Version 364.1 by Mengting Qiu on 2025/04/22 14:21

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89
90 == 1.4 Model Difference ==
91
92
93 The LHT65N and LHT65S share identical core functionalities. Their differences lie in the (% style="color:blue" %)**antenna design**(%%) and (% style="color:blue" %)**enclosure dimensions**(%%).
94
95 (% style="color:#037691" %)**For antenna design: **
96
97 * LHT65N: Built-in spring antenna, suitable for indoor environments with stable signals.
98 * LHT65S: External SMA antenna, suitable for scenarios where external antennas are needed to optimize long-distance communication.
99
100 [[image:image-20250422095731-2.png]]
101
102
103 (% style="color:#037691" %)**For enclosure dimensions:**
104
105 Unit: mm
106
107 * LHT65N
108
109 [[image:image-20250422102112-2.png||height="237" width="350"]][[image:image-20250422102132-3.png||height="237" width="345"]]
110
111 [[image:image-20250422102207-4.png]][[image:image-20250422102223-5.png||height="234" width="164"]]
112
113 * LHT65S
114
115
116
117
118
119 = 2. Connect LHT65N/S to IoT Server =
120
121 == 2.1 How does LHT65N/S work? ==
122
123
124 (((
125 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
126 )))
127
128 (((
129 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
130 )))
131
132
133 == 2.2 How to Activate LHT65N/S? ==
134
135
136 (((
137 The LHT65N/S has two working modes:
138 )))
139
140 * (((
141 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
142 )))
143 * (((
144 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
145 )))
146
147 (((
148 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
149 )))
150
151 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
152
153 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
154 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
155 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
156 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
157 )))
158 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
159 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
160 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
161 )))
162 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
163
164 == 2.3 Example to join LoRaWAN network ==
165
166
167 (% class="wikigeneratedid" %)
168 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
169
170 (% class="wikigeneratedid" %)
171 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
172
173
174 (((
175 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
176 )))
177
178
179 === 2.3.1 Step 1: Create Device on TTN ===
180
181
182 (((
183 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
184 )))
185
186 (((
187 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
188 )))
189
190 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
191
192 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
193
194 (% style="color:blue" %)**1. Create application**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
197
198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
199
200
201 (% style="color:blue" %)**2. Add devices to the created Application.**
202
203
204 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
205
206 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
207
208 (% style="color:blue" %)**3. Enter end device specifics manually.**
209
210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
211
212
213 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
214
215
216 === 2.3.2 Step 2: Add decoder ===
217
218
219 In TTN, user can add a custom payload so it shows friendly reading.
220
221 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
222
223 Below is TTN screen shot
224
225 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
226
227 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
228
229 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
230
231
232 (((
233 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
234 )))
235
236 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
237
238
239 == 2.4 Uplink Payload (Fport~=2) ==
240
241
242 (((
243 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
244 )))
245
246 (((
247 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
248 )))
249
250 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
251 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
252 **Size(bytes)**
253 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
254 **2**
255 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
256 **2**
257 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
258 **2**
259 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
260 **1**
261 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
262 **4**
263 )))
264 |(% style="width:97px" %)(((
265 Value
266 )))|(% style="width:39px" %)(((
267 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
268 )))|(% style="width:100px" %)(((
269 (((
270 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
271 )))
272 )))|(% style="width:77px" %)(((
273 (((
274 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
275 )))
276 )))|(% style="width:47px" %)(((
277 [[Ext>>||anchor="H2.4.5Ext23"]] #
278 )))|(% style="width:51px" %)(((
279 [[Ext value>>||anchor="H2.4.6Extvalue"]]
280 )))
281
282 * The First 6 bytes: has fix meanings for every LHT65N/S.
283
284 * The 7th byte (EXT #): defines the external sensor model.
285
286 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
287
288 === 2.4.1 Decoder in TTN V3 ===
289
290
291 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
292
293 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
294
295
296 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
297
298
299 === 2.4.2 BAT-Battery Info ===
300
301
302 These two bytes of BAT include the battery state and the actually voltage.
303
304 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
305 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
306 **Bit(bit)**
307 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
308 |(% style="width:66px" %)(((
309 Value
310 )))|(% style="width:250px" %)(((
311 BAT Status
312 00(b): Ultra Low ( BAT <= 2.50v)
313 01(b): Low (2.50v <=BAT <= 2.55v)
314 10(b): OK (2.55v <= BAT <=2.65v)
315 11(b): Good (BAT >= 2.65v)
316 )))|(% style="width:152px" %)Actually BAT voltage
317
318 **(b)stands for binary**
319
320
321 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
322
323
324 Check the battery voltage for LHT65N/S.
325
326 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
327
328 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
329
330 === 2.4.3 Built-in Temperature ===
331
332
333 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
334
335 * Temperature:  0x0ABB/100=27.47℃
336
337 [[image:image-20220522235639-3.png||_mstalt="432120"]]
338
339 * Temperature:  (0xF5C6-65536)/100=-26.18℃
340
341 === 2.4.4 Built-in Humidity ===
342
343
344 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
345
346 * Humidity:    0x025C/10=60.4%
347
348 === 2.4.5 Ext # ===
349
350
351 Bytes for External Sensor:
352
353 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
354 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
355 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
356 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
357 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
358 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
359 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
360 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
361 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
362 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
363
364 === 2.4.6 Ext value ===
365
366 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
367
368
369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
370 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
371 **Size(bytes)**
372 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
373 **2**
374 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
375 2
376 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
377 **2**
378 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
379 1
380 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
381 2
382 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
383 2
384 )))
385 |(% style="width:110px" %)(((
386 Value
387 )))|(% style="width:71px" %)(((
388 BAT & BAT Status
389 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
390 Status & Ext
391 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
392
393 [[image:image-20220522235639-5.png||_mstalt="432848"]]
394
395
396 * DS18B20 temp=0x0ADD/100=27.81℃
397
398 The last 2 bytes of data are meaningless
399
400 [[image:image-20220522235639-6.png||_mstalt="433212"]]
401
402
403 * External temperature= (0xF54F-65536)/100=-27.37℃
404
405 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
406
407 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
408
409 The last 2 bytes of data are meaningless
410
411 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
412
413
414 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
415
416
417 (((
418 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
419 )))
420
421 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
422 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
423 **Size(bytes)**
424 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
425 **2**
426 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
427 **2**
428 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
429 **2**
430 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
431 **1**
432 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
433 **4**
434 )))
435 |(% style="width:110px" %)(((
436 Value
437 )))|(% style="width:71px" %)(((
438 External temperature
439 )))|(% style="width:99px" %)(((
440 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
441 )))|(% style="width:132px" %)(((
442 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
443 )))|(% style="width:54px" %)(((
444 Status & Ext
445 )))|(% style="width:64px" %)(((
446 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
447 )))
448
449 * **Battery status & Built-in Humidity**
450
451 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
452 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
453 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
454 BAT Status
455 00(b): Ultra Low ( BAT <= 2.50v)
456 01(b): Low  (2.50v <=BAT <= 2.55v)
457 10(b): OK   (2.55v <= BAT <=2.65v)
458 11(b): Good   (BAT >= 2.65v)
459 )))|(% style="width:132px" %)(((
460 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
461 )))
462
463 * **Status & Ext Byte**
464
465 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
466 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
467 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
468
469 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
470 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
471 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
472
473 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
474
475
476 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
477 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
478 **Size(bytes)**
479 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
480 **2**
481 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
482 2
483 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
484 **2**
485 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
486 1
487 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
488 2
489 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
490 2
491 )))
492 |(% style="width:110px" %)(((
493 Value
494 )))|(% style="width:71px" %)(((
495 BAT & BAT Status
496 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
497 Status & Ext
498 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
499
500 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
501
502 be used to power the external ADC sensor; user can control the power on time for this
503
504 (% style="color:blue" %)**sensor by setting:**
505
506 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
507
508 **For example:**
509
510 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
511
512
513 Or use **downlink command A2** to set the same.
514
515 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
516
517 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
518
519 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
520
521
522 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
523
524 [[image:image-20220628150714-4.png||_mstalt="431054"]]
525
526
527 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
528
529
530 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
531
532 [[image:image-20220628151005-5.png||_mstalt="429546"]]
533
534
535 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
536
537 [[image:image-20220628151056-6.png||_mstalt="431873"]]
538
539
540 3) Within range
541
542 [[image:image-20220628151143-7.png||_mstalt="431210"]]
543
544
545 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
546
547
548 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
549
550 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
551
552 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
553 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
554 **Size(bytes)**
555 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
556 **2**
557 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
558 2
559 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
560 **2**
561 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
562 1
563 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
564 2
565 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
566 2
567 )))
568 |(% style="width:110px" %)(((
569 Value
570 )))|(% style="width:71px" %)(((
571 BAT & BAT Status
572 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
573 Status & Ext
574 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
575
576 [[image:image-20220906102307-7.png||_mstalt="430443"]]
577
578 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
579
580 The external cable NE2 can be use for MOD4 and MOD8
581
582
583 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
584
585
586 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
587
588 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
589
590 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
591 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
592 **Size(bytes)**
593 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
594 **2**
595 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
596 2
597 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
598 **2**
599 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
600 1
601 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
602 2
603 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
604 2
605 )))
606 |(% style="width:110px" %)(((
607 Value
608 )))|(% style="width:71px" %)(((
609 BAT & BAT Status
610 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
611 Status & Ext
612 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
613
614 [[image:SHT31.png||_mstalt="104715"]]
615
616
617 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
618
619
620 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
621
622
623 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
624
625 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
626
627 In Open State, the power consumption is the same as if there is no probe
628
629 In Close state, the power consumption will be 3uA higher than normal.
630
631 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
632
633
634 Ext=4,Interrupt Sensor:
635
636 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
637 |(% style="width:101px" %)(((
638 **AT+EXT=4,1**
639 )))|(% style="width:395px" %)(((
640 **Sent uplink packet in both rising and falling interrupt**
641 )))
642 |(% style="width:101px" %)(((
643 **AT+EXT=4,2**
644 )))|(% style="width:395px" %)(((
645 **Sent uplink packet only in falling interrupt**
646 )))
647 |(% style="width:101px" %)(((
648 **AT+EXT=4,3**
649 )))|(% style="width:395px" %)(((
650 **Sent uplink packet only in rising interrupt**
651 )))
652
653 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
654 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
655 **Size(bytes)**
656 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
657 **2**
658 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
659 2
660 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
661 **2**
662 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
663 1
664 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
665 1
666 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
667 2
668 )))
669 |(% style="width:110px" %)(((
670 Value
671 )))|(% style="width:71px" %)(((
672 BAT & BAT Status
673 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
674 Status & Ext
675 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
676
677 Trigger by falling edge:
678
679 [[image:image-20220906101145-2.png||_mstalt="428324"]]
680
681
682 Trigger by raising edge:
683
684 [[image:image-20220906101145-3.png||_mstalt="428688"]]
685
686
687 (% style="color:blue" %)**BAT & BAT Status :**
688
689 Check the battery voltage.
690
691 Ex1: 0x0B45 = 2885mV
692
693 Ex2: 0x0B49 = 2889mV
694
695
696 (% style="color:blue" %)**TempC_SHT :**
697
698 The temperature detected by the built-in temperature and humidity sensor SHT31.
699
700 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
701
702 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
703
704 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
705
706
707 (% style="color:blue" %)**Hum_SHT :**
708
709 The humidity detected by the built-in temperature and humidity sensor SHT31.
710
711 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
712
713
714 (% style="color:blue" %)**Status & Ext :**
715
716 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
717 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
718 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
719
720 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
721 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
722 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
723
724 (% style="color:blue" %)**Exti_pin_level :**
725
726 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
727 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
728
729 (% style="color:blue" %)**Exti_status :**
730
731 Determines whether the uplink packet is generated by an interrupt.
732
733 1: Interrupt packet
734
735 0: Normal TDC uplink packet
736
737
738 (% style="color:blue" %)**senseless :**
739
740 Reserved position, meaningless. The value is fixed to 0x7FFF.
741
742
743 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
744
745
746 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
747
748
749 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
750
751 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
752
753
754 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
755
756 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
757
758
759 Ext=8, Counting Sensor ( 4 bytes):
760
761 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
762 |(% style="width:131px" %)(((
763 **AT+EXT=8,0**
764 )))|(% style="width:195px" %)(((
765 **Count at falling interrupt**
766 )))
767 |(% style="width:131px" %)(((
768 **AT+EXT=8,1**
769 )))|(% style="width:195px" %)(((
770 **Count at rising interrupt**
771 )))
772 |(% style="width:131px" %)(((
773 **AT+SETCNT=60**
774 )))|(% style="width:195px" %)(((
775 **Sent current count to 60**
776 )))
777
778 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
779 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
780 **Size(bytes)**
781 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
782 **2**
783 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
784 2
785 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
786 **2**
787 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
788 1
789 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
790 4
791 )))
792 |(% style="width:110px" %)(((
793 Value
794 )))|(% style="width:71px" %)(((
795 BAT & BAT Status
796 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
797 Status & Ext
798 )))|(% style="width:64px" %)Exit_count
799
800 [[image:image-20220906101320-6.png||_mstalt="428064"]]
801
802
803 (% style="color:blue" %)**A2 downlink Command:**
804
805 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
806
807 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
808
809 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
810
811 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
812
813 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
814
815
816 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
817
818
819 (((
820 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
821 )))
822
823 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
824 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
825 **Size(bytes)**
826 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
827 **2**
828 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
829 **2**
830 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
831 **2**
832 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
833 **1**
834 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
835 **4**
836 )))
837 |(% style="width:110px" %)(((
838 Value
839 )))|(% style="width:71px" %)(((
840 External temperature
841 )))|(% style="width:99px" %)(((
842 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
843 )))|(% style="width:132px" %)(((
844 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
845 )))|(% style="width:54px" %)(((
846 Status & Ext
847 )))|(% style="width:64px" %)(((
848 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
849 )))
850
851 * **Battery status & Built-in Humidity**
852
853 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
854 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
855 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
856 BAT Status
857 00(b): Ultra Low ( BAT <= 2.50v)
858 01(b): Low  (2.50v <=BAT <= 2.55v)
859 10(b): OK   (2.55v <= BAT <=2.65v)
860 11(b): Good   (BAT >= 2.65v)
861 )))|(% style="width:132px" %)(((
862 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
863 )))
864
865 * **Status & Ext Byte**
866
867 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
868 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
869 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
870
871 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
872 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
873 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
874
875 == 2.5 Show data on Datacake ==
876
877
878 (((
879 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
880 )))
881
882
883 (((
884 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
885 )))
886
887 (((
888 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
889 )))
890
891
892 (((
893 Add Datacake:
894 )))
895
896 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
897
898
899 Select default key as Access Key:
900
901
902 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
903
904
905 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
906
907 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
908
909
910 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
911
912
913 == 2.6 Datalog Feature ==
914
915
916 (((
917 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
918 )))
919
920
921 === 2.6.1 Ways to get datalog via LoRaWAN ===
922
923
924 There are two methods:
925
926 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
927
928
929 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
930
931
932 (% style="color:red" %)**Note for method 2:**
933
934 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
935 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
936
937 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
938
939 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
940
941
942 === 2.6.2 Unix TimeStamp ===
943
944
945 LHT65N/S uses Unix TimeStamp format based on
946
947 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
948
949
950 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
951
952 Below is the converter example
953
954 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
955
956
957 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
958
959
960 === 2.6.3 Set Device Time ===
961
962
963 (((
964 (% style="color:blue" %)**There are two ways to set device's time:**
965 )))
966
967 (((
968 **1.  Through LoRaWAN MAC Command (Default settings)**
969 )))
970
971 (((
972 User need to set SYNCMOD=1 to enable sync time via MAC command.
973 )))
974
975 (((
976 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
977 )))
978
979 (((
980 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
981 )))
982
983
984 (((
985 **2. Manually Set Time**
986 )))
987
988 (((
989 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
990 )))
991
992
993 === 2.6.4 Poll sensor value ===
994
995
996 User can poll sensor value based on timestamps from the server. Below is the downlink command.
997
998 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
999 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
1000 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
1001
1002 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
1003
1004 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
1005
1006 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
1007
1008 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
1009
1010
1011 === 2.6.5 Datalog Uplink payload ===
1012
1013
1014 The Datalog poll reply uplink will use below payload format.
1015
1016 **Retrieval data payload:**
1017
1018 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1019 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1020 **Size(bytes)**
1021 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1022 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1023
1024 **Poll message flag & Ext:**
1025
1026 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1027 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1028 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1029
1030 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1031
1032 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1033
1034 * Poll Message Flag is set to 1.
1035
1036 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1037
1038 For example, in US915 band, the max payload for different DR is:
1039
1040 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1041
1042 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1043
1044 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1045
1046 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1047
1048 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1049
1050
1051 **Example:**
1052
1053 If LHT65N/S has below data inside Flash:
1054
1055 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1056 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1057 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1058 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1059 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1060 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1061 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1062 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1063 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1064 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1065
1066 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1067
1068 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1069
1070 Stop time: 60066DA7= time 21/1/19 05:27:03
1071
1072
1073 **LHT65N/S will uplink this payload.**
1074
1075 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1076
1077
1078 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1079
1080 Where the first 11 bytes is for the first entry:
1081
1082 7FFF089801464160065F97
1083
1084 Ext sensor data=0x7FFF/100=327.67
1085
1086 Temp=0x088E/100=22.00
1087
1088 Hum=0x014B/10=32.6
1089
1090 poll message flag & Ext=0x41,means reply data,Ext=1
1091
1092 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1093
1094
1095 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1096
1097
1098 (((
1099 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1100 )))
1101
1102 (((
1103 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1104
1105
1106 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1107
1108 (((
1109 (% class="box infomessage" %)
1110 (((
1111 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1112 )))
1113 )))
1114
1115 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1116
1117 **~ AT+WMOD=1,60,-10,20**
1118
1119
1120 Explain:
1121
1122 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1123 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1124 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1125
1126 (% style="color:#4f81bd" %)**Downlink Command:**
1127
1128 **Example: **A5013CFC1807D0
1129
1130 MOD=01
1131
1132 CITEMP=3C(S) =60(S)
1133
1134 TEMPlow=FC18 = -1000/100=-10(℃)
1135
1136 TEMPhigh=07D0=2000/100=20(℃)
1137
1138
1139 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1140
1141 **AT+WMOD=2,60,5** 
1142
1143 Explain:
1144
1145 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1146 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1147 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1148
1149 (% style="color:#4f81bd" %)**Downlink Command**
1150
1151 **Example: **A5023C05
1152
1153 MOD=02
1154
1155 CITEMP=3C(S)=60(S)
1156
1157 temperature fluctuation=05(℃)
1158
1159
1160 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1161
1162 **AT+WMOD=3,1,60,20,-16,32,1**   
1163
1164 Explain:
1165
1166 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1167 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1168 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1169 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1170 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1171 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1172
1173 (% style="color:#4f81bd" %)**Downlink Command:**
1174
1175 **Example: **A50301003C14FFF0002001
1176
1177 MOD=03
1178
1179 TEMP=DS18B20
1180
1181 CITEMP=003C(S)=60(S)
1182
1183 Total number of acquisitions=14
1184
1185 TEMPlow=FFF0=-16(℃)
1186
1187 TEMPhigh=0020=20(℃)
1188
1189 ARTEMP=01
1190
1191
1192 **Uplink payload( Fport=3)**
1193
1194 **Example: CBEA**01**0992**//0A41//**09C4**
1195
1196 BatV=CBEA
1197
1198 TEMP=DS18B20
1199
1200 Temp1=0992  ~/~/ 24.50℃
1201
1202 Temp2=0A41  ~/~/ 26.25℃
1203
1204 Temp3=09C4  ~/~/ 25.00℃
1205
1206 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1207
1208 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1209 )))
1210
1211
1212 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1213
1214
1215 (% class="box infomessage" %)
1216 (((
1217 (((
1218 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1219 )))
1220
1221 (((
1222 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1223 )))
1224
1225 (((
1226 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1227 )))
1228
1229 (((
1230 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1231 )))
1232
1233 (((
1234 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1235 )))
1236 )))
1237
1238 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1239
1240 Total bytes: 8 bytes
1241
1242 **Example:**AA0100010001003C
1243
1244 WMOD=01
1245
1246 CITEMP=0001
1247
1248 TEMPlow=0001
1249
1250 TEMPhigh=003C
1251
1252
1253 == 2.8 LED Indicator ==
1254
1255
1256 The LHT65 has a triple color LED which for easy showing different stage .
1257
1258 While user press ACT button, the LED will work as per LED status with ACT button.
1259
1260 In a normal working state:
1261
1262 * For each uplink, the BLUE LED or RED LED will blink once.
1263 BLUE LED when external sensor is connected.
1264 * RED LED when external sensor is not connected
1265 * For each success downlink, the PURPLE LED will blink once
1266
1267 == 2.9 installation ==
1268
1269
1270 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1271
1272
1273 = 3. Sensors and Accessories =
1274
1275 == 3.1 E2 Extension Cable ==
1276
1277
1278 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1279
1280
1281 **1m long breakout cable for LHT65N/S. Features:**
1282
1283 * (((
1284 Use for AT Command, works for both LHT52, LHT65N/S
1285 )))
1286 * (((
1287 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1288 )))
1289 * (((
1290 Supports ADC mode to monitor external ADC
1291 )))
1292 * (((
1293 Supports Interrupt mode
1294 )))
1295 * (((
1296 Exposed All pins from the LHT65N/S Type-C connector.
1297
1298
1299
1300 )))
1301
1302 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1303
1304
1305 == 3.2 E3 Temperature Probe ==
1306
1307
1308 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1309
1310
1311 Temperature sensor with 2 meters cable long
1312
1313 * Resolution: 0.0625 °C
1314 * ±0.5°C accuracy from -10°C to +85°C
1315 * ±2°C accuracy from -55°C to +125°C
1316 * Operating Range: -40 ~~ 125 °C
1317 * Working voltage 2.35v ~~ 5v
1318
1319 == 3.3 E31F Temperature Probe ==
1320
1321
1322 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1323
1324
1325 Temperature sensor with 1 meters cable long
1326
1327
1328 **Built-in Temperature Sensor:**
1329
1330 * Resolution: 0.01 °C
1331 * Accuracy Tolerance : Typ ±0.3 °C
1332 * Long Term Drift: < 0.02 °C/yr
1333 * Operating Range: -40 ~~ 80 °C
1334
1335 **Built-in Humidity Sensor:**
1336
1337 * Resolution: 0.04 % RH
1338 * Accuracy Tolerance : Typ ±3 % RH
1339 * Long Term Drift: < 0.25 RH/yr
1340 * Operating Range: 0 ~~ 96 % RH
1341
1342 **External Temperature Sensor :**
1343
1344 * Resolution: 0.01 °C
1345 * Accuracy Tolerance : Typical ±0.3 °C
1346 * Long Term Drift: < 0.02 °C/yr
1347 * Operating Range: -40 ~~ 125 °C
1348
1349 **External Humidity Sensor :**
1350
1351 * Resolution: 0.04 % RH
1352 * Accuracy Tolerance : Typ ±3 % RH
1353 * Long Term Drift: < 0.25 RH/yr
1354 * Operating Range: 0 ~~ 96 % RH
1355
1356 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1357
1358
1359 External Temperature Sensor – NE117:
1360 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1361
1362 * Silica gel cable
1363 * ±0.1 °C (maximum) from –20 °C to 50 °C
1364 * ±0.2 °C (maximum) from –40 °C to 100 °C
1365 * ±0.3 °C (maximum) from –55 °C to 150 °C
1366
1367 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1368
1369
1370 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1371
1372
1373 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1374 * 3 wires: VCC/GND/INT
1375 * Cable Lenght: 1 meter
1376
1377 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1378
1379 LHT65N/S-DC can be used to connect various types of external sensor. below.
1380
1381 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1382
1383 [[image:image-20240422100149-5.png||height="163" width="510"]]
1384
1385 [[image:image-20240422100217-6.png||height="141" width="507"]]
1386
1387
1388 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1389
1390
1391 * Aluminum Alloy Door Sensor
1392 * Detect Distance: ~~3cm
1393 * Cable Lenght: 1 meter
1394
1395 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1396
1397 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1398
1399
1400 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1401
1402
1403 (((
1404 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1405 )))
1406
1407 * (((
1408 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1409 )))
1410
1411 * (((
1412 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1413 )))
1414
1415 (((
1416 There are two kinds of commands to configure LHT65N/S, they are:
1417 )))
1418
1419 * (((
1420 (% style="color:#4f81bd" %)**General Commands**.
1421 )))
1422
1423 (((
1424 These commands are to configure:
1425 )))
1426
1427 1. (((
1428 General system settings like: uplink interval.
1429 )))
1430 1. (((
1431 LoRaWAN protocol & radio-related commands.
1432 )))
1433
1434 (((
1435 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1436 )))
1437
1438 * (((
1439 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1440 )))
1441
1442 (((
1443 These commands are only valid for LHT65N/S, as below:
1444 )))
1445
1446
1447 == 4.1 Set Transmit Interval Time ==
1448
1449
1450 Feature: Change LoRaWAN End Node Transmit Interval.
1451
1452
1453 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1454
1455 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1456 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1457 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1458 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1459
1460 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1461
1462 Format: Command Code (0x01) followed by 3 bytes time value.
1463
1464 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1465
1466 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1467
1468 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1469
1470 == 4.2 Set External Sensor Mode ==
1471
1472
1473 Feature: Change External Sensor Mode.
1474
1475 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1476
1477 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500.222px" %)
1478 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:126px" %)**Dowlink Command**
1479 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1480 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1481 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1482 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1483 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1484 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1485 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1486 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1487 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1488
1489 **Response**
1490
1491 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1492
1493 Total bytes: 2 ~~ 5 bytes
1494
1495 **Example:**
1496
1497 * 0xA201: Set external sensor type to E1
1498
1499 * 0xA209: Same as AT+EXT=9
1500
1501 * 0xA20702003c: Same as AT+SETCNT=60
1502
1503 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1504
1505
1506 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1507
1508 * First Packet after OTAA Join
1509 * Every 24 hours since the first packet.
1510
1511 PID is default set to disable (0)
1512
1513 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1514
1515 (% style="color:#4f81bd" %)**AT Command:**
1516
1517 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1518 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1519 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1520
1521 (% style="color:#4f81bd" %)**Downlink Command:**
1522
1523 * **0xA800**  **~-~->** AT+PID=0
1524 * **0xA801**     **~-~->** AT+PID=1
1525
1526 == 4.4 Set Password ==
1527
1528
1529 Feature: Set device password, max 9 digits
1530
1531 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1532
1533 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1534 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1535 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1536 123456
1537
1538 OK
1539 )))
1540 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1541
1542 (% style="color:#4f81bd" %)**Downlink Command:**
1543
1544 No downlink command for this feature.
1545
1546
1547 == 4.5 Quit AT Command ==
1548
1549
1550 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1551
1552 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1553
1554 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1555 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1556 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1557
1558 (% style="color:#4f81bd" %)**Downlink Command:**
1559
1560 No downlink command for this feature.
1561
1562
1563 == 4.6 Set to sleep mode ==
1564
1565
1566 Feature: Set device to sleep mode
1567
1568 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1569 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1570
1571 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1572
1573 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1574 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1575 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1576 Clear all stored sensor data…
1577
1578 OK
1579 )))
1580
1581 (% style="color:#4f81bd" %)**Downlink Command:**
1582
1583 * There is no downlink command to set to Sleep mode.
1584
1585 == 4.7 Set system time ==
1586
1587
1588 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1589
1590 (% style="color:#4f81bd" %)**AT Command:**
1591
1592 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1593 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1594 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1595 OK
1596
1597 Set System time to 2021-01-20 00:59:12
1598 )))
1599
1600 (% style="color:#4f81bd" %)**Downlink Command:**
1601
1602 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1603
1604
1605 == 4.8 Set Time Sync Mode ==
1606
1607
1608 (((
1609 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1610 )))
1611
1612 (((
1613 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1614 )))
1615
1616 (% style="color:#4f81bd" %)**AT Command:**
1617
1618 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1619 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1620 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1621
1622 (% style="color:#4f81bd" %)**Downlink Command:**
1623
1624 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1625 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1626
1627
1628 == 4.9 Set Time Sync Interval ==
1629
1630
1631 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1632
1633 (% style="color:#4f81bd" %)**AT Command:**
1634
1635 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1636 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1637 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1638
1639 (% style="color:#4f81bd" %)**Downlink Command:**
1640
1641 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1642
1643
1644 == 4.10 Get data ==
1645
1646
1647 Feature: Get the current sensor data.
1648
1649 (% style="color:#4f81bd" %)**AT Command:**
1650
1651 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1652 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1653
1654 == 4.11 Print data entries base on page ==
1655
1656
1657 Feature: Print the sector data from start page to stop page (max is 416 pages).
1658
1659 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1660
1661 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1662 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1663 |(% style="width:156px" %)(((
1664 AT+PDTA=1,3
1665 Print page 1 to 3
1666 )))|(% style="width:311px" %)(((
1667 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1668 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1669 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1670 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1671 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1672 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1673 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1674 8019570
1675 8019580
1676 8019590
1677 80195A0
1678 80195B0
1679 80195C0
1680 80195D0
1681 80195E0
1682 80195F0
1683
1684 OK
1685 )))
1686
1687 (% style="color:#4f81bd" %)**Downlink Command:**
1688
1689 No downlink commands for feature
1690
1691
1692 == 4.12 Print last few data entries ==
1693
1694
1695 Feature: Print the last few data entries
1696
1697 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1698
1699 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1700 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1701 |(% style="width:156px" %)(((
1702 AT+PLDTA=5
1703 Print last 5 entries
1704 )))|(% style="width:311px" %)(((
1705 Stop Tx and RTP events when read sensor data
1706 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1707 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1708 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1709 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1710 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1711 Start Tx and RTP events
1712 OK
1713 )))
1714
1715 (% style="color:#4f81bd" %)**Downlink Command:**
1716
1717 No downlink commands for feature
1718
1719
1720 == 4.13 Clear Flash Record ==
1721
1722
1723 Feature: Clear flash storage for data log feature.
1724
1725 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1726
1727 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1728 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1729 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1730 Clear all stored sensor data…
1731
1732 OK
1733 )))
1734
1735 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1736
1737 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1738
1739 == 4.14 Auto Send None-ACK messages ==
1740
1741
1742 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1743
1744 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1745
1746 The default factory setting is 0
1747
1748 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1749 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1750 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1751
1752 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1753
1754 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1755
1756 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1757
1758
1759 Feature: Set internal and external temperature sensor alarms.
1760
1761 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1762 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1763 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1764
1765 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1766
1767 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1768
1769 0): Cancel
1770
1771 1): Threshold alarm
1772
1773 2): Fluctuation alarm
1774
1775 3): Sampling multiple times and uplink together
1776
1777
1778 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1779
1780 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1781
1782
1783 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1784
1785 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1786
1787 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1788
1789
1790 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1791
1792 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1793
1794 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1795
1796
1797 **3): If Alarm Mode is set to 3:**
1798
1799 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1800 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1801 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1802 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1803 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1804 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1805
1806 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1807
1808 0xA5 00 ~-~- AT+WMOD=0.
1809
1810 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1811
1812 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1813
1814 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1815
1816 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1817
1818 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1819
1820
1821 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1822
1823
1824 Feature: use downlink to get firmware version.
1825
1826 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1827
1828 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1829 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1830 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1831
1832 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1833
1834 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1835
1836 (% style="color:#037691" %)**Sensor model**
1837
1838 0x0b: LHT65N/S
1839
1840
1841 (% style="color:#037691" %)**Firmware version**
1842
1843 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1844
1845 Example: 0x0140=V1.4.0
1846
1847
1848 (% style="color:#037691" %)** Frequency Band:**
1849
1850 * 0x01: EU868
1851 * 0x02: US915
1852 * 0x03: IN865
1853 * 0x04: AU915
1854 * 0x05: KZ865
1855 * 0x06: RU864
1856 * 0x07: AS923
1857 * 0x08: AS923-1
1858 * 0x09: AS923-2
1859 * 0xa0: AS923-3
1860
1861 (% style="color:#037691" %)**Subband**
1862
1863 value 0x00 ~~ 0x08
1864
1865 Example: 0xFF ~-~--> " NULL"
1866
1867
1868 (% style="color:#037691" %)**Battery**
1869
1870 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1871
1872 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1873
1874
1875 == 4.17 Setting LEDAlarm ==
1876
1877 Feature: Setting LEDAlarm
1878
1879 The default factory setting is 0
1880
1881 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1882 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1883 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1884
1885 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1886
1887 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1888
1889 = 5. Battery & How to replace =
1890
1891 == 5.1 Battery Type ==
1892
1893
1894 (((
1895 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1896 )))
1897
1898 (((
1899 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1900
1901 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1902 )))
1903
1904 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1905
1906 == 5.2 Replace Battery ==
1907
1908
1909 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1910
1911 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1912
1913
1914 == 5.3 Battery Life Analyze ==
1915
1916
1917 (((
1918 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1919 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1920 )))
1921
1922
1923 (((
1924 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1925 )))
1926
1927
1928 = 6. FAQ =
1929
1930 == 6.1 How to connect to LHT65N/S UART interface? ==
1931
1932
1933 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1934
1935 * Send AT Commands, and get output from LHT65N/S
1936 * Upgrade firmwre of LHT65N/S.
1937
1938 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1939
1940
1941 **Option of USB TTL adapter:**
1942
1943 * CP2101 USB TTL Adapter
1944 * CH340 USB TTL Adapter
1945 * FT232 USB TTL Adapter
1946
1947 **Option of Type-C Adapter:**
1948
1949 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1950
1951
1952 **Connection:**
1953
1954 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1955 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1956 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1957
1958 (((
1959
1960
1961 Connection Example:
1962
1963 [[image:1655802313617-381.png||_mstalt="293917"]]
1964
1965
1966 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1967
1968
1969 == 6.2 How to use AT Commands? ==
1970
1971
1972 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1973
1974 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1975 )))
1976
1977
1978 Input password and ATZ to activate LHT65N/S, As shown below:
1979
1980 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1981
1982
1983 AT Command List is as below:
1984
1985 AT+<CMD>? :  Help on <CMD>
1986
1987 AT+<CMD> :  Run <CMD>
1988
1989 AT+<CMD>=<value> :  Set the value
1990
1991 AT+<CMD>=? :  Get the value
1992
1993 AT+DEBUG:  Set more info output
1994
1995 ATZ:  Trig a reset of the MCU
1996
1997 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1998
1999 AT+DEUI:  Get or Set the Device EUI
2000
2001 AT+DADDR:  Get or Set the Device Address
2002
2003 AT+APPKEY:  Get or Set the Application Key
2004
2005 AT+NWKSKEY:  Get or Set the Network Session Key
2006
2007 AT+APPSKEY:  Get or Set the Application Session Key
2008
2009 AT+APPEUI:  Get or Set the Application EUI
2010
2011 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
2012
2013 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2014
2015 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
2016
2017 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2018
2019 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2020
2021 AT+RX2FQ:  Get or Set the Rx2 window frequency
2022
2023 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2024
2025 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2026
2027 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2028
2029 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2030
2031 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2032
2033 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2034
2035 AT+NWKID:  Get or Set the Network ID
2036
2037 AT+FCU:  Get or Set the Frame Counter Uplink
2038
2039 AT+FCD:  Get or Set the Frame Counter Downlink
2040
2041 AT+CLASS:  Get or Set the Device Class
2042
2043 AT+JOIN:  Join network
2044
2045 AT+NJS:  Get the join status
2046
2047 AT+SENDB:  Send hexadecimal data along with the application port
2048
2049 AT+SEND:  Send text data along with the application port
2050
2051 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2052
2053 AT+RECV:  Print last received data in raw format
2054
2055 AT+VER:  Get current image version and Frequency Band
2056
2057 AT+CFM:  Get or Set the confirmation mode (0-1)
2058
2059 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2060
2061 AT+SNR:  Get the SNR of the last received packet
2062
2063 AT+RSSI:  Get the RSSI of the last received packet
2064
2065 AT+TDC:  Get or set the application data transmission interval in ms
2066
2067 AT+PORT:  Get or set the application port
2068
2069 AT+DISAT:  Disable AT commands
2070
2071 AT+PWORD: Set password, max 9 digits
2072
2073 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2074
2075 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2076
2077 AT+PDTA:  Print the sector data from start page to stop page
2078
2079 AT+PLDTA:  Print the last few sets of data
2080
2081 AT+CLRDTA:  Clear the storage, record position back to 1st
2082
2083 AT+SLEEP:  Set sleep mode
2084
2085 AT+EXT:  Get or Set external sensor model
2086
2087 AT+BAT:  Get the current battery voltage in mV
2088
2089 AT+CFG:  Print all configurations
2090
2091 AT+WMOD:  Get or Set Work Mode
2092
2093 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2094
2095 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2096
2097 AT+SETCNT:  Set the count at present
2098
2099 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2100
2101 AT+RPL:  Get or set response level
2102
2103 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2104
2105 AT+LEAPSEC:  Get or Set Leap Second
2106
2107 AT+SYNCMOD:  Get or Set time synchronization method
2108
2109 AT+SYNCTDC:  Get or set time synchronization interval in day
2110
2111 AT+PID:  Get or set the PID
2112
2113
2114 == 6.3 How to use Downlink commands? ==
2115
2116
2117 **Downlink commands:**
2118
2119
2120 (% style="color:blue" %)**TTN:**
2121
2122 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2123
2124
2125
2126 (% style="color:blue" %)**Helium: **
2127
2128 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2129
2130
2131
2132 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2133
2134
2135 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2136
2137
2138 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2139
2140
2141
2142 (% style="color:blue" %)**AWS-IOT :**
2143
2144 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2145
2146
2147 == 6.4 How to change the uplink interval? ==
2148
2149
2150 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2151
2152
2153 == 6.5 How to upgrade firmware? ==
2154
2155
2156 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2157 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2158
2159
2160 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2161
2162
2163 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2164
2165 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2166
2167 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2168
2169 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2170
2171 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2172
2173 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2174
2175 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2176
2177 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2178
2179 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2180
2181 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2182
2183 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2184
2185
2186 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2187
2188 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2189
2190 [[image:image-20240716174308-1.png||height="523" width="410"]]
2191
2192
2193 === 6.5.2 Updated firmware for V1.4 and above ===
2194
2195
2196 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2197
2198 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2199 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2200
2201 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2202
2203
2204 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2205
2206
2207 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2208
2209 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2210
2211
2212 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2213
2214
2215 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2216
2217
2218 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2219
2220 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2221
2222 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2223
2224
2225
2226 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2227
2228 Connect PC and LHT65N/S via USB TTL adapter .
2229
2230 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2231
2232 **Connection method:**
2233
2234 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2235
2236 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2237
2238 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2239
2240 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2241
2242 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2243
2244
2245 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2246
2247 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2248
2249
2250 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2251
2252 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2253
2254
2255 When this interface appears, it indicates that the download has been completed.
2256
2257 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2258
2259
2260 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2261
2262
2263 == 6.6 Why can't I see the datalog information ==
2264
2265
2266 ~1. The time is not aligned, and the correct query command is not used.
2267
2268 2. Decoder error, did not parse the datalog data, the data was filtered.
2269
2270
2271 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2272
2273
2274 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2275
2276 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2277
2278
2279 After there is UART Connectio, run below commands:
2280
2281 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2282
2283 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2284
2285 Example output:
2286
2287 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2288
2289
2290 = 7. Order Info =
2291
2292
2293 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2294
2295 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2296
2297 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2298 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2299 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2300 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2301 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2302 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2303 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2304 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2305
2306 = 8. Packing Info =
2307
2308
2309 **Package Includes**:
2310
2311 * LHT65N/S Temperature & Humidity Sensor x 1
2312 * 1 x External Lora Antenna for LHT65S
2313 * Optional external sensor
2314
2315 = 9. Reference material =
2316
2317
2318 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2319
2320 = 10. FCC Warning =
2321
2322
2323 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2324
2325 (1) This device may not cause harmful interference;
2326
2327 (2) this device must accept any interference received, including interference that may cause undesired operation.