Version 379.1 by Xiaoling on 2025/06/10 10:16

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89 == 1.4 Model Difference ==
90
91
92 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
93
94 (% style="color:#037691" %)**For antenna design: **
95
96 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
97 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
98
99 [[image:image-20250422095731-2.png]]
100
101
102 (% style="color:#037691" %)**For enclosure dimensions:**
103
104 * **LHT65N**
105
106 [[image:image-20250422165135-1.png]]
107
108
109
110 * **LHT65S (Unit: mm)**
111
112 [[image:image-20250422165216-2.png]]
113
114
115 = 2. Connect LHT65N/S to IoT Server =
116
117 == 2.1 How does LHT65N/S work? ==
118
119
120 (((
121 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
122 )))
123
124 (((
125 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
126 )))
127
128
129 == 2.2 How to Activate LHT65N/S? ==
130
131
132 (((
133 The LHT65N/S has two working modes:
134 )))
135
136 * (((
137 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
138 )))
139 * (((
140 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
141 )))
142
143 (((
144 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
145 )))
146
147 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
148
149 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
150 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
151 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
152 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
153 )))
154 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
155 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
156 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
157 )))
158 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
159
160 == 2.3 Example to join LoRaWAN network ==
161
162
163 (% class="wikigeneratedid" %)
164 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
165
166 (% class="wikigeneratedid" %)
167 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
168
169
170 (((
171 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
172 )))
173
174
175 === 2.3.1 Step 1: Create Device on TTN ===
176
177
178 (((
179 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
180 )))
181
182 (((
183 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
184 )))
185
186 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
187
188
189 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
190
191 (% style="color:blue" %)**1. Create application**
192
193
194 [[image:image-20250424091200-1.jpeg]]
195
196
197
198
199 [[image:image-20250424091207-2.jpeg]]
200
201
202 (% style="color:blue" %)**2. Add devices to the created Application.**
203
204 [[image:image-20250424091404-3.jpeg]]
205
206
207
208 [[image:image-20250424091412-4.jpeg]]
209
210
211 (% style="color:blue" %)**3. Enter end device specifics manually.**
212
213
214 [[image:image-20250424091458-5.jpeg]]
215
216 [[image:image-20250424091509-6.jpeg]]
217
218
219
220 === 2.3.2 Step 2: Add decoder ===
221
222
223 In TTN, user can add a custom payload so it shows friendly reading.
224
225 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
226
227 Below is TTN screen shot
228
229 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
230
231 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
232
233
234 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
235
236
237 (((
238 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
239 )))
240
241 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
242
243
244 == 2.4 Uplink Payload (Fport~=2) ==
245
246
247 (((
248 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
249 )))
250
251 (((
252 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
253 )))
254
255 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
256 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
257 **Size(bytes)**
258 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
259 **2**
260 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
261 **2**
262 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
263 **2**
264 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
265 **1**
266 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
267 **4**
268 )))
269 |(% style="width:97px" %)(((
270 Value
271 )))|(% style="width:39px" %)(((
272 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
273 )))|(% style="width:100px" %)(((
274 (((
275 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
276 )))
277 )))|(% style="width:77px" %)(((
278 (((
279 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
280 )))
281 )))|(% style="width:47px" %)(((
282 [[Ext>>||anchor="H2.4.5Ext23"]] #
283 )))|(% style="width:51px" %)(((
284 [[Ext value>>||anchor="H2.4.6Extvalue"]]
285 )))
286
287 * The First 6 bytes: has fix meanings for every LHT65N/S.
288
289 * The 7th byte (EXT #): defines the external sensor model.
290
291 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
292
293 === 2.4.1 Decoder in TTN V3 ===
294
295
296 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
297
298 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
299
300 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
301
302
303 === 2.4.2 BAT-Battery Info ===
304
305
306 These two bytes of BAT include the battery state and the actually voltage.
307
308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
309 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
310 **Bit(bit)**
311 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
312 |(% style="width:66px" %)(((
313 Value
314 )))|(% style="width:250px" %)(((
315 BAT Status
316 00(b): Ultra Low ( BAT <= 2.50v)
317 01(b): Low (2.50v <=BAT <= 2.55v)
318 10(b): OK (2.55v <= BAT <=2.65v)
319 11(b): Good (BAT >= 2.65v)
320 )))|(% style="width:152px" %)Actually BAT voltage
321
322 **(b)stands for binary**
323
324
325 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
326
327
328 Check the battery voltage for LHT65N/S.
329
330 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
331
332 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
333
334 === 2.4.3 Built-in Temperature ===
335
336
337 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
338
339 * Temperature:  0x0ABB/100=27.47℃
340
341 [[image:image-20220522235639-3.png||_mstalt="432120"]]
342
343 * Temperature:  (0xF5C6-65536)/100=-26.18℃
344
345 === 2.4.4 Built-in Humidity ===
346
347
348 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
349
350 * Humidity:    0x025C/10=60.4%
351
352 === 2.4.5 Ext # ===
353
354
355 Bytes for External Sensor:
356
357 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
358 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
359 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
360 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
361 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
362 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
363 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
364 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
365 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
366 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
367
368 === 2.4.6 Ext value ===
369
370 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
371
372
373 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
374 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
375 **Size(bytes)**
376 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
377 **2**
378 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
379 2
380 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
381 **2**
382 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
383 1
384 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
385 2
386 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
387 2
388 )))
389 |(% style="width:110px" %)(((
390 Value
391 )))|(% style="width:71px" %)(((
392 BAT & BAT Status
393 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
394 Status & Ext
395 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
396
397 [[image:image-20220522235639-5.png||_mstalt="432848"]]
398
399
400 * DS18B20 temp=0x0ADD/100=27.81℃
401
402 The last 2 bytes of data are meaningless
403
404 [[image:image-20220522235639-6.png||_mstalt="433212"]]
405
406
407 * External temperature= (0xF54F-65536)/100=-27.37℃
408
409 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
410
411 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
412
413 The last 2 bytes of data are meaningless
414
415 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
416
417
418 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
419
420
421 (((
422 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
423 )))
424
425 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
426 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
427 **Size(bytes)**
428 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
429 **2**
430 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
431 **2**
432 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
433 **2**
434 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
435 **1**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 **4**
438 )))
439 |(% style="width:110px" %)(((
440 Value
441 )))|(% style="width:71px" %)(((
442 External temperature
443 )))|(% style="width:99px" %)(((
444 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
445 )))|(% style="width:132px" %)(((
446 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
447 )))|(% style="width:54px" %)(((
448 Status & Ext
449 )))|(% style="width:64px" %)(((
450 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
451 )))
452
453 * **Battery status & Built-in Humidity**
454
455 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
456 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
457 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
458 BAT Status
459 00(b): Ultra Low ( BAT <= 2.50v)
460 01(b): Low  (2.50v <=BAT <= 2.55v)
461 10(b): OK   (2.55v <= BAT <=2.65v)
462 11(b): Good   (BAT >= 2.65v)
463 )))|(% style="width:132px" %)(((
464 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
465 )))
466
467 * **Status & Ext Byte**
468
469 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
470 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
471 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
472
473 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
474 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
475 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
476
477 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
478
479
480 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
481 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
482 **Size(bytes)**
483 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
484 **2**
485 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
486 2
487 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
488 **2**
489 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
490 1
491 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
492 2
493 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
494 2
495 )))
496 |(% style="width:110px" %)(((
497 Value
498 )))|(% style="width:71px" %)(((
499 BAT & BAT Status
500 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
501 Status & Ext
502 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
503
504 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
505
506 be used to power the external ADC sensor; user can control the power on time for this
507
508 (% style="color:blue" %)**sensor by setting:**
509
510 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
511
512 **For example:**
513
514 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
515
516
517 Or use **downlink command A2** to set the same.
518
519 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
520
521 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
522
523 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
524
525
526 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
527
528 [[image:image-20220628150714-4.png||_mstalt="431054"]]
529
530
531 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
532
533
534 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
535
536 [[image:image-20220628151005-5.png||_mstalt="429546"]]
537
538
539 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
540
541 [[image:image-20220628151056-6.png||_mstalt="431873"]]
542
543
544 3) Within range
545
546 [[image:image-20220628151143-7.png||_mstalt="431210"]]
547
548
549 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
550
551
552 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
553
554 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
555
556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
557 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
558 **Size(bytes)**
559 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
560 **2**
561 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
562 2
563 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
564 **2**
565 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
566 1
567 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
568 2
569 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
570 2
571 )))
572 |(% style="width:110px" %)(((
573 Value
574 )))|(% style="width:71px" %)(((
575 BAT & BAT Status
576 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
577 Status & Ext
578 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
579
580 [[image:image-20220906102307-7.png||_mstalt="430443"]]
581
582 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
583
584 The external cable NE2 can be use for MOD4 and MOD8
585
586
587 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
588
589
590 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
591
592 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
593
594 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
595 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
596 **Size(bytes)**
597 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
598 **2**
599 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
600 2
601 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
602 **2**
603 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
604 1
605 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
606 2
607 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
608 2
609 )))
610 |(% style="width:110px" %)(((
611 Value
612 )))|(% style="width:71px" %)(((
613 BAT & BAT Status
614 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
615 Status & Ext
616 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
617
618 [[image:SHT31.png||_mstalt="104715"]]
619
620
621 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
622
623
624 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
625
626
627 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
628
629 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
630
631 In Open State, the power consumption is the same as if there is no probe
632
633 In Close state, the power consumption will be 3uA higher than normal.
634
635 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
636
637
638 Ext=4,Interrupt Sensor:
639
640 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
641 |(% style="width:101px" %)(((
642 **AT+EXT=4,1**
643 )))|(% style="width:395px" %)(((
644 **Sent uplink packet in both rising and falling interrupt**
645 )))
646 |(% style="width:101px" %)(((
647 **AT+EXT=4,2**
648 )))|(% style="width:395px" %)(((
649 **Sent uplink packet only in falling interrupt**
650 )))
651 |(% style="width:101px" %)(((
652 **AT+EXT=4,3**
653 )))|(% style="width:395px" %)(((
654 **Sent uplink packet only in rising interrupt**
655 )))
656
657 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
658 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
659 **Size(bytes)**
660 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
661 **2**
662 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
663 2
664 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
665 **2**
666 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
667 1
668 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 1
670 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 2
672 )))
673 |(% style="width:110px" %)(((
674 Value
675 )))|(% style="width:71px" %)(((
676 BAT & BAT Status
677 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
678 Status & Ext
679 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
680
681 Trigger by falling edge:
682
683 [[image:image-20220906101145-2.png||_mstalt="428324"]]
684
685
686 Trigger by raising edge:
687
688 [[image:image-20220906101145-3.png||_mstalt="428688"]]
689
690
691 (% style="color:blue" %)**BAT & BAT Status :**
692
693 Check the battery voltage.
694
695 Ex1: 0x0B45 = 2885mV
696
697 Ex2: 0x0B49 = 2889mV
698
699
700 (% style="color:blue" %)**TempC_SHT :**
701
702 The temperature detected by the built-in temperature and humidity sensor SHT31.
703
704 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
705
706 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
707
708 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
709
710
711 (% style="color:blue" %)**Hum_SHT :**
712
713 The humidity detected by the built-in temperature and humidity sensor SHT31.
714
715 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
716
717
718 (% style="color:blue" %)**Status & Ext :**
719
720 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
721 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
722 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
723
724 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
725 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
726 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
727
728 (% style="color:blue" %)**Exti_pin_level :**
729
730 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
731 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
732
733 (% style="color:blue" %)**Exti_status :**
734
735 Determines whether the uplink packet is generated by an interrupt.
736
737 1: Interrupt packet
738
739 0: Normal TDC uplink packet
740
741
742 (% style="color:blue" %)**senseless :**
743
744 Reserved position, meaningless. The value is fixed to 0x7FFF.
745
746
747 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
748
749
750 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
751
752
753 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
754
755 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
756
757
758 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
759
760 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
761
762
763 Ext=8, Counting Sensor ( 4 bytes):
764
765 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
766 |(% style="width:131px" %)(((
767 **AT+EXT=8,0**
768 )))|(% style="width:195px" %)(((
769 **Count at falling interrupt**
770 )))
771 |(% style="width:131px" %)(((
772 **AT+EXT=8,1**
773 )))|(% style="width:195px" %)(((
774 **Count at rising interrupt**
775 )))
776 |(% style="width:131px" %)(((
777 **AT+SETCNT=60**
778 )))|(% style="width:195px" %)(((
779 **Sent current count to 60**
780 )))
781
782 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
783 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
784 **Size(bytes)**
785 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
786 **2**
787 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
788 2
789 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
790 **2**
791 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
792 1
793 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
794 4
795 )))
796 |(% style="width:110px" %)(((
797 Value
798 )))|(% style="width:71px" %)(((
799 BAT & BAT Status
800 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
801 Status & Ext
802 )))|(% style="width:64px" %)Exit_count
803
804 [[image:image-20220906101320-6.png||_mstalt="428064"]]
805
806
807 (% style="color:blue" %)**A2 downlink Command:**
808
809 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
810
811 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
812
813 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
814
815 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
816
817 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
818
819
820 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
821
822
823 (((
824 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
825 )))
826
827 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
828 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
829 **Size(bytes)**
830 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
831 **2**
832 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
833 **2**
834 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
835 **2**
836 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
837 **1**
838 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
839 **4**
840 )))
841 |(% style="width:110px" %)(((
842 Value
843 )))|(% style="width:71px" %)(((
844 External temperature
845 )))|(% style="width:99px" %)(((
846 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
847 )))|(% style="width:132px" %)(((
848 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
849 )))|(% style="width:54px" %)(((
850 Status & Ext
851 )))|(% style="width:64px" %)(((
852 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
853 )))
854
855 * **Battery status & Built-in Humidity**
856
857 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
858 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
859 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
860 BAT Status
861 00(b): Ultra Low ( BAT <= 2.50v)
862 01(b): Low  (2.50v <=BAT <= 2.55v)
863 10(b): OK   (2.55v <= BAT <=2.65v)
864 11(b): Good   (BAT >= 2.65v)
865 )))|(% style="width:132px" %)(((
866 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
867 )))
868
869 * **Status & Ext Byte**
870
871 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
872 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
873 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
874
875 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
876 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
877 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
878
879 == 2.5 Show data on Datacake ==
880
881
882 (((
883 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
884 )))
885
886
887 (((
888 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
889 )))
890
891 (((
892 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
893 )))
894
895
896 (((
897 Add Datacake:
898 )))
899
900 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
901
902
903 Select default key as Access Key:
904
905
906 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
907
908
909 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
910
911 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
912
913
914 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
915
916
917 == 2.6 Datalog Feature ==
918
919
920 (((
921 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
922 )))
923
924
925 === 2.6.1 Ways to get datalog via LoRaWAN ===
926
927
928 There are two methods:
929
930 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
931
932
933 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
934
935
936 (% style="color:red" %)**Note for method 2:**
937
938 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
939 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
940
941 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
942
943 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
944
945
946 === 2.6.2 Unix TimeStamp ===
947
948
949 LHT65N/S uses Unix TimeStamp format based on
950
951 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
952
953
954 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
955
956 Below is the converter example
957
958 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
959
960
961 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
962
963
964 === 2.6.3 Set Device Time ===
965
966
967 (((
968 (% style="color:blue" %)**There are two ways to set device's time:**
969 )))
970
971 (((
972 **1.  Through LoRaWAN MAC Command (Default settings)**
973 )))
974
975 (((
976 User need to set SYNCMOD=1 to enable sync time via MAC command.
977 )))
978
979 (((
980 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
981 )))
982
983 (((
984 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
985 )))
986
987
988 (((
989 **2. Manually Set Time**
990 )))
991
992 (((
993 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
994 )))
995
996
997 === 2.6.4 Poll sensor value ===
998
999
1000 User can poll sensor value based on timestamps from the server. Below is the downlink command.
1001
1002 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
1003 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
1004 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
1005
1006 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1007
1008 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1009
1010 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1011
1012 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1013
1014
1015 === 2.6.5 Datalog Uplink payload ===
1016
1017
1018 The Datalog poll reply uplink will use below payload format.
1019
1020 **Retrieval data payload:**
1021
1022 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1023 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1024 **Size(bytes)**
1025 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1026 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1027
1028 **Poll message flag & Ext:**
1029
1030 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1031 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1032 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1033
1034 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1035
1036 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1037
1038 * Poll Message Flag is set to 1.
1039
1040 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1041
1042 For example, in US915 band, the max payload for different DR is:
1043
1044 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1045
1046 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1047
1048 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1049
1050 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1051
1052 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1053
1054
1055 **Example:**
1056
1057 If LHT65N/S has below data inside Flash:
1058
1059 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1060 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1061 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1062 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1063 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1064 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1065 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1066 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1067 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1068 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1069
1070 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1071
1072 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1073
1074 Stop time: 60066DA7= time 21/1/19 05:27:03
1075
1076
1077 **LHT65N/S will uplink this payload.**
1078
1079 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1080
1081
1082 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1083
1084 Where the first 11 bytes is for the first entry:
1085
1086 7FFF089801464160065F97
1087
1088 Ext sensor data=0x7FFF/100=327.67
1089
1090 Temp=0x088E/100=22.00
1091
1092 Hum=0x014B/10=32.6
1093
1094 poll message flag & Ext=0x41,means reply data,Ext=1
1095
1096 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1097
1098
1099 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1100
1101
1102 (((
1103 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1104 )))
1105
1106 (((
1107 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1108
1109
1110 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1111
1112 (((
1113 (% class="box infomessage" %)
1114 (((
1115 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1116 )))
1117 )))
1118
1119 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1120
1121 **~ AT+WMOD=1,60,-10,20**
1122
1123
1124 Explain:
1125
1126 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1127 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1128 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1129
1130 (% style="color:#4f81bd" %)**Downlink Command:**
1131
1132 **Example: **A5013CFC1807D0
1133
1134 MOD=01
1135
1136 CITEMP=3C(S) =60(S)
1137
1138 TEMPlow=FC18 = -1000/100=-10(℃)
1139
1140 TEMPhigh=07D0=2000/100=20(℃)
1141
1142
1143 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1144
1145 **AT+WMOD=2,60,5** 
1146
1147 Explain:
1148
1149 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1150 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1151 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1152
1153 (% style="color:#4f81bd" %)**Downlink Command**
1154
1155 **Example: **A5023C05
1156
1157 MOD=02
1158
1159 CITEMP=3C(S)=60(S)
1160
1161 temperature fluctuation=05(℃)
1162
1163
1164 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1165
1166 **AT+WMOD=3,1,60,20,-16,32,1**   
1167
1168 Explain:
1169
1170 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1171 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1172 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1173 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1174 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1175 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1176
1177 (% style="color:#4f81bd" %)**Downlink Command:**
1178
1179 **Example: **A50301003C14FFF0002001
1180
1181 MOD=03
1182
1183 TEMP=DS18B20
1184
1185 CITEMP=003C(S)=60(S)
1186
1187 Total number of acquisitions=14
1188
1189 TEMPlow=FFF0=-16(℃)
1190
1191 TEMPhigh=0020=20(℃)
1192
1193 ARTEMP=01
1194
1195
1196 **Uplink payload( Fport=3)**
1197
1198 **Example: CBEA**01**0992**//0A41//**09C4**
1199
1200 BatV=CBEA
1201
1202 TEMP=DS18B20
1203
1204 Temp1=0992  ~/~/ 24.50℃
1205
1206 Temp2=0A41  ~/~/ 26.25℃
1207
1208 Temp3=09C4  ~/~/ 25.00℃
1209
1210 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1211
1212 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1213 )))
1214
1215
1216 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1217
1218
1219 (% class="box infomessage" %)
1220 (((
1221 (((
1222 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1223 )))
1224
1225 (((
1226 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1227 )))
1228
1229 (((
1230 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1231 )))
1232
1233 (((
1234 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1235 )))
1236
1237 (((
1238 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1239 )))
1240 )))
1241
1242 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1243
1244 Total bytes: 8 bytes
1245
1246 **Example:**AA0100010001003C
1247
1248 WMOD=01
1249
1250 CITEMP=0001
1251
1252 TEMPlow=0001
1253
1254 TEMPhigh=003C
1255
1256
1257 == 2.8 LED Indicator ==
1258
1259
1260 The LHT65 has a triple color LED which for easy showing different stage .
1261
1262 While user press ACT button, the LED will work as per LED status with ACT button.
1263
1264 In a normal working state:
1265
1266 * For each uplink, the BLUE LED or RED LED will blink once.
1267 BLUE LED when external sensor is connected.
1268 * RED LED when external sensor is not connected
1269 * For each success downlink, the PURPLE LED will blink once
1270
1271 == 2.9 installation ==
1272
1273
1274 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1275
1276
1277 = 3. Sensors and Accessories =
1278
1279 == 3.1 E2 Extension Cable ==
1280
1281
1282 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1283
1284
1285 **1m long breakout cable for LHT65N/S. Features:**
1286
1287 * (((
1288 Use for AT Command, works for both LHT52, LHT65N/S
1289 )))
1290 * (((
1291 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1292 )))
1293 * (((
1294 Supports ADC mode to monitor external ADC
1295 )))
1296 * (((
1297 Supports Interrupt mode
1298 )))
1299 * (((
1300 Exposed All pins from the LHT65N/S Type-C connector.
1301
1302
1303
1304 )))
1305
1306 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1307
1308
1309 == 3.2 E3 Temperature Probe ==
1310
1311
1312 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1313
1314
1315 Temperature sensor with 2 meters cable long
1316
1317 * Resolution: 0.0625 °C
1318 * ±0.5°C accuracy from -10°C to +85°C
1319 * ±2°C accuracy from -55°C to +125°C
1320 * Operating Range: -40 ~~ 125 °C
1321 * Working voltage 2.35v ~~ 5v
1322
1323 == 3.3 E31F Temperature Probe ==
1324
1325
1326 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1327
1328
1329 Temperature sensor with 1 meters cable long
1330
1331
1332 **Built-in Temperature Sensor:**
1333
1334 * Resolution: 0.01 °C
1335 * Accuracy Tolerance : Typ ±0.3 °C
1336 * Long Term Drift: < 0.02 °C/yr
1337 * Operating Range: -40 ~~ 80 °C
1338
1339 **Built-in Humidity Sensor:**
1340
1341 * Resolution: 0.04 % RH
1342 * Accuracy Tolerance : Typ ±3 % RH
1343 * Long Term Drift: < 0.25 RH/yr
1344 * Operating Range: 0 ~~ 96 % RH
1345
1346 **External Temperature Sensor :**
1347
1348 * Resolution: 0.01 °C
1349 * Accuracy Tolerance : Typical ±0.3 °C
1350 * Long Term Drift: < 0.02 °C/yr
1351 * Operating Range: -40 ~~ 125 °C
1352
1353 **External Humidity Sensor :**
1354
1355 * Resolution: 0.04 % RH
1356 * Accuracy Tolerance : Typ ±3 % RH
1357 * Long Term Drift: < 0.25 RH/yr
1358 * Operating Range: 0 ~~ 96 % RH
1359
1360 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1361
1362
1363 External Temperature Sensor – NE117:
1364 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1365
1366 * Silica gel cable
1367 * ±0.1 °C (maximum) from –20 °C to 50 °C
1368 * ±0.2 °C (maximum) from –40 °C to 100 °C
1369 * ±0.3 °C (maximum) from –55 °C to 150 °C
1370
1371 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1372
1373
1374 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1375
1376
1377 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1378 * 3 wires: VCC/GND/INT
1379 * Cable Lenght: 1 meter
1380
1381 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1382
1383 LHT65N/S-DC can be used to connect various types of external sensor. below.
1384
1385 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1386
1387 [[image:image-20240422100149-5.png||height="163" width="510"]]
1388
1389 [[image:image-20240422100217-6.png||height="141" width="507"]]
1390
1391
1392 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1393
1394
1395 * Aluminum Alloy Door Sensor
1396 * Detect Distance: ~~3cm
1397 * Cable Lenght: 1 meter
1398
1399 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1400
1401 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1402
1403
1404 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1405
1406
1407 (((
1408 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1409 )))
1410
1411 * (((
1412 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1413 )))
1414
1415 * (((
1416 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1417 )))
1418
1419 (((
1420 There are two kinds of commands to configure LHT65N/S, they are:
1421 )))
1422
1423 * (((
1424 (% style="color:#4f81bd" %)**General Commands**.
1425 )))
1426
1427 (((
1428 These commands are to configure:
1429 )))
1430
1431 1. (((
1432 General system settings like: uplink interval.
1433 )))
1434 1. (((
1435 LoRaWAN protocol & radio-related commands.
1436 )))
1437
1438 (((
1439 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1440 )))
1441
1442 * (((
1443 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1444 )))
1445
1446 (((
1447 These commands are only valid for LHT65N/S, as below:
1448 )))
1449
1450
1451 == 4.1 Set Transmit Interval Time ==
1452
1453
1454 Feature: Change LoRaWAN End Node Transmit Interval.
1455
1456
1457 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1458
1459 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1460 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1461 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1462 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1463
1464 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1465
1466 Format: Command Code (0x01) followed by 3 bytes time value.
1467
1468 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1469
1470 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1471
1472 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1473
1474 == 4.2 Set External Sensor Mode ==
1475
1476
1477 Feature: Change External Sensor Mode.
1478
1479 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1480
1481 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1482 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1483 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1484 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1485 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1486 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1487 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1488 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1489 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1490 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1491 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1492
1493 **Response**
1494
1495 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1496
1497 Total bytes: 2 ~~ 5 bytes
1498
1499 **Example:**
1500
1501 * 0xA201: Set external sensor type to E1
1502
1503 * 0xA209: Same as AT+EXT=9
1504
1505 * 0xA20702003c: Same as AT+SETCNT=60
1506
1507 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1508
1509
1510 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1511
1512 * First Packet after OTAA Join
1513 * Every 24 hours since the first packet.
1514
1515 PID is default set to disable (0)
1516
1517 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1518
1519 (% style="color:#4f81bd" %)**AT Command:**
1520
1521 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1522 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1523 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1524
1525 (% style="color:#4f81bd" %)**Downlink Command:**
1526
1527 * **0xA800**  **~-~->** AT+PID=0
1528 * **0xA801**     **~-~->** AT+PID=1
1529
1530 == 4.4 Set Password ==
1531
1532
1533 Feature: Set device password, max 9 digits
1534
1535 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1536
1537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1538 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1539 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1540 123456
1541
1542 OK
1543 )))
1544 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1545
1546 (% style="color:#4f81bd" %)**Downlink Command:**
1547
1548 No downlink command for this feature.
1549
1550
1551 == 4.5 Quit AT Command ==
1552
1553
1554 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1555
1556 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1557
1558 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1559 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1560 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1561
1562 (% style="color:#4f81bd" %)**Downlink Command:**
1563
1564 No downlink command for this feature.
1565
1566
1567 == 4.6 Set to sleep mode ==
1568
1569
1570 Feature: Set device to sleep mode
1571
1572 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1573 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1574
1575 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1576
1577 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1578 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1579 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1580 Clear all stored sensor data…
1581
1582 OK
1583 )))
1584
1585 (% style="color:#4f81bd" %)**Downlink Command:**
1586
1587 * There is no downlink command to set to Sleep mode.
1588
1589 == 4.7 Set system time ==
1590
1591
1592 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1593
1594 (% style="color:#4f81bd" %)**AT Command:**
1595
1596 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1597 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1598 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1599 OK
1600
1601 Set System time to 2021-01-20 00:59:12
1602 )))
1603
1604 (% style="color:#4f81bd" %)**Downlink Command:**
1605
1606 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1607
1608
1609 == 4.8 Set Time Sync Mode ==
1610
1611
1612 (((
1613 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1614 )))
1615
1616 (((
1617 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1618 )))
1619
1620 (% style="color:#4f81bd" %)**AT Command:**
1621
1622 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1623 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1624 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1625
1626 (% style="color:#4f81bd" %)**Downlink Command:**
1627
1628 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1629 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1630
1631
1632 == 4.9 Set Time Sync Interval ==
1633
1634
1635 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1636
1637 (% style="color:#4f81bd" %)**AT Command:**
1638
1639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1640 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1641 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1642
1643 (% style="color:#4f81bd" %)**Downlink Command:**
1644
1645 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1646
1647
1648 == 4.10 Get data ==
1649
1650
1651 Feature: Get the current sensor data.
1652
1653 (% style="color:#4f81bd" %)**AT Command:**
1654
1655 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1656 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1657
1658 == 4.11 Print data entries base on page ==
1659
1660
1661 Feature: Print the sector data from start page to stop page (max is 416 pages).
1662
1663 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1664
1665 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1666 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1667 |(% style="width:156px" %)(((
1668 AT+PDTA=1,3
1669 Print page 1 to 3
1670 )))|(% style="width:311px" %)(((
1671 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1672 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1673 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1674 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1675 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1676 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1677 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1678 8019570
1679 8019580
1680 8019590
1681 80195A0
1682 80195B0
1683 80195C0
1684 80195D0
1685 80195E0
1686 80195F0
1687
1688 OK
1689 )))
1690
1691 (% style="color:#4f81bd" %)**Downlink Command:**
1692
1693 No downlink commands for feature
1694
1695
1696 == 4.12 Print last few data entries ==
1697
1698
1699 Feature: Print the last few data entries
1700
1701 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1702
1703 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1704 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1705 |(% style="width:156px" %)(((
1706 AT+PLDTA=5
1707 Print last 5 entries
1708 )))|(% style="width:311px" %)(((
1709 Stop Tx and RTP events when read sensor data
1710 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1711 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1712 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1713 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1714 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1715 Start Tx and RTP events
1716 OK
1717 )))
1718
1719 (% style="color:#4f81bd" %)**Downlink Command:**
1720
1721 No downlink commands for feature
1722
1723
1724 == 4.13 Clear Flash Record ==
1725
1726
1727 Feature: Clear flash storage for data log feature.
1728
1729 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1730
1731 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1732 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1733 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1734 Clear all stored sensor data…
1735
1736 OK
1737 )))
1738
1739 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1740
1741 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1742
1743 == 4.14 Auto Send None-ACK messages ==
1744
1745
1746 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1747
1748 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1749
1750 The default factory setting is 0
1751
1752 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1753 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1754 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1755
1756 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1757
1758 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1759
1760 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1761
1762
1763 Feature: Set internal and external temperature sensor alarms.
1764
1765 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1766 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1767 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1768
1769 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1770
1771 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1772
1773 0): Cancel
1774
1775 1): Threshold alarm
1776
1777 2): Fluctuation alarm
1778
1779 3): Sampling multiple times and uplink together
1780
1781
1782 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1783
1784 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1785
1786
1787 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1788
1789 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1790
1791 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1792
1793
1794 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1795
1796 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1797
1798 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1799
1800
1801 **3): If Alarm Mode is set to 3:**
1802
1803 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1804 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1805 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1806 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1807 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1808 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1809
1810 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1811
1812 0xA5 00 ~-~- AT+WMOD=0.
1813
1814 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1815
1816 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1817
1818 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1819
1820 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1821
1822 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1823
1824
1825 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1826
1827
1828 Feature: use downlink to get firmware version.
1829
1830 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1831
1832 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1833 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1834 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1835
1836 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1837
1838 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1839
1840 (% style="color:#037691" %)**Sensor model**
1841
1842 0x0b: LHT65N/S
1843
1844
1845 (% style="color:#037691" %)**Firmware version**
1846
1847 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1848
1849 Example: 0x0140=V1.4.0
1850
1851
1852 (% style="color:#037691" %)** Frequency Band:**
1853
1854 * 0x01: EU868
1855 * 0x02: US915
1856 * 0x03: IN865
1857 * 0x04: AU915
1858 * 0x05: KZ865
1859 * 0x06: RU864
1860 * 0x07: AS923
1861 * 0x08: AS923-1
1862 * 0x09: AS923-2
1863 * 0xa0: AS923-3
1864
1865 (% style="color:#037691" %)**Subband**
1866
1867 value 0x00 ~~ 0x08
1868
1869 Example: 0xFF ~-~--> " NULL"
1870
1871
1872 (% style="color:#037691" %)**Battery**
1873
1874 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1875
1876 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1877
1878
1879 == 4.17 Setting LEDAlarm ==
1880
1881 Feature: Setting LEDAlarm
1882
1883 The default factory setting is 0
1884
1885 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1886 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1887 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1888
1889 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1890
1891 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1892
1893 = 5. Battery & How to replace =
1894
1895 == 5.1 Battery Type ==
1896
1897
1898 (((
1899 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1900 )))
1901
1902 (((
1903 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1904
1905 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1906 )))
1907
1908 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1909
1910 == 5.2 Replace Battery ==
1911
1912
1913 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1914
1915 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1916
1917
1918 == 5.3 Battery Life Analyze ==
1919
1920
1921 (((
1922 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1923 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1924 )))
1925
1926
1927 (((
1928 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1929 )))
1930
1931
1932 = 6. FAQ =
1933
1934 == 6.1 How to connect to LHT65N/S UART interface? ==
1935
1936
1937 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1938
1939 * Send AT Commands, and get output from LHT65N/S
1940 * Upgrade firmwre of LHT65N/S.
1941
1942 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1943
1944
1945 **Option of USB TTL adapter:**
1946
1947 * CP2101 USB TTL Adapter
1948 * CH340 USB TTL Adapter
1949 * FT232 USB TTL Adapter
1950
1951 **Option of Type-C Adapter:**
1952
1953 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1954
1955
1956 **Connection:**
1957
1958 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1959 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1960 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1961
1962 (((
1963
1964
1965 Connection Example:
1966
1967 [[image:1655802313617-381.png||_mstalt="293917"]]
1968
1969
1970 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1971
1972
1973 == 6.2 How to use AT Commands? ==
1974
1975
1976 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1977
1978 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1979 )))
1980
1981
1982 Input password and ATZ to activate LHT65N/S, As shown below:
1983
1984 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1985
1986
1987 AT Command List is as below:
1988
1989 AT+<CMD>? :  Help on <CMD>
1990
1991 AT+<CMD> :  Run <CMD>
1992
1993 AT+<CMD>=<value> :  Set the value
1994
1995 AT+<CMD>=? :  Get the value
1996
1997 AT+DEBUG:  Set more info output
1998
1999 ATZ:  Trig a reset of the MCU
2000
2001 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
2002
2003 AT+DEUI:  Get or Set the Device EUI
2004
2005 AT+DADDR:  Get or Set the Device Address
2006
2007 AT+APPKEY:  Get or Set the Application Key
2008
2009 AT+NWKSKEY:  Get or Set the Network Session Key
2010
2011 AT+APPSKEY:  Get or Set the Application Session Key
2012
2013 AT+APPEUI:  Get or Set the Application EUI
2014
2015 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2016
2017 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2018
2019 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2020
2021 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2022
2023 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2024
2025 AT+RX2FQ:  Get or Set the Rx2 window frequency
2026
2027 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2028
2029 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2030
2031 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2032
2033 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2034
2035 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2036
2037 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2038
2039 AT+NWKID:  Get or Set the Network ID
2040
2041 AT+FCU:  Get or Set the Frame Counter Uplink
2042
2043 AT+FCD:  Get or Set the Frame Counter Downlink
2044
2045 AT+CLASS:  Get or Set the Device Class
2046
2047 AT+JOIN:  Join network
2048
2049 AT+NJS:  Get the join status
2050
2051 AT+SENDB:  Send hexadecimal data along with the application port
2052
2053 AT+SEND:  Send text data along with the application port
2054
2055 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2056
2057 AT+RECV:  Print last received data in raw format
2058
2059 AT+VER:  Get current image version and Frequency Band
2060
2061 AT+CFM:  Get or Set the confirmation mode (0-1)
2062
2063 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2064
2065 AT+SNR:  Get the SNR of the last received packet
2066
2067 AT+RSSI:  Get the RSSI of the last received packet
2068
2069 AT+TDC:  Get or set the application data transmission interval in ms
2070
2071 AT+PORT:  Get or set the application port
2072
2073 AT+DISAT:  Disable AT commands
2074
2075 AT+PWORD: Set password, max 9 digits
2076
2077 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2078
2079 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2080
2081 AT+PDTA:  Print the sector data from start page to stop page
2082
2083 AT+PLDTA:  Print the last few sets of data
2084
2085 AT+CLRDTA:  Clear the storage, record position back to 1st
2086
2087 AT+SLEEP:  Set sleep mode
2088
2089 AT+EXT:  Get or Set external sensor model
2090
2091 AT+BAT:  Get the current battery voltage in mV
2092
2093 AT+CFG:  Print all configurations
2094
2095 AT+WMOD:  Get or Set Work Mode
2096
2097 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2098
2099 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2100
2101 AT+SETCNT:  Set the count at present
2102
2103 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2104
2105 AT+RPL:  Get or set response level
2106
2107 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2108
2109 AT+LEAPSEC:  Get or Set Leap Second
2110
2111 AT+SYNCMOD:  Get or Set time synchronization method
2112
2113 AT+SYNCTDC:  Get or set time synchronization interval in day
2114
2115 AT+PID:  Get or set the PID
2116
2117
2118 == 6.3 How to use Downlink commands? ==
2119
2120
2121 **Downlink commands:**
2122
2123
2124 (% style="color:blue" %)**TTN:**
2125
2126 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2127
2128
2129
2130 (% style="color:blue" %)**Helium: **
2131
2132 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2133
2134
2135
2136 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2137
2138
2139 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2140
2141
2142 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2143
2144
2145
2146 (% style="color:blue" %)**AWS-IOT :**
2147
2148 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2149
2150
2151 == 6.4 How to change the uplink interval? ==
2152
2153
2154 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2155
2156
2157 == 6.5 How to upgrade firmware? ==
2158
2159
2160 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2161 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2162
2163
2164 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2165
2166
2167 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2168
2169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2170
2171 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2172
2173 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2174
2175 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2176
2177 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2178
2179 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2180
2181 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2182
2183 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2184
2185 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2186
2187 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2188
2189
2190 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2191
2192 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2193
2194 [[image:image-20240716174308-1.png||height="523" width="410"]]
2195
2196
2197 === 6.5.2 Updated firmware for V1.4 and above ===
2198
2199
2200 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2201
2202 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2203 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2204
2205 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2206
2207
2208 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2209
2210
2211 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2212
2213 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2214
2215
2216 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2217
2218
2219 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2220
2221
2222 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2223
2224 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2225
2226 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2227
2228
2229
2230 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2231
2232 Connect PC and LHT65N/S via USB TTL adapter .
2233
2234 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2235
2236 **Connection method:**
2237
2238 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2239
2240 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2241
2242 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2243
2244 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2245
2246 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2247
2248
2249 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2250
2251 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2252
2253
2254 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2255
2256 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2257
2258
2259 When this interface appears, it indicates that the download has been completed.
2260
2261 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2262
2263
2264 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2265
2266
2267 == 6.6 Why can't I see the datalog information ==
2268
2269
2270 ~1. The time is not aligned, and the correct query command is not used.
2271
2272 2. Decoder error, did not parse the datalog data, the data was filtered.
2273
2274
2275 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2276
2277
2278 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2279
2280 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2281
2282
2283 After there is UART Connectio, run below commands:
2284
2285 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2286
2287 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2288
2289 Example output:
2290
2291 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2292
2293
2294 = 7. Order Info =
2295
2296
2297 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2298
2299 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2300
2301 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2303 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2304 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2305 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2306 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2307 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2308 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2309
2310 = 8. Packing Info =
2311
2312
2313 **Package Includes**:
2314
2315 * LHT65N/S Temperature & Humidity Sensor x 1
2316 * 1 x External Lora Antenna for LHT65S
2317 * Optional external sensor
2318
2319 = 9. Reference material =
2320
2321
2322 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2323
2324 = 10. FCC Warning =
2325
2326
2327 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2328
2329 (1) This device may not cause harmful interference;
2330
2331 (2) this device must accept any interference received, including interference that may cause undesired operation.