-20220628151056-6.png||_mstalt="431873"]]
541
542
543 3) Within range
544
545 [[image:image-20220628151143-7.png||_mstalt="431210"]]
546
547
548 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
549
550
551 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
552
553 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
554
555 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
556 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
557 **Size(bytes)**
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 **2**
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
563 **2**
564 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
565 1
566 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
567 2
568 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
569 2
570 )))
571 |(% style="width:110px" %)(((
572 Value
573 )))|(% style="width:71px" %)(((
574 BAT & BAT Status
575 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
576 Status & Ext
577 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
578
579 [[image:image-20220906102307-7.png||_mstalt="430443"]]
580
581 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
582
583 The external cable NE2 can be use for MOD4 and MOD8
584
585
586 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
587
588
589 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
590
591 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
592
593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
594 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
595 **Size(bytes)**
596 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
597 **2**
598 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
599 2
600 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
601 **2**
602 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
603 1
604 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
605 2
606 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
607 2
608 )))
609 |(% style="width:110px" %)(((
610 Value
611 )))|(% style="width:71px" %)(((
612 BAT & BAT Status
613 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
614 Status & Ext
615 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
616
617 [[image:SHT31.png||_mstalt="104715"]]
618
619
620 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
621
622
623 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
624
625
626 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
627
628 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
629
630 In Open State, the power consumption is the same as if there is no probe
631
632 In Close state, the power consumption will be 3uA higher than normal.
633
634 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
635
636
637 Ext=4,Interrupt Sensor:
638
639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
640 |(% style="width:101px" %)(((
641 **AT+EXT=4,1**
642 )))|(% style="width:395px" %)(((
643 **Sent uplink packet in both rising and falling interrupt**
644 )))
645 |(% style="width:101px" %)(((
646 **AT+EXT=4,2**
647 )))|(% style="width:395px" %)(((
648 **Sent uplink packet only in falling interrupt**
649 )))
650 |(% style="width:101px" %)(((
651 **AT+EXT=4,3**
652 )))|(% style="width:395px" %)(((
653 **Sent uplink packet only in rising interrupt**
654 )))
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
658 **Size(bytes)**
659 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
660 **2**
661 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
662 2
663 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
664 **2**
665 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
666 1
667 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
668 1
669 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
670 2
671 )))
672 |(% style="width:110px" %)(((
673 Value
674 )))|(% style="width:71px" %)(((
675 BAT & BAT Status
676 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
677 Status & Ext
678 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
679
680 Trigger by falling edge:
681
682 [[image:image-20220906101145-2.png||_mstalt="428324"]]
683
684
685 Trigger by raising edge:
686
687 [[image:image-20220906101145-3.png||_mstalt="428688"]]
688
689
690 (% style="color:blue" %)**BAT & BAT Status :**
691
692 Check the battery voltage.
693
694 Ex1: 0x0B45 = 2885mV
695
696 Ex2: 0x0B49 = 2889mV
697
698
699 (% style="color:blue" %)**TempC_SHT :**
700
701 The temperature detected by the built-in temperature and humidity sensor SHT31.
702
703 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
704
705 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
706
707 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
708
709
710 (% style="color:blue" %)**Hum_SHT :**
711
712 The humidity detected by the built-in temperature and humidity sensor SHT31.
713
714 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
715
716
717 (% style="color:blue" %)**Status & Ext :**
718
719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
720 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
721 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
722
723 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
724 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
725 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
726
727 (% style="color:blue" %)**Exti_pin_level :**
728
729 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
730 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
731
732 (% style="color:blue" %)**Exti_status :**
733
734 Determines whether the uplink packet is generated by an interrupt.
735
736 1: Interrupt packet
737
738 0: Normal TDC uplink packet
739
740
741 (% style="color:blue" %)**senseless :**
742
743 Reserved position, meaningless. The value is fixed to 0x7FFF.
744
745
746 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
747
748
749 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
750
751
752 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
753
754 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
755
756
757 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
758
759 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
760
761
762 Ext=8, Counting Sensor ( 4 bytes):
763
764 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
765 |(% style="width:131px" %)(((
766 **AT+EXT=8,0**
767 )))|(% style="width:195px" %)(((
768 **Count at falling interrupt**
769 )))
770 |(% style="width:131px" %)(((
771 **AT+EXT=8,1**
772 )))|(% style="width:195px" %)(((
773 **Count at rising interrupt**
774 )))
775 |(% style="width:131px" %)(((
776 **AT+SETCNT=60**
777 )))|(% style="width:195px" %)(((
778 **Sent current count to 60**
779 )))
780
781 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
782 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
783 **Size(bytes)**
784 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
785 **2**
786 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
787 2
788 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
789 **2**
790 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
791 1
792 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
793 4
794 )))
795 |(% style="width:110px" %)(((
796 Value
797 )))|(% style="width:71px" %)(((
798 BAT & BAT Status
799 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
800 Status & Ext
801 )))|(% style="width:64px" %)Exit_count
802
803 [[image:image-20220906101320-6.png||_mstalt="428064"]]
804
805
806 (% style="color:blue" %)**A2 downlink Command:**
807
808 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
809
810 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
811
812 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
813
814 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
815
816 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
817
818
819 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
820
821
822 (((
823 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
824 )))
825
826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
827 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
828 **Size(bytes)**
829 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
830 **2**
831 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
832 **2**
833 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
834 **2**
835 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
836 **1**
837 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
838 **4**
839 )))
840 |(% style="width:110px" %)(((
841 Value
842 )))|(% style="width:71px" %)(((
843 External temperature
844 )))|(% style="width:99px" %)(((
845 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
846 )))|(% style="width:132px" %)(((
847 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
848 )))|(% style="width:54px" %)(((
849 Status & Ext
850 )))|(% style="width:64px" %)(((
851 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
852 )))
853
854 * **Battery status & Built-in Humidity**
855
856 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
857 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
858 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
859 BAT Status
860 00(b): Ultra Low ( BAT <= 2.50v)
861 01(b): Low  (2.50v <=BAT <= 2.55v)
862 10(b): OK   (2.55v <= BAT <=2.65v)
863 11(b): Good   (BAT >= 2.65v)
864 )))|(% style="width:132px" %)(((
865 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
866 )))
867
868 * **Status & Ext Byte**
869
870 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
871 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
872 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
873
874 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
875 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
876 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
877
878 == 2.5 Show data on Datacake ==
879
880
881 (((
882 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
883 )))
884
885
886 (((
887 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
888 )))
889
890 (((
891 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
892 )))
893
894
895 (((
896 Add Datacake:
897 )))
898
899 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
900
901
902 Select default key as Access Key:
903
904
905 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
906
907
908 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
909
910 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
911
912
913 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
914
915
916 == 2.6 Datalog Feature ==
917
918
919 (((
920 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
921 )))
922
923
924 === 2.6.1 Ways to get datalog via LoRaWAN ===
925
926
927 There are two methods:
928
929 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
930
931
932 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
933
934
935 (% style="color:red" %)**Note for method 2:**
936
937 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
938 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
939
940 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
941
942 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
943
944
945 === 2.6.2 Unix TimeStamp ===
946
947
948 LHT65N/S uses Unix TimeStamp format based on
949
950 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
951
952
953 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
954
955 Below is the converter example
956
957 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
958
959
960 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
961
962
963 === 2.6.3 Set Device Time ===
964
965
966 (((
967 (% style="color:blue" %)**There are two ways to set device's time:**
968 )))
969
970 (((
971 **1.  Through LoRaWAN MAC Command (Default settings)**
972 )))
973
974 (((
975 User need to set SYNCMOD=1 to enable sync time via MAC command.
976 )))
977
978 (((
979 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
980 )))
981
982 (((
983 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
984 )))
985
986
987 (((
988 **2. Manually Set Time**
989 )))
990
991 (((
992 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
993 )))
994
995
996 === 2.6.4 Poll sensor value ===
997
998
999 User can poll sensor value based on timestamps from the server. Below is the downlink command.
1000
1001 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
1002 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
1003 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
1004
1005 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1006
1007 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1008
1009 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1010
1011 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1012
1013
1014 === 2.6.5 Datalog Uplink payload ===
1015
1016
1017 The Datalog poll reply uplink will use below payload format.
1018
1019 **Retrieval data payload:**
1020
1021 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1022 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1023 **Size(bytes)**
1024 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1025 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1026
1027 **Poll message flag & Ext:**
1028
1029 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1030 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1031 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1032
1033 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1034
1035 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1036
1037 * Poll Message Flag is set to 1.
1038
1039 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1040
1041 For example, in US915 band, the max payload for different DR is:
1042
1043 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1044
1045 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1046
1047 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1048
1049 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1050
1051 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1052
1053
1054 **Example:**
1055
1056 If LHT65N/S has below data inside Flash:
1057
1058 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1059 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1060 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1061 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1062 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1063 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1064 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1065 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1066 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1067 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1068
1069 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1070
1071 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1072
1073 Stop time: 60066DA7= time 21/1/19 05:27:03
1074
1075
1076 **LHT65N/S will uplink this payload.**
1077
1078 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1079
1080
1081 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1082
1083 Where the first 11 bytes is for the first entry:
1084
1085 7FFF089801464160065F97
1086
1087 Ext sensor data=0x7FFF/100=327.67
1088
1089 Temp=0x088E/100=22.00
1090
1091 Hum=0x014B/10=32.6
1092
1093 poll message flag & Ext=0x41,means reply data,Ext=1
1094
1095 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1096
1097
1098 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1099
1100
1101 (((
1102 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1103 )))
1104
1105 (((
1106 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1107
1108
1109 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1110
1111 (((
1112 (% class="box infomessage" %)
1113 (((
1114 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1115 )))
1116 )))
1117
1118 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1119
1120 **~ AT+WMOD=1,60,-10,20**
1121
1122
1123 Explain:
1124
1125 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1126 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1127 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1128
1129 (% style="color:#4f81bd" %)**Downlink Command:**
1130
1131 **Example: **A5013CFC1807D0
1132
1133 MOD=01
1134
1135 CITEMP=3C(S) =60(S)
1136
1137 TEMPlow=FC18 = -1000/100=-10(℃)
1138
1139 TEMPhigh=07D0=2000/100=20(℃)
1140
1141
1142 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1143
1144 **AT+WMOD=2,60,5** 
1145
1146 Explain:
1147
1148 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1149 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1150 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1151
1152 (% style="color:#4f81bd" %)**Downlink Command**
1153
1154 **Example: **A5023C05
1155
1156 MOD=02
1157
1158 CITEMP=3C(S)=60(S)
1159
1160 temperature fluctuation=05(℃)
1161
1162
1163 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1164
1165 **AT+WMOD=3,1,60,20,-16,32,1**   
1166
1167 Explain:
1168
1169 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1170 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1171 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1172 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1173 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1174 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1175
1176 (% style="color:#4f81bd" %)**Downlink Command:**
1177
1178 **Example: **A50301003C14FFF0002001
1179
1180 MOD=03
1181
1182 TEMP=DS18B20
1183
1184 CITEMP=003C(S)=60(S)
1185
1186 Total number of acquisitions=14
1187
1188 TEMPlow=FFF0=-16(℃)
1189
1190 TEMPhigh=0020=20(℃)
1191
1192 ARTEMP=01
1193
1194
1195 **Uplink payload( Fport=3)**
1196
1197 **Example: CBEA**01**0992**//0A41//**09C4**
1198
1199 BatV=CBEA
1200
1201 TEMP=DS18B20
1202
1203 Temp1=0992  ~/~/ 24.50℃
1204
1205 Temp2=0A41  ~/~/ 26.25℃
1206
1207 Temp3=09C4  ~/~/ 25.00℃
1208
1209 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1210
1211 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1212 )))
1213
1214
1215 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1216
1217
1218 (% class="box infomessage" %)
1219 (((
1220 (((
1221 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1222 )))
1223
1224 (((
1225 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1226 )))
1227
1228 (((
1229 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1230 )))
1231
1232 (((
1233 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1234 )))
1235
1236 (((
1237 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1238 )))
1239 )))
1240
1241 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1242
1243 Total bytes: 8 bytes
1244
1245 **Example:**AA0100010001003C
1246
1247 WMOD=01
1248
1249 CITEMP=0001
1250
1251 TEMPlow=0001
1252
1253 TEMPhigh=003C
1254
1255
1256 == 2.8 LED Indicator ==
1257
1258
1259 The LHT65 has a triple color LED which for easy showing different stage .
1260
1261 While user press ACT button, the LED will work as per LED status with ACT button.
1262
1263 In a normal working state:
1264
1265 * For each uplink, the BLUE LED or RED LED will blink once.
1266 BLUE LED when external sensor is connected.
1267 * RED LED when external sensor is not connected
1268 * For each success downlink, the PURPLE LED will blink once
1269
1270 == 2.9 installation ==
1271
1272
1273 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1274
1275
1276 = 3. Sensors and Accessories =
1277
1278 == 3.1 E2 Extension Cable ==
1279
1280
1281 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1282
1283
1284 **1m long breakout cable for LHT65N/S. Features:**
1285
1286 * (((
1287 Use for AT Command, works for both LHT52, LHT65N/S
1288 )))
1289 * (((
1290 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1291 )))
1292 * (((
1293 Supports ADC mode to monitor external ADC
1294 )))
1295 * (((
1296 Supports Interrupt mode
1297 )))
1298 * (((
1299 Exposed All pins from the LHT65N/S Type-C connector.
1300
1301
1302
1303 )))
1304
1305 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1306
1307
1308 == 3.2 E3 Temperature Probe ==
1309
1310
1311 [[image:image-20220515080154-4.png||alt="photo-20220515080154-4.png" _mstalt="434681" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1312
1313
1314 Temperature sensor with 2 meters cable long
1315
1316 * Resolution: 0.0625 °C
1317 * ±0.5°C accuracy from -10°C to +85°C
1318 * ±2°C accuracy from -55°C to +125°C
1319 * Operating Range: -40 ~~ 125 °C
1320 * Working voltage 2.35v ~~ 5v
1321
1322 == 3.3 E31F Temperature Probe ==
1323
1324
1325 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1326
1327
1328 Temperature sensor with 1 meters cable long
1329
1330
1331 **Built-in Temperature Sensor:**
1332
1333 * Resolution: 0.01 °C
1334 * Accuracy Tolerance : Typ ±0.3 °C
1335 * Long Term Drift: < 0.02 °C/yr
1336 * Operating Range: -40 ~~ 80 °C
1337
1338 **Built-in Humidity Sensor:**
1339
1340 * Resolution: 0.04 % RH
1341 * Accuracy Tolerance : Typ ±3 % RH
1342 * Long Term Drift: < 0.25 RH/yr
1343 * Operating Range: 0 ~~ 96 % RH
1344
1345 **External Temperature Sensor :**
1346
1347 * Resolution: 0.01 °C
1348 * Accuracy Tolerance : Typical ±0.3 °C
1349 * Long Term Drift: < 0.02 °C/yr
1350 * Operating Range: -40 ~~ 125 °C
1351
1352 **External Humidity Sensor :**
1353
1354 * Resolution: 0.04 % RH
1355 * Accuracy Tolerance : Typ ±3 % RH
1356 * Long Term Drift: < 0.25 RH/yr
1357 * Operating Range: 0 ~~ 96 % RH
1358
1359 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1360
1361
1362 External Temperature Sensor – NE117:
1363 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1364
1365 * Silica gel cable
1366 * ±0.1 °C (maximum) from –20 °C to 50 °C
1367 * ±0.2 °C (maximum) from –40 °C to 100 °C
1368 * ±0.3 °C (maximum) from –55 °C to 150 °C
1369
1370 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1371
1372
1373 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1374
1375
1376 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1377 * 3 wires: VCC/GND/INT
1378 * Cable Lenght: 1 meter
1379
1380 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1381
1382 LHT65N/S-DC can be used to connect various types of external sensor. below.
1383
1384 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1385
1386 [[image:image-20240422100149-5.png||height="163" width="510"]]
1387
1388 [[image:image-20240422100217-6.png||height="141" width="507"]]
1389
1390
1391 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1392
1393
1394 * Aluminum Alloy Door Sensor
1395 * Detect Distance: ~~3cm
1396 * Cable Lenght: 1 meter
1397
1398 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1399
1400 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1401
1402
1403 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1404
1405
1406 (((
1407 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1408 )))
1409
1410 * (((
1411 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1412 )))
1413
1414 * (((
1415 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1416 )))
1417
1418 (((
1419 There are two kinds of commands to configure LHT65N/S, they are:
1420 )))
1421
1422 * (((
1423 (% style="color:#4f81bd" %)**General Commands**.
1424 )))
1425
1426 (((
1427 These commands are to configure:
1428 )))
1429
1430 1. (((
1431 General system settings like: uplink interval.
1432 )))
1433 1. (((
1434 LoRaWAN protocol & radio-related commands.
1435 )))
1436
1437 (((
1438 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1439 )))
1440
1441 * (((
1442 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1443 )))
1444
1445 (((
1446 These commands are only valid for LHT65N/S, as below:
1447 )))
1448
1449
1450
1451 == 4.1 Set Transmit Interval Time ==
1452
1453
1454 Feature: Change LoRaWAN End Node Transmit Interval.
1455
1456
1457 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1458
1459 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1460 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1461 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1462 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1463
1464 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1465
1466 Format: Command Code (0x01) followed by 3 bytes time value.
1467
1468 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1469
1470 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1471
1472 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1473
1474 == 4.2 Set External Sensor Mode ==
1475
1476
1477 Feature: Change External Sensor Mode.
1478
1479 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1480
1481 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1482 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1483 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1484 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1485 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1486 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1487 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1488 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1489 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1490 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1491 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1492
1493 **Response**
1494
1495 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1496
1497 Total bytes: 2 ~~ 5 bytes
1498
1499 **Example:**
1500
1501 * 0xA201: Set external sensor type to E1
1502
1503 * 0xA209: Same as AT+EXT=9
1504
1505 * 0xA20702003c: Same as AT+SETCNT=60
1506
1507 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1508
1509
1510 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1511
1512 * First Packet after OTAA Join
1513 * Every 24 hours since the first packet.
1514
1515 PID is default set to disable (0)
1516
1517 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1518
1519 (% style="color:#4f81bd" %)**AT Command:**
1520
1521 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1522 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1523 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1524
1525 (% style="color:#4f81bd" %)**Downlink Command:**
1526
1527 * **0xA800**  **~-~->** AT+PID=0
1528 * **0xA801**     **~-~->** AT+PID=1
1529
1530 == 4.4 Set Password ==
1531
1532
1533 Feature: Set device password, max 9 digits
1534
1535 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1536
1537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1538 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1539 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1540 123456
1541
1542 OK
1543 )))
1544 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1545
1546 (% style="color:#4f81bd" %)**Downlink Command:**
1547
1548 No downlink command for this feature.
1549
1550
1551 == 4.5 Quit AT Command ==
1552
1553
1554 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1555
1556 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1557
1558 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1559 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1560 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1561
1562 (% style="color:#4f81bd" %)**Downlink Command:**
1563
1564 No downlink command for this feature.
1565
1566
1567 == 4.6 Set to sleep mode ==
1568
1569
1570 Feature: Set device to sleep mode
1571
1572 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1573 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1574
1575 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1576
1577 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1578 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1579 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1580 Clear all stored sensor data…
1581
1582 OK
1583 )))
1584
1585 (% style="color:#4f81bd" %)**Downlink Command:**
1586
1587 * There is no downlink command to set to Sleep mode.
1588
1589 == 4.7 Set system time ==
1590
1591
1592 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1593
1594 (% style="color:#4f81bd" %)**AT Command:**
1595
1596 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1597 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1598 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1599 OK
1600
1601 Set System time to 2021-01-20 00:59:12
1602 )))
1603
1604 (% style="color:#4f81bd" %)**Downlink Command:**
1605
1606 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1607
1608
1609 == 4.8 Set Time Sync Mode ==
1610
1611
1612 (((
1613 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1614 )))
1615
1616 (((
1617 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1618 )))
1619
1620 (% style="color:#4f81bd" %)**AT Command:**
1621
1622 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1623 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1624 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1625
1626 (% style="color:#4f81bd" %)**Downlink Command:**
1627
1628 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1629 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1630
1631
1632 == 4.9 Set Time Sync Interval ==
1633
1634
1635 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1636
1637 (% style="color:#4f81bd" %)**AT Command:**
1638
1639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1640 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1641 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1642
1643 (% style="color:#4f81bd" %)**Downlink Command:**
1644
1645 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1646
1647
1648 == 4.10 Get data ==
1649
1650
1651 Feature: Get the current sensor data.
1652
1653 (% style="color:#4f81bd" %)**AT Command:**
1654
1655 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1656 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1657
1658 == 4.11 Print data entries base on page ==
1659
1660
1661 Feature: Print the sector data from start page to stop page (max is 416 pages).
1662
1663 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1664
1665 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1666 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1667 |(% style="width:156px" %)(((
1668 AT+PDTA=1,3
1669 Print page 1 to 3
1670 )))|(% style="width:311px" %)(((
1671 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1672 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1673 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1674 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1675 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1676 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1677 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1678 8019570
1679 8019580
1680 8019590
1681 80195A0
1682 80195B0
1683 80195C0
1684 80195D0
1685 80195E0
1686 80195F0
1687
1688 OK
1689 )))
1690
1691 (% style="color:#4f81bd" %)**Downlink Command:**
1692
1693 No downlink commands for feature
1694
1695
1696 == 4.12 Print last few data entries ==
1697
1698
1699 Feature: Print the last few data entries
1700
1701 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1702
1703 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1704 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1705 |(% style="width:156px" %)(((
1706 AT+PLDTA=5
1707 Print last 5 entries
1708 )))|(% style="width:311px" %)(((
1709 Stop Tx and RTP events when read sensor data
1710 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1711 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1712 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1713 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1714 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1715 Start Tx and RTP events
1716 OK
1717 )))
1718
1719 (% style="color:#4f81bd" %)**Downlink Command:**
1720
1721 No downlink commands for feature
1722
1723
1724 == 4.13 Clear Flash Record ==
1725
1726
1727 Feature: Clear flash storage for data log feature.
1728
1729 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1730
1731 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1732 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1733 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1734 Clear all stored sensor data…
1735
1736 OK
1737 )))
1738
1739 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1740
1741 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1742
1743 == 4.14 Auto Send None-ACK messages ==
1744
1745
1746 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1747
1748 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1749
1750 The default factory setting is 0
1751
1752 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1753 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1754 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1755
1756 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1757
1758 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1759
1760 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1761
1762
1763 Feature: Set internal and external temperature sensor alarms.
1764
1765 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1766 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1767 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1768
1769 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1770
1771 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1772
1773 0): Cancel
1774
1775 1): Threshold alarm
1776
1777 2): Fluctuation alarm
1778
1779 3): Sampling multiple times and uplink together
1780
1781
1782 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1783
1784 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1785
1786
1787 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1788
1789 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1790
1791 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1792
1793
1794 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1795
1796 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1797
1798 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1799
1800
1801 **3): If Alarm Mode is set to 3:**
1802
1803 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1804 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1805 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1806 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1807 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1808 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1809
1810 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1811
1812 0xA5 00 ~-~- AT+WMOD=0.
1813
1814 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1815
1816 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1817
1818 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1819
1820 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1821
1822 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1823
1824
1825 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1826
1827
1828 Feature: use downlink to get firmware version.
1829
1830 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1831
1832 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1833 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1834 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1835
1836 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1837
1838 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1839
1840 (% style="color:#037691" %)**Sensor model**
1841
1842 0x0b: LHT65N/S
1843
1844
1845 (% style="color:#037691" %)**Firmware version**
1846
1847 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1848
1849 Example: 0x0140=V1.4.0
1850
1851
1852 (% style="color:#037691" %)** Frequency Band:**
1853
1854 * 0x01: EU868
1855 * 0x02: US915
1856 * 0x03: IN865
1857 * 0x04: AU915
1858 * 0x05: KZ865
1859 * 0x06: RU864
1860 * 0x07: AS923
1861 * 0x08: AS923-1
1862 * 0x09: AS923-2
1863 * 0xa0: AS923-3
1864
1865 (% style="color:#037691" %)**Subband**
1866
1867 value 0x00 ~~ 0x08
1868
1869 Example: 0xFF ~-~--> " NULL"
1870
1871
1872 (% style="color:#037691" %)**Battery**
1873
1874 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1875
1876 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1877
1878
1879 == 4.17 Setting LEDAlarm ==
1880
1881 Feature: Setting LEDAlarm
1882
1883 The default factory setting is 0
1884
1885 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1886 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1887 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1888
1889 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1890
1891 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1892
1893 = 5. Battery & How to replace =
1894
1895 == 5.1 Battery Type ==
1896
1897
1898 (((
1899 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1900 )))
1901
1902 (((
1903 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1904
1905 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1906 )))
1907
1908 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1909
1910 == 5.2 Replace Battery ==
1911
1912
1913 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1914
1915 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1916
1917
1918 == 5.3 Battery Life Analyze ==
1919
1920
1921 (((
1922 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1923 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1924 )))
1925
1926
1927 (((
1928 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1929 )))
1930
1931
1932 = 6. FAQ =
1933
1934 == 6.1 How to connect to LHT65N/S UART interface? ==
1935
1936
1937 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1938
1939 * Send AT Commands, and get output from LHT65N/S
1940 * Upgrade firmwre of LHT65N/S.
1941
1942 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1943
1944
1945 **Option of USB TTL adapter:**
1946
1947 * CP2101 USB TTL Adapter
1948 * CH340 USB TTL Adapter
1949 * FT232 USB TTL Adapter
1950
1951 **Option of Type-C Adapter:**
1952
1953 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1954
1955
1956 **Connection:**
1957
1958 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1959 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1960 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1961
1962 (((
1963
1964
1965 Connection Example:
1966
1967 [[image:1655802313617-381.png||_mstalt="293917"]]
1968
1969
1970 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1971
1972
1973 == 6.2 How to use AT Commands? ==
1974
1975
1976 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1977
1978 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1979 )))
1980
1981
1982
1983 Input password and ATZ to activate LHT65N/S, As shown below:
1984
1985 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1986
1987
1988 AT Command List is as below:
1989
1990 AT+<CMD>? :  Help on <CMD>
1991
1992 AT+<CMD> :  Run <CMD>
1993
1994 AT+<CMD>=<value> :  Set the value
1995
1996 AT+<CMD>=? :  Get the value
1997
1998 AT+DEBUG:  Set more info output
1999
2000 ATZ:  Trig a reset of the MCU
2001
2002 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
2003
2004 AT+DEUI:  Get or Set the Device EUI
2005
2006 AT+DADDR:  Get or Set the Device Address
2007
2008 AT+APPKEY:  Get or Set the Application Key
2009
2010 AT+NWKSKEY:  Get or Set the Network Session Key
2011
2012 AT+APPSKEY:  Get or Set the Application Session Key
2013
2014 AT+APPEUI:  Get or Set the Application EUI
2015
2016 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2017
2018 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2019
2020 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2021
2022 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2023
2024 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2025
2026 AT+RX2FQ:  Get or Set the Rx2 window frequency
2027
2028 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2029
2030 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2031
2032 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2033
2034 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2035
2036 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2037
2038 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2039
2040 AT+NWKID:  Get or Set the Network ID
2041
2042 AT+FCU:  Get or Set the Frame Counter Uplink
2043
2044 AT+FCD:  Get or Set the Frame Counter Downlink
2045
2046 AT+CLASS:  Get or Set the Device Class
2047
2048 AT+JOIN:  Join network
2049
2050 AT+NJS:  Get the join status
2051
2052 AT+SENDB:  Send hexadecimal data along with the application port
2053
2054 AT+SEND:  Send text data along with the application port
2055
2056 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2057
2058 AT+RECV:  Print last received data in raw format
2059
2060 AT+VER:  Get current image version and Frequency Band
2061
2062 AT+CFM:  Get or Set the confirmation mode (0-1)
2063
2064 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2065
2066 AT+SNR:  Get the SNR of the last received packet
2067
2068 AT+RSSI:  Get the RSSI of the last received packet
2069
2070 AT+TDC:  Get or set the application data transmission interval in ms
2071
2072 AT+PORT:  Get or set the application port
2073
2074 AT+DISAT:  Disable AT commands
2075
2076 AT+PWORD: Set password, max 9 digits
2077
2078 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2079
2080 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2081
2082 AT+PDTA:  Print the sector data from start page to stop page
2083
2084 AT+PLDTA:  Print the last few sets of data
2085
2086 AT+CLRDTA:  Clear the storage, record position back to 1st
2087
2088 AT+SLEEP:  Set sleep mode
2089
2090 AT+EXT:  Get or Set external sensor model
2091
2092 AT+BAT:  Get the current battery voltage in mV
2093
2094 AT+CFG:  Print all configurations
2095
2096 AT+WMOD:  Get or Set Work Mode
2097
2098 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2099
2100 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2101
2102 AT+SETCNT:  Set the count at present
2103
2104 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2105
2106 AT+RPL:  Get or set response level
2107
2108 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2109
2110 AT+LEAPSEC:  Get or Set Leap Second
2111
2112 AT+SYNCMOD:  Get or Set time synchronization method
2113
2114 AT+SYNCTDC:  Get or set time synchronization interval in day
2115
2116 AT+PID:  Get or set the PID
2117
2118
2119 == 6.3 How to use Downlink commands? ==
2120
2121
2122 **Downlink commands:**
2123
2124
2125 (% style="color:blue" %)**TTN:**
2126
2127 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2128
2129
2130
2131 (% style="color:blue" %)**Helium: **
2132
2133 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2134
2135
2136
2137 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2138
2139
2140 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2141
2142
2143 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2144
2145
2146
2147 (% style="color:blue" %)**AWS-IOT :**
2148
2149 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2150
2151
2152 == 6.4 How to change the uplink interval? ==
2153
2154
2155 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2156
2157
2158 == 6.5 How to upgrade firmware? ==
2159
2160
2161 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2162 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2163
2164
2165 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2166
2167
2168 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2169
2170 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2171
2172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2173
2174 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2175
2176 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2177
2178 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2179
2180 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2181
2182 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2183
2184 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2185
2186 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2187
2188 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2189
2190
2191 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2192
2193 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2194
2195 [[image:image-20240716174308-1.png||height="523" width="410"]]
2196
2197
2198 === 6.5.2 Updated firmware for V1.4 and above ===
2199
2200
2201 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2202
2203 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2204 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2205
2206 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2207
2208
2209 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2210
2211
2212 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2213
2214 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2215
2216
2217 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2218
2219
2220 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2221
2222
2223 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2224
2225 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2226
2227 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2228
2229
2230
2231 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2232
2233 Connect PC and LHT65N/S via USB TTL adapter .
2234
2235 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2236
2237 **Connection method:**
2238
2239 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2240
2241 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2242
2243 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2244
2245 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2246
2247 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2248
2249
2250 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2251
2252 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2253
2254
2255 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2256
2257 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2258
2259
2260 When this interface appears, it indicates that the download has been completed.
2261
2262 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2263
2264
2265 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2266
2267
2268 == 6.6 Why can't I see the datalog information ==
2269
2270
2271 ~1. The time is not aligned, and the correct query command is not used.
2272
2273 2. Decoder error, did not parse the datalog data, the data was filtered.
2274
2275
2276 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2277
2278
2279 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2280
2281 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2282
2283
2284 After there is UART Connectio, run below commands:
2285
2286 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2287
2288 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2289
2290 Example output:
2291
2292 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2293
2294
2295 = 7. Order Info =
2296
2297
2298 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2299
2300 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2301
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2303 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2304 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2305 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2306 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2307 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2308 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2309 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2310
2311 = 8. Packing Info =
2312
2313
2314 **Package Includes**:
2315
2316 * LHT65N/S Temperature & Humidity Sensor x 1
2317 * 1 x External Lora Antenna for LHT65S
2318 * Optional external sensor
2319
2320 = 9. Reference material =
2321
2322
2323 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2324
2325 = 10. FCC Warning =
2326
2327
2328 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2329
2330 (1) This device may not cause harmful interference;
2331
2332 (2) this device must accept any interference received, including interference that may cause undesired operation.