Version 375.1 by Xiaoling on 2025/04/24 09:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89 == 1.4 Model Difference ==
90
91
92 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
93
94 (% style="color:#037691" %)**For antenna design: **
95
96 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
97 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
98
99 [[image:image-20250422095731-2.png]]
100
101
102 (% style="color:#037691" %)**For enclosure dimensions:**
103
104 * **LHT65N**
105
106 [[image:image-20250422165135-1.png]]
107
108
109
110 * **LHT65S (Unit: mm)**
111
112 [[image:image-20250422165216-2.png]]
113
114
115 = 2. Connect LHT65N/S to IoT Server =
116
117 == 2.1 How does LHT65N/S work? ==
118
119
120 (((
121 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
122 )))
123
124 (((
125 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
126 )))
127
128
129 == 2.2 How to Activate LHT65N/S? ==
130
131
132 (((
133 The LHT65N/S has two working modes:
134 )))
135
136 * (((
137 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
138 )))
139 * (((
140 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
141 )))
142
143 (((
144 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
145 )))
146
147 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
148
149 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
150 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
151 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
152 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
153 )))
154 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
155 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
156 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
157 )))
158 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
159
160 == 2.3 Example to join LoRaWAN network ==
161
162
163 (% class="wikigeneratedid" %)
164 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
165
166 (% class="wikigeneratedid" %)
167 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
168
169
170 (((
171 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
172 )))
173
174
175 === 2.3.1 Step 1: Create Device on TTN ===
176
177
178 (((
179 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
180 )))
181
182 (((
183 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
184 )))
185
186 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
187
188
189 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
190
191 (% style="color:blue" %)**1. Create application**
192
193
194 [[image:image-20250424091200-1.jpeg]]
195
196
197
198
199 [[image:image-20250424091207-2.jpeg]]
200
201
202 (% style="color:blue" %)**2. Add devices to the created Application.**
203
204 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
205
206
207 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
208
209
210 (% style="color:blue" %)**3. Enter end device specifics manually.**
211
212 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
213
214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
215
216
217
218 === 2.3.2 Step 2: Add decoder ===
219
220
221 In TTN, user can add a custom payload so it shows friendly reading.
222
223 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
224
225 Below is TTN screen shot
226
227 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
228
229 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
230
231
232 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
233
234
235 (((
236 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
237 )))
238
239 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
240
241
242 == 2.4 Uplink Payload (Fport~=2) ==
243
244
245 (((
246 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
247 )))
248
249 (((
250 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
251 )))
252
253 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
254 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
255 **Size(bytes)**
256 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
257 **2**
258 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
259 **2**
260 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
261 **2**
262 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
263 **1**
264 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
265 **4**
266 )))
267 |(% style="width:97px" %)(((
268 Value
269 )))|(% style="width:39px" %)(((
270 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
271 )))|(% style="width:100px" %)(((
272 (((
273 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
274 )))
275 )))|(% style="width:77px" %)(((
276 (((
277 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
278 )))
279 )))|(% style="width:47px" %)(((
280 [[Ext>>||anchor="H2.4.5Ext23"]] #
281 )))|(% style="width:51px" %)(((
282 [[Ext value>>||anchor="H2.4.6Extvalue"]]
283 )))
284
285 * The First 6 bytes: has fix meanings for every LHT65N/S.
286
287 * The 7th byte (EXT #): defines the external sensor model.
288
289 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
290
291 === 2.4.1 Decoder in TTN V3 ===
292
293
294 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
295
296 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
297
298 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
299
300
301 === 2.4.2 BAT-Battery Info ===
302
303
304 These two bytes of BAT include the battery state and the actually voltage.
305
306 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
307 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
308 **Bit(bit)**
309 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
310 |(% style="width:66px" %)(((
311 Value
312 )))|(% style="width:250px" %)(((
313 BAT Status
314 00(b): Ultra Low ( BAT <= 2.50v)
315 01(b): Low (2.50v <=BAT <= 2.55v)
316 10(b): OK (2.55v <= BAT <=2.65v)
317 11(b): Good (BAT >= 2.65v)
318 )))|(% style="width:152px" %)Actually BAT voltage
319
320 **(b)stands for binary**
321
322
323 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
324
325
326 Check the battery voltage for LHT65N/S.
327
328 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
329
330 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
331
332 === 2.4.3 Built-in Temperature ===
333
334
335 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
336
337 * Temperature:  0x0ABB/100=27.47℃
338
339 [[image:image-20220522235639-3.png||_mstalt="432120"]]
340
341 * Temperature:  (0xF5C6-65536)/100=-26.18℃
342
343 === 2.4.4 Built-in Humidity ===
344
345
346 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
347
348 * Humidity:    0x025C/10=60.4%
349
350 === 2.4.5 Ext # ===
351
352
353 Bytes for External Sensor:
354
355 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
356 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
357 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
358 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
359 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
360 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
361 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
362 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
363 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
364 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
365
366 === 2.4.6 Ext value ===
367
368 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
369
370
371 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
372 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
373 **Size(bytes)**
374 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
375 **2**
376 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
377 2
378 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
379 **2**
380 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
381 1
382 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
383 2
384 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
385 2
386 )))
387 |(% style="width:110px" %)(((
388 Value
389 )))|(% style="width:71px" %)(((
390 BAT & BAT Status
391 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
392 Status & Ext
393 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
394
395 [[image:image-20220522235639-5.png||_mstalt="432848"]]
396
397
398 * DS18B20 temp=0x0ADD/100=27.81℃
399
400 The last 2 bytes of data are meaningless
401
402 [[image:image-20220522235639-6.png||_mstalt="433212"]]
403
404
405 * External temperature= (0xF54F-65536)/100=-27.37℃
406
407 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
408
409 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
410
411 The last 2 bytes of data are meaningless
412
413 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
414
415
416 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
417
418
419 (((
420 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
421 )))
422
423 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
424 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
425 **Size(bytes)**
426 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
427 **2**
428 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
429 **2**
430 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
431 **2**
432 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
433 **1**
434 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
435 **4**
436 )))
437 |(% style="width:110px" %)(((
438 Value
439 )))|(% style="width:71px" %)(((
440 External temperature
441 )))|(% style="width:99px" %)(((
442 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
443 )))|(% style="width:132px" %)(((
444 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
445 )))|(% style="width:54px" %)(((
446 Status & Ext
447 )))|(% style="width:64px" %)(((
448 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
449 )))
450
451 * **Battery status & Built-in Humidity**
452
453 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
454 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
455 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
456 BAT Status
457 00(b): Ultra Low ( BAT <= 2.50v)
458 01(b): Low  (2.50v <=BAT <= 2.55v)
459 10(b): OK   (2.55v <= BAT <=2.65v)
460 11(b): Good   (BAT >= 2.65v)
461 )))|(% style="width:132px" %)(((
462 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
463 )))
464
465 * **Status & Ext Byte**
466
467 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
468 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
469 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
470
471 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
472 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
473 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
474
475 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
476
477
478 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
479 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
480 **Size(bytes)**
481 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
482 **2**
483 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
484 2
485 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
486 **2**
487 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
488 1
489 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
490 2
491 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
492 2
493 )))
494 |(% style="width:110px" %)(((
495 Value
496 )))|(% style="width:71px" %)(((
497 BAT & BAT Status
498 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
499 Status & Ext
500 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
501
502 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
503
504 be used to power the external ADC sensor; user can control the power on time for this
505
506 (% style="color:blue" %)**sensor by setting:**
507
508 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
509
510 **For example:**
511
512 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
513
514
515 Or use **downlink command A2** to set the same.
516
517 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
518
519 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
520
521 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
522
523
524 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
525
526 [[image:image-20220628150714-4.png||_mstalt="431054"]]
527
528
529 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
530
531
532 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
533
534 [[image:image-20220628151005-5.png||_mstalt="429546"]]
535
536
537 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
538
539 [[image:image-20220628151056-6.png||_mstalt="431873"]]
540
541
542 3) Within range
543
544 [[image:image-20220628151143-7.png||_mstalt="431210"]]
545
546
547 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
548
549
550 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
551
552 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
553
554 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
555 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
556 **Size(bytes)**
557 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
558 **2**
559 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
560 2
561 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
562 **2**
563 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
564 1
565 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
566 2
567 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
568 2
569 )))
570 |(% style="width:110px" %)(((
571 Value
572 )))|(% style="width:71px" %)(((
573 BAT & BAT Status
574 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
575 Status & Ext
576 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
577
578 [[image:image-20220906102307-7.png||_mstalt="430443"]]
579
580 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
581
582 The external cable NE2 can be use for MOD4 and MOD8
583
584
585 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
586
587
588 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
589
590 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
591
592 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
593 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
594 **Size(bytes)**
595 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
596 **2**
597 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
598 2
599 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
600 **2**
601 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
602 1
603 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
604 2
605 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
606 2
607 )))
608 |(% style="width:110px" %)(((
609 Value
610 )))|(% style="width:71px" %)(((
611 BAT & BAT Status
612 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
613 Status & Ext
614 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
615
616 [[image:SHT31.png||_mstalt="104715"]]
617
618
619 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
620
621
622 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
623
624
625 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
626
627 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
628
629 In Open State, the power consumption is the same as if there is no probe
630
631 In Close state, the power consumption will be 3uA higher than normal.
632
633 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
634
635
636 Ext=4,Interrupt Sensor:
637
638 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
639 |(% style="width:101px" %)(((
640 **AT+EXT=4,1**
641 )))|(% style="width:395px" %)(((
642 **Sent uplink packet in both rising and falling interrupt**
643 )))
644 |(% style="width:101px" %)(((
645 **AT+EXT=4,2**
646 )))|(% style="width:395px" %)(((
647 **Sent uplink packet only in falling interrupt**
648 )))
649 |(% style="width:101px" %)(((
650 **AT+EXT=4,3**
651 )))|(% style="width:395px" %)(((
652 **Sent uplink packet only in rising interrupt**
653 )))
654
655 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
656 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
657 **Size(bytes)**
658 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
659 **2**
660 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
661 2
662 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
663 **2**
664 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
665 1
666 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
667 1
668 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 2
670 )))
671 |(% style="width:110px" %)(((
672 Value
673 )))|(% style="width:71px" %)(((
674 BAT & BAT Status
675 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
676 Status & Ext
677 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
678
679 Trigger by falling edge:
680
681 [[image:image-20220906101145-2.png||_mstalt="428324"]]
682
683
684 Trigger by raising edge:
685
686 [[image:image-20220906101145-3.png||_mstalt="428688"]]
687
688
689 (% style="color:blue" %)**BAT & BAT Status :**
690
691 Check the battery voltage.
692
693 Ex1: 0x0B45 = 2885mV
694
695 Ex2: 0x0B49 = 2889mV
696
697
698 (% style="color:blue" %)**TempC_SHT :**
699
700 The temperature detected by the built-in temperature and humidity sensor SHT31.
701
702 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
703
704 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
705
706 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
707
708
709 (% style="color:blue" %)**Hum_SHT :**
710
711 The humidity detected by the built-in temperature and humidity sensor SHT31.
712
713 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
714
715
716 (% style="color:blue" %)**Status & Ext :**
717
718 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
719 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
720 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
721
722 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
723 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
724 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
725
726 (% style="color:blue" %)**Exti_pin_level :**
727
728 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
729 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
730
731 (% style="color:blue" %)**Exti_status :**
732
733 Determines whether the uplink packet is generated by an interrupt.
734
735 1: Interrupt packet
736
737 0: Normal TDC uplink packet
738
739
740 (% style="color:blue" %)**senseless :**
741
742 Reserved position, meaningless. The value is fixed to 0x7FFF.
743
744
745 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
746
747
748 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
749
750
751 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
752
753 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
754
755
756 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
757
758 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
759
760
761 Ext=8, Counting Sensor ( 4 bytes):
762
763 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
764 |(% style="width:131px" %)(((
765 **AT+EXT=8,0**
766 )))|(% style="width:195px" %)(((
767 **Count at falling interrupt**
768 )))
769 |(% style="width:131px" %)(((
770 **AT+EXT=8,1**
771 )))|(% style="width:195px" %)(((
772 **Count at rising interrupt**
773 )))
774 |(% style="width:131px" %)(((
775 **AT+SETCNT=60**
776 )))|(% style="width:195px" %)(((
777 **Sent current count to 60**
778 )))
779
780 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
781 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
782 **Size(bytes)**
783 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
784 **2**
785 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
786 2
787 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
788 **2**
789 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
790 1
791 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
792 4
793 )))
794 |(% style="width:110px" %)(((
795 Value
796 )))|(% style="width:71px" %)(((
797 BAT & BAT Status
798 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
799 Status & Ext
800 )))|(% style="width:64px" %)Exit_count
801
802 [[image:image-20220906101320-6.png||_mstalt="428064"]]
803
804
805 (% style="color:blue" %)**A2 downlink Command:**
806
807 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
808
809 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
810
811 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
812
813 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
814
815 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
816
817
818 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
819
820
821 (((
822 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
823 )))
824
825 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
826 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
827 **Size(bytes)**
828 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
829 **2**
830 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
831 **2**
832 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
833 **2**
834 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
835 **1**
836 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
837 **4**
838 )))
839 |(% style="width:110px" %)(((
840 Value
841 )))|(% style="width:71px" %)(((
842 External temperature
843 )))|(% style="width:99px" %)(((
844 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
845 )))|(% style="width:132px" %)(((
846 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
847 )))|(% style="width:54px" %)(((
848 Status & Ext
849 )))|(% style="width:64px" %)(((
850 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
851 )))
852
853 * **Battery status & Built-in Humidity**
854
855 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
856 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
857 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
858 BAT Status
859 00(b): Ultra Low ( BAT <= 2.50v)
860 01(b): Low  (2.50v <=BAT <= 2.55v)
861 10(b): OK   (2.55v <= BAT <=2.65v)
862 11(b): Good   (BAT >= 2.65v)
863 )))|(% style="width:132px" %)(((
864 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
865 )))
866
867 * **Status & Ext Byte**
868
869 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
870 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
871 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
872
873 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
874 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
875 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
876
877 == 2.5 Show data on Datacake ==
878
879
880 (((
881 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
882 )))
883
884
885 (((
886 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
887 )))
888
889 (((
890 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
891 )))
892
893
894 (((
895 Add Datacake:
896 )))
897
898 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
899
900
901 Select default key as Access Key:
902
903
904 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
905
906
907 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
908
909 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
910
911
912 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
913
914
915 == 2.6 Datalog Feature ==
916
917
918 (((
919 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
920 )))
921
922
923 === 2.6.1 Ways to get datalog via LoRaWAN ===
924
925
926 There are two methods:
927
928 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
929
930
931 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
932
933
934 (% style="color:red" %)**Note for method 2:**
935
936 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
937 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
938
939 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
940
941 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
942
943
944 === 2.6.2 Unix TimeStamp ===
945
946
947 LHT65N/S uses Unix TimeStamp format based on
948
949 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
950
951
952 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
953
954 Below is the converter example
955
956 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
957
958
959 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
960
961
962 === 2.6.3 Set Device Time ===
963
964
965 (((
966 (% style="color:blue" %)**There are two ways to set device's time:**
967 )))
968
969 (((
970 **1.  Through LoRaWAN MAC Command (Default settings)**
971 )))
972
973 (((
974 User need to set SYNCMOD=1 to enable sync time via MAC command.
975 )))
976
977 (((
978 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
979 )))
980
981 (((
982 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
983 )))
984
985
986 (((
987 **2. Manually Set Time**
988 )))
989
990 (((
991 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
992 )))
993
994
995 === 2.6.4 Poll sensor value ===
996
997
998 User can poll sensor value based on timestamps from the server. Below is the downlink command.
999
1000 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
1001 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
1002 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
1003
1004 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1005
1006 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1007
1008 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1009
1010 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1011
1012
1013 === 2.6.5 Datalog Uplink payload ===
1014
1015
1016 The Datalog poll reply uplink will use below payload format.
1017
1018 **Retrieval data payload:**
1019
1020 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1021 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1022 **Size(bytes)**
1023 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1024 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1025
1026 **Poll message flag & Ext:**
1027
1028 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1029 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1030 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1031
1032 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1033
1034 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1035
1036 * Poll Message Flag is set to 1.
1037
1038 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1039
1040 For example, in US915 band, the max payload for different DR is:
1041
1042 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1043
1044 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1045
1046 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1047
1048 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1049
1050 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1051
1052
1053 **Example:**
1054
1055 If LHT65N/S has below data inside Flash:
1056
1057 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1058 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1059 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1060 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1061 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1062 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1063 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1064 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1065 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1066 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1067
1068 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1069
1070 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1071
1072 Stop time: 60066DA7= time 21/1/19 05:27:03
1073
1074
1075 **LHT65N/S will uplink this payload.**
1076
1077 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1078
1079
1080 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1081
1082 Where the first 11 bytes is for the first entry:
1083
1084 7FFF089801464160065F97
1085
1086 Ext sensor data=0x7FFF/100=327.67
1087
1088 Temp=0x088E/100=22.00
1089
1090 Hum=0x014B/10=32.6
1091
1092 poll message flag & Ext=0x41,means reply data,Ext=1
1093
1094 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1095
1096
1097 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1098
1099
1100 (((
1101 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1102 )))
1103
1104 (((
1105 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1106
1107
1108 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1109
1110 (((
1111 (% class="box infomessage" %)
1112 (((
1113 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1114 )))
1115 )))
1116
1117 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1118
1119 **~ AT+WMOD=1,60,-10,20**
1120
1121
1122 Explain:
1123
1124 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1125 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1126 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1127
1128 (% style="color:#4f81bd" %)**Downlink Command:**
1129
1130 **Example: **A5013CFC1807D0
1131
1132 MOD=01
1133
1134 CITEMP=3C(S) =60(S)
1135
1136 TEMPlow=FC18 = -1000/100=-10(℃)
1137
1138 TEMPhigh=07D0=2000/100=20(℃)
1139
1140
1141 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1142
1143 **AT+WMOD=2,60,5** 
1144
1145 Explain:
1146
1147 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1148 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1149 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1150
1151 (% style="color:#4f81bd" %)**Downlink Command**
1152
1153 **Example: **A5023C05
1154
1155 MOD=02
1156
1157 CITEMP=3C(S)=60(S)
1158
1159 temperature fluctuation=05(℃)
1160
1161
1162 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1163
1164 **AT+WMOD=3,1,60,20,-16,32,1**   
1165
1166 Explain:
1167
1168 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1169 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1170 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1171 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1172 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1173 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1174
1175 (% style="color:#4f81bd" %)**Downlink Command:**
1176
1177 **Example: **A50301003C14FFF0002001
1178
1179 MOD=03
1180
1181 TEMP=DS18B20
1182
1183 CITEMP=003C(S)=60(S)
1184
1185 Total number of acquisitions=14
1186
1187 TEMPlow=FFF0=-16(℃)
1188
1189 TEMPhigh=0020=20(℃)
1190
1191 ARTEMP=01
1192
1193
1194 **Uplink payload( Fport=3)**
1195
1196 **Example: CBEA**01**0992**//0A41//**09C4**
1197
1198 BatV=CBEA
1199
1200 TEMP=DS18B20
1201
1202 Temp1=0992  ~/~/ 24.50℃
1203
1204 Temp2=0A41  ~/~/ 26.25℃
1205
1206 Temp3=09C4  ~/~/ 25.00℃
1207
1208 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1209
1210 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1211 )))
1212
1213
1214 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1215
1216
1217 (% class="box infomessage" %)
1218 (((
1219 (((
1220 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1221 )))
1222
1223 (((
1224 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1225 )))
1226
1227 (((
1228 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1229 )))
1230
1231 (((
1232 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1233 )))
1234
1235 (((
1236 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1237 )))
1238 )))
1239
1240 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1241
1242 Total bytes: 8 bytes
1243
1244 **Example:**AA0100010001003C
1245
1246 WMOD=01
1247
1248 CITEMP=0001
1249
1250 TEMPlow=0001
1251
1252 TEMPhigh=003C
1253
1254
1255 == 2.8 LED Indicator ==
1256
1257
1258 The LHT65 has a triple color LED which for easy showing different stage .
1259
1260 While user press ACT button, the LED will work as per LED status with ACT button.
1261
1262 In a normal working state:
1263
1264 * For each uplink, the BLUE LED or RED LED will blink once.
1265 BLUE LED when external sensor is connected.
1266 * RED LED when external sensor is not connected
1267 * For each success downlink, the PURPLE LED will blink once
1268
1269 == 2.9 installation ==
1270
1271
1272 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1273
1274
1275 = 3. Sensors and Accessories =
1276
1277 == 3.1 E2 Extension Cable ==
1278
1279
1280 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1281
1282
1283 **1m long breakout cable for LHT65N/S. Features:**
1284
1285 * (((
1286 Use for AT Command, works for both LHT52, LHT65N/S
1287 )))
1288 * (((
1289 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1290 )))
1291 * (((
1292 Supports ADC mode to monitor external ADC
1293 )))
1294 * (((
1295 Supports Interrupt mode
1296 )))
1297 * (((
1298 Exposed All pins from the LHT65N/S Type-C connector.
1299
1300
1301
1302 )))
1303
1304 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1305
1306
1307 == 3.2 E3 Temperature Probe ==
1308
1309
1310 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1311
1312
1313 Temperature sensor with 2 meters cable long
1314
1315 * Resolution: 0.0625 °C
1316 * ±0.5°C accuracy from -10°C to +85°C
1317 * ±2°C accuracy from -55°C to +125°C
1318 * Operating Range: -40 ~~ 125 °C
1319 * Working voltage 2.35v ~~ 5v
1320
1321 == 3.3 E31F Temperature Probe ==
1322
1323
1324 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1325
1326
1327 Temperature sensor with 1 meters cable long
1328
1329
1330 **Built-in Temperature Sensor:**
1331
1332 * Resolution: 0.01 °C
1333 * Accuracy Tolerance : Typ ±0.3 °C
1334 * Long Term Drift: < 0.02 °C/yr
1335 * Operating Range: -40 ~~ 80 °C
1336
1337 **Built-in Humidity Sensor:**
1338
1339 * Resolution: 0.04 % RH
1340 * Accuracy Tolerance : Typ ±3 % RH
1341 * Long Term Drift: < 0.25 RH/yr
1342 * Operating Range: 0 ~~ 96 % RH
1343
1344 **External Temperature Sensor :**
1345
1346 * Resolution: 0.01 °C
1347 * Accuracy Tolerance : Typical ±0.3 °C
1348 * Long Term Drift: < 0.02 °C/yr
1349 * Operating Range: -40 ~~ 125 °C
1350
1351 **External Humidity Sensor :**
1352
1353 * Resolution: 0.04 % RH
1354 * Accuracy Tolerance : Typ ±3 % RH
1355 * Long Term Drift: < 0.25 RH/yr
1356 * Operating Range: 0 ~~ 96 % RH
1357
1358 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1359
1360
1361 External Temperature Sensor – NE117:
1362 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1363
1364 * Silica gel cable
1365 * ±0.1 °C (maximum) from –20 °C to 50 °C
1366 * ±0.2 °C (maximum) from –40 °C to 100 °C
1367 * ±0.3 °C (maximum) from –55 °C to 150 °C
1368
1369 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1370
1371
1372 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1373
1374
1375 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1376 * 3 wires: VCC/GND/INT
1377 * Cable Lenght: 1 meter
1378
1379 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1380
1381 LHT65N/S-DC can be used to connect various types of external sensor. below.
1382
1383 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1384
1385 [[image:image-20240422100149-5.png||height="163" width="510"]]
1386
1387 [[image:image-20240422100217-6.png||height="141" width="507"]]
1388
1389
1390 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1391
1392
1393 * Aluminum Alloy Door Sensor
1394 * Detect Distance: ~~3cm
1395 * Cable Lenght: 1 meter
1396
1397 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1398
1399 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1400
1401
1402 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1403
1404
1405 (((
1406 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1407 )))
1408
1409 * (((
1410 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1411 )))
1412
1413 * (((
1414 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1415 )))
1416
1417 (((
1418 There are two kinds of commands to configure LHT65N/S, they are:
1419 )))
1420
1421 * (((
1422 (% style="color:#4f81bd" %)**General Commands**.
1423 )))
1424
1425 (((
1426 These commands are to configure:
1427 )))
1428
1429 1. (((
1430 General system settings like: uplink interval.
1431 )))
1432 1. (((
1433 LoRaWAN protocol & radio-related commands.
1434 )))
1435
1436 (((
1437 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1438 )))
1439
1440 * (((
1441 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1442 )))
1443
1444 (((
1445 These commands are only valid for LHT65N/S, as below:
1446 )))
1447
1448
1449 == 4.1 Set Transmit Interval Time ==
1450
1451
1452 Feature: Change LoRaWAN End Node Transmit Interval.
1453
1454
1455 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1456
1457 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1458 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1459 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1460 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1461
1462 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1463
1464 Format: Command Code (0x01) followed by 3 bytes time value.
1465
1466 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1467
1468 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1469
1470 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1471
1472 == 4.2 Set External Sensor Mode ==
1473
1474
1475 Feature: Change External Sensor Mode.
1476
1477 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1478
1479 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
1480 |(% style="background-color:#4f81bd; color:white; width:150px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:86px" %)**Dowlink Command**
1481 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1482 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1483 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1484 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1485 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1486 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1487 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1488 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1489 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1490
1491 **Response**
1492
1493 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1494
1495 Total bytes: 2 ~~ 5 bytes
1496
1497 **Example:**
1498
1499 * 0xA201: Set external sensor type to E1
1500
1501 * 0xA209: Same as AT+EXT=9
1502
1503 * 0xA20702003c: Same as AT+SETCNT=60
1504
1505 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1506
1507
1508 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1509
1510 * First Packet after OTAA Join
1511 * Every 24 hours since the first packet.
1512
1513 PID is default set to disable (0)
1514
1515 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1516
1517 (% style="color:#4f81bd" %)**AT Command:**
1518
1519 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1520 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1521 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1522
1523 (% style="color:#4f81bd" %)**Downlink Command:**
1524
1525 * **0xA800**  **~-~->** AT+PID=0
1526 * **0xA801**     **~-~->** AT+PID=1
1527
1528 == 4.4 Set Password ==
1529
1530
1531 Feature: Set device password, max 9 digits
1532
1533 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1534
1535 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1536 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1537 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1538 123456
1539
1540 OK
1541 )))
1542 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1543
1544 (% style="color:#4f81bd" %)**Downlink Command:**
1545
1546 No downlink command for this feature.
1547
1548
1549 == 4.5 Quit AT Command ==
1550
1551
1552 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1553
1554 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1555
1556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1557 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1558 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1559
1560 (% style="color:#4f81bd" %)**Downlink Command:**
1561
1562 No downlink command for this feature.
1563
1564
1565 == 4.6 Set to sleep mode ==
1566
1567
1568 Feature: Set device to sleep mode
1569
1570 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1571 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1572
1573 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1574
1575 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1576 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1577 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1578 Clear all stored sensor data…
1579
1580 OK
1581 )))
1582
1583 (% style="color:#4f81bd" %)**Downlink Command:**
1584
1585 * There is no downlink command to set to Sleep mode.
1586
1587 == 4.7 Set system time ==
1588
1589
1590 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1591
1592 (% style="color:#4f81bd" %)**AT Command:**
1593
1594 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1595 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1596 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1597 OK
1598
1599 Set System time to 2021-01-20 00:59:12
1600 )))
1601
1602 (% style="color:#4f81bd" %)**Downlink Command:**
1603
1604 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1605
1606
1607 == 4.8 Set Time Sync Mode ==
1608
1609
1610 (((
1611 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1612 )))
1613
1614 (((
1615 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1616 )))
1617
1618 (% style="color:#4f81bd" %)**AT Command:**
1619
1620 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1621 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1622 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1623
1624 (% style="color:#4f81bd" %)**Downlink Command:**
1625
1626 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1627 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1628
1629
1630 == 4.9 Set Time Sync Interval ==
1631
1632
1633 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1634
1635 (% style="color:#4f81bd" %)**AT Command:**
1636
1637 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1638 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1639 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1640
1641 (% style="color:#4f81bd" %)**Downlink Command:**
1642
1643 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1644
1645
1646 == 4.10 Get data ==
1647
1648
1649 Feature: Get the current sensor data.
1650
1651 (% style="color:#4f81bd" %)**AT Command:**
1652
1653 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1654 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1655
1656 == 4.11 Print data entries base on page ==
1657
1658
1659 Feature: Print the sector data from start page to stop page (max is 416 pages).
1660
1661 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1662
1663 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1664 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1665 |(% style="width:156px" %)(((
1666 AT+PDTA=1,3
1667 Print page 1 to 3
1668 )))|(% style="width:311px" %)(((
1669 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1670 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1671 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1672 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1673 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1674 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1675 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1676 8019570
1677 8019580
1678 8019590
1679 80195A0
1680 80195B0
1681 80195C0
1682 80195D0
1683 80195E0
1684 80195F0
1685
1686 OK
1687 )))
1688
1689 (% style="color:#4f81bd" %)**Downlink Command:**
1690
1691 No downlink commands for feature
1692
1693
1694 == 4.12 Print last few data entries ==
1695
1696
1697 Feature: Print the last few data entries
1698
1699 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1700
1701 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1702 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1703 |(% style="width:156px" %)(((
1704 AT+PLDTA=5
1705 Print last 5 entries
1706 )))|(% style="width:311px" %)(((
1707 Stop Tx and RTP events when read sensor data
1708 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1709 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1710 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1711 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1712 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1713 Start Tx and RTP events
1714 OK
1715 )))
1716
1717 (% style="color:#4f81bd" %)**Downlink Command:**
1718
1719 No downlink commands for feature
1720
1721
1722 == 4.13 Clear Flash Record ==
1723
1724
1725 Feature: Clear flash storage for data log feature.
1726
1727 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1728
1729 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1730 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1731 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1732 Clear all stored sensor data…
1733
1734 OK
1735 )))
1736
1737 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1738
1739 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1740
1741 == 4.14 Auto Send None-ACK messages ==
1742
1743
1744 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1745
1746 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1747
1748 The default factory setting is 0
1749
1750 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1751 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1752 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1753
1754 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1755
1756 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1757
1758 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1759
1760
1761 Feature: Set internal and external temperature sensor alarms.
1762
1763 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1764 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1765 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1766
1767 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1768
1769 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1770
1771 0): Cancel
1772
1773 1): Threshold alarm
1774
1775 2): Fluctuation alarm
1776
1777 3): Sampling multiple times and uplink together
1778
1779
1780 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1781
1782 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1783
1784
1785 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1786
1787 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1788
1789 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1790
1791
1792 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1793
1794 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1795
1796 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1797
1798
1799 **3): If Alarm Mode is set to 3:**
1800
1801 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1802 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1803 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1804 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1805 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1806 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1807
1808 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1809
1810 0xA5 00 ~-~- AT+WMOD=0.
1811
1812 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1813
1814 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1815
1816 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1817
1818 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1819
1820 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1821
1822
1823 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1824
1825
1826 Feature: use downlink to get firmware version.
1827
1828 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1829
1830 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1831 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1832 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1833
1834 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1835
1836 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1837
1838 (% style="color:#037691" %)**Sensor model**
1839
1840 0x0b: LHT65N/S
1841
1842
1843 (% style="color:#037691" %)**Firmware version**
1844
1845 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1846
1847 Example: 0x0140=V1.4.0
1848
1849
1850 (% style="color:#037691" %)** Frequency Band:**
1851
1852 * 0x01: EU868
1853 * 0x02: US915
1854 * 0x03: IN865
1855 * 0x04: AU915
1856 * 0x05: KZ865
1857 * 0x06: RU864
1858 * 0x07: AS923
1859 * 0x08: AS923-1
1860 * 0x09: AS923-2
1861 * 0xa0: AS923-3
1862
1863 (% style="color:#037691" %)**Subband**
1864
1865 value 0x00 ~~ 0x08
1866
1867 Example: 0xFF ~-~--> " NULL"
1868
1869
1870 (% style="color:#037691" %)**Battery**
1871
1872 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1873
1874 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1875
1876
1877 == 4.17 Setting LEDAlarm ==
1878
1879 Feature: Setting LEDAlarm
1880
1881 The default factory setting is 0
1882
1883 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1884 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1885 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1886
1887 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1888
1889 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1890
1891 = 5. Battery & How to replace =
1892
1893 == 5.1 Battery Type ==
1894
1895
1896 (((
1897 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1898 )))
1899
1900 (((
1901 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1902
1903 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1904 )))
1905
1906 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1907
1908 == 5.2 Replace Battery ==
1909
1910
1911 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1912
1913 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1914
1915
1916 == 5.3 Battery Life Analyze ==
1917
1918
1919 (((
1920 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1921 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1922 )))
1923
1924
1925 (((
1926 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1927 )))
1928
1929
1930 = 6. FAQ =
1931
1932 == 6.1 How to connect to LHT65N/S UART interface? ==
1933
1934
1935 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1936
1937 * Send AT Commands, and get output from LHT65N/S
1938 * Upgrade firmwre of LHT65N/S.
1939
1940 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1941
1942
1943 **Option of USB TTL adapter:**
1944
1945 * CP2101 USB TTL Adapter
1946 * CH340 USB TTL Adapter
1947 * FT232 USB TTL Adapter
1948
1949 **Option of Type-C Adapter:**
1950
1951 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1952
1953
1954 **Connection:**
1955
1956 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1957 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1958 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1959
1960 (((
1961
1962
1963 Connection Example:
1964
1965 [[image:1655802313617-381.png||_mstalt="293917"]]
1966
1967
1968 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1969
1970
1971 == 6.2 How to use AT Commands? ==
1972
1973
1974 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1975
1976 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1977 )))
1978
1979
1980 Input password and ATZ to activate LHT65N/S, As shown below:
1981
1982 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1983
1984
1985 AT Command List is as below:
1986
1987 AT+<CMD>? :  Help on <CMD>
1988
1989 AT+<CMD> :  Run <CMD>
1990
1991 AT+<CMD>=<value> :  Set the value
1992
1993 AT+<CMD>=? :  Get the value
1994
1995 AT+DEBUG:  Set more info output
1996
1997 ATZ:  Trig a reset of the MCU
1998
1999 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
2000
2001 AT+DEUI:  Get or Set the Device EUI
2002
2003 AT+DADDR:  Get or Set the Device Address
2004
2005 AT+APPKEY:  Get or Set the Application Key
2006
2007 AT+NWKSKEY:  Get or Set the Network Session Key
2008
2009 AT+APPSKEY:  Get or Set the Application Session Key
2010
2011 AT+APPEUI:  Get or Set the Application EUI
2012
2013 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2014
2015 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2016
2017 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2018
2019 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2020
2021 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2022
2023 AT+RX2FQ:  Get or Set the Rx2 window frequency
2024
2025 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2026
2027 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2028
2029 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2030
2031 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2032
2033 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2034
2035 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2036
2037 AT+NWKID:  Get or Set the Network ID
2038
2039 AT+FCU:  Get or Set the Frame Counter Uplink
2040
2041 AT+FCD:  Get or Set the Frame Counter Downlink
2042
2043 AT+CLASS:  Get or Set the Device Class
2044
2045 AT+JOIN:  Join network
2046
2047 AT+NJS:  Get the join status
2048
2049 AT+SENDB:  Send hexadecimal data along with the application port
2050
2051 AT+SEND:  Send text data along with the application port
2052
2053 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2054
2055 AT+RECV:  Print last received data in raw format
2056
2057 AT+VER:  Get current image version and Frequency Band
2058
2059 AT+CFM:  Get or Set the confirmation mode (0-1)
2060
2061 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2062
2063 AT+SNR:  Get the SNR of the last received packet
2064
2065 AT+RSSI:  Get the RSSI of the last received packet
2066
2067 AT+TDC:  Get or set the application data transmission interval in ms
2068
2069 AT+PORT:  Get or set the application port
2070
2071 AT+DISAT:  Disable AT commands
2072
2073 AT+PWORD: Set password, max 9 digits
2074
2075 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2076
2077 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2078
2079 AT+PDTA:  Print the sector data from start page to stop page
2080
2081 AT+PLDTA:  Print the last few sets of data
2082
2083 AT+CLRDTA:  Clear the storage, record position back to 1st
2084
2085 AT+SLEEP:  Set sleep mode
2086
2087 AT+EXT:  Get or Set external sensor model
2088
2089 AT+BAT:  Get the current battery voltage in mV
2090
2091 AT+CFG:  Print all configurations
2092
2093 AT+WMOD:  Get or Set Work Mode
2094
2095 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2096
2097 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2098
2099 AT+SETCNT:  Set the count at present
2100
2101 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2102
2103 AT+RPL:  Get or set response level
2104
2105 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2106
2107 AT+LEAPSEC:  Get or Set Leap Second
2108
2109 AT+SYNCMOD:  Get or Set time synchronization method
2110
2111 AT+SYNCTDC:  Get or set time synchronization interval in day
2112
2113 AT+PID:  Get or set the PID
2114
2115
2116 == 6.3 How to use Downlink commands? ==
2117
2118
2119 **Downlink commands:**
2120
2121
2122 (% style="color:blue" %)**TTN:**
2123
2124 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2125
2126
2127
2128 (% style="color:blue" %)**Helium: **
2129
2130 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2131
2132
2133
2134 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2135
2136
2137 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2138
2139
2140 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2141
2142
2143
2144 (% style="color:blue" %)**AWS-IOT :**
2145
2146 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2147
2148
2149 == 6.4 How to change the uplink interval? ==
2150
2151
2152 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2153
2154
2155 == 6.5 How to upgrade firmware? ==
2156
2157
2158 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2159 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2160
2161
2162 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2163
2164
2165 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2166
2167 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2168
2169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2170
2171 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2172
2173 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2174
2175 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2176
2177 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2178
2179 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2180
2181 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2182
2183 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2184
2185 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2186
2187
2188 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2189
2190 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2191
2192 [[image:image-20240716174308-1.png||height="523" width="410"]]
2193
2194
2195 === 6.5.2 Updated firmware for V1.4 and above ===
2196
2197
2198 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2199
2200 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2201 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2202
2203 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2204
2205
2206 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2207
2208
2209 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2210
2211 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2212
2213
2214 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2215
2216
2217 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2218
2219
2220 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2221
2222 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2223
2224 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2225
2226
2227
2228 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2229
2230 Connect PC and LHT65N/S via USB TTL adapter .
2231
2232 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2233
2234 **Connection method:**
2235
2236 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2237
2238 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2239
2240 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2241
2242 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2243
2244 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2245
2246
2247 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2248
2249 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2250
2251
2252 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2253
2254 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2255
2256
2257 When this interface appears, it indicates that the download has been completed.
2258
2259 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2260
2261
2262 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2263
2264
2265 == 6.6 Why can't I see the datalog information ==
2266
2267
2268 ~1. The time is not aligned, and the correct query command is not used.
2269
2270 2. Decoder error, did not parse the datalog data, the data was filtered.
2271
2272
2273 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2274
2275
2276 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2277
2278 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2279
2280
2281 After there is UART Connectio, run below commands:
2282
2283 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2284
2285 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2286
2287 Example output:
2288
2289 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2290
2291
2292 = 7. Order Info =
2293
2294
2295 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2296
2297 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2298
2299 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2300 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2301 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2303 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2304 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2305 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2306 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2307
2308 = 8. Packing Info =
2309
2310
2311 **Package Includes**:
2312
2313 * LHT65N/S Temperature & Humidity Sensor x 1
2314 * 1 x External Lora Antenna for LHT65S
2315 * Optional external sensor
2316
2317 = 9. Reference material =
2318
2319
2320 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2321
2322 = 10. FCC Warning =
2323
2324
2325 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2326
2327 (1) This device may not cause harmful interference;
2328
2329 (2) this device must accept any interference received, including interference that may cause undesired operation.