Version 347.1 by Mengting Qiu on 2025/04/22 09:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20250418112554-1.png||height="428" width="342"]]
3
4 (% style="display:none" %) (%%)
5
6
7
8 (% style="display:none" %) (%%)
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 What is LHT65N/S LoRaWAN Temperature & Humidity Sensor ==
24
25
26 (((
27 The Dragino (% style="color:blue; font-weight:bold" %)**LHT65N/S**(% style="color:blue" %)** Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
28 )))
29
30 (((
31 The LHT65N/S allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
32 )))
33
34 (((
35 LHT65N/S has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
36 )))
37
38 (((
39 LHT65N/S is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
40 )))
41
42 (((
43 LHT65N/S supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
44 )))
45
46 (((
47 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
48 )))
49
50
51 == 1.2 Features ==
52
53
54 * LoRaWAN v1.0.3 Class A protocol
55 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
56 * AT Commands to change parameters
57 * Remote configure parameters via LoRaWAN Downlink
58 * Firmware upgradeable via program port
59 * Built-in 2400mAh battery for up to 10 years of use.
60 * Built-in Temperature & Humidity sensor
61 * Optional External Sensors
62 * Tri-color LED to indicate working status
63 * Datalog feature (Max 3328 records)
64
65 == 1.3 Specification ==
66
67
68 (% style="color:#037691" %)**Built-in Temperature Sensor:**
69
70 * Resolution: 0.01 °C
71 * Accuracy Tolerance : Typ ±0.3 °C
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: -40 ~~ 85 °C
74
75 (% style="color:#037691" %)**Built-in Humidity Sensor:**
76
77 * Resolution: 0.04 %RH
78 * Accuracy Tolerance : Typ ±3 %RH
79 * Long Term Drift: < 0.25 RH/yr
80 * Operating Range: 0 ~~ 96 %RH
81
82 (% style="color:#037691" %)**External Temperature Sensor:**
83
84 * Resolution: 0.0625 °C
85 * ±0.5°C accuracy from -10°C to +85°C
86 * ±2°C accuracy from -55°C to +125°C
87 * Operating Range: -55 °C ~~ 125 °C
88
89
90 == 1.4 Model Difference ==
91
92
93 (% style="color:#037691" %)**LHT65N**(%%)** **and (% style="color:#037691" %)**LHT65S**(%%) share identical core functionalities, with the only difference being the antenna design.
94
95 * LHT65N: Built-in PCB antenna, suitable for indoor environments with stable signals.
96 * LHT65S: External SMA antenna, suitable for weak signal areas or flexible antenna adjustment (such as metal cabinets, remote).
97
98 [[image:image-20250422095731-2.png]]
99
100
101 = 2. Connect LHT65N/S to IoT Server =
102
103 == 2.1 How does LHT65N/S work? ==
104
105
106 (((
107 LHT65N/S is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N/S is shipped with a worldwide unique set of OTAA keys. To use LHT65N/S in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N/S.
108 )))
109
110 (((
111 If LHT65N/S is under the coverage of this LoRaWAN network. LHT65N/S can join the LoRaWAN network automatically. After successfully joining, LHT65N/S will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
112 )))
113
114
115 == 2.2 How to Activate LHT65N/S? ==
116
117
118 (((
119 The LHT65N/S has two working modes:
120 )))
121
122 * (((
123 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N/S doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
124 )))
125 * (((
126 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N/S works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N/S has the same power consumption as Deep Sleep mode. 
127 )))
128
129 (((
130 The LHT65N/S is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
131 )))
132
133 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
134
135 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
136 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
137 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
138 If LHT65N/S is already Joined to rhe LoRaWAN network, LHT65N/S will send an uplink packet, if LHT65N/S has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N/S has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
139 )))
140 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
141 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N/S will enter working mode and start to JOIN LoRaWAN network.
142 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
143 )))
144 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N/S is in Deep Sleep Mode.
145
146 == 2.3 Example to join LoRaWAN network ==
147
148
149 (% class="wikigeneratedid" %)
150 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
151
152 (% class="wikigeneratedid" %)
153 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
154
155
156 (((
157 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N/S. Next we need to add the LHT65N/S device in TTN V3:
158 )))
159
160
161 === 2.3.1 Step 1: Create Device on TTN ===
162
163
164 (((
165 Create a device in TTN V3 with the OTAA keys from LHT65N/S.
166 )))
167
168 (((
169 Each LHT65N/S is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
170 )))
171
172 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
173
174 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
175
176 (% style="color:blue" %)**1. Create application**
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111048-1.png?width=1001&height=183&rev=1.1||alt="image-20240907111048-1.png"]]
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
181
182
183 (% style="color:blue" %)**2. Add devices to the created Application.**
184
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
189
190 (% style="color:blue" %)**3. Enter end device specifics manually.**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
193
194
195 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
196
197
198 === 2.3.2 Step 2: Add decoder ===
199
200
201 In TTN, user can add a custom payload so it shows friendly reading.
202
203 Click this link to get the decoder: [[LHT65N decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LHT65N]].
204
205 Below is TTN screen shot
206
207 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162501-5.png?width=1084&height=516&rev=1.1||alt="image-20240909162501-5.png"]]
208
209 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LWL04--LoRaWAN_Water_Leak_Sensor_User_Manual/WebHome/image-20240909162647-6.png?width=1086&height=494&rev=1.1||alt="image-20240909162647-6.png"]]
210
211 === 2.3.3 Step 3: Activate LHT65N/S by pressing the ACT button for more than 5 seconds. ===
212
213
214 (((
215 Use ACT button to activate LHT65N/S and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
216 )))
217
218 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
219
220
221 == 2.4 Uplink Payload (Fport~=2) ==
222
223
224 (((
225 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
226 )))
227
228 (((
229 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
230 )))
231
232 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:390px" %)
233 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
234 **Size(bytes)**
235 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
236 **2**
237 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
238 **2**
239 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
240 **2**
241 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
242 **1**
243 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
244 **4**
245 )))
246 |(% style="width:97px" %)(((
247 Value
248 )))|(% style="width:39px" %)(((
249 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
250 )))|(% style="width:100px" %)(((
251 (((
252 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
253 )))
254 )))|(% style="width:77px" %)(((
255 (((
256 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
257 )))
258 )))|(% style="width:47px" %)(((
259 [[Ext>>||anchor="H2.4.5Ext23"]] #
260 )))|(% style="width:51px" %)(((
261 [[Ext value>>||anchor="H2.4.6Extvalue"]]
262 )))
263
264 * The First 6 bytes: has fix meanings for every LHT65N/S.
265
266 * The 7th byte (EXT #): defines the external sensor model.
267
268 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
269
270 === 2.4.1 Decoder in TTN V3 ===
271
272
273 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N/S decoder in TTNv3 for friendly reading.
274
275 Below is the position to put the decoder and LHT65N/S decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
276
277
278 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
279
280
281 === 2.4.2 BAT-Battery Info ===
282
283
284 These two bytes of BAT include the battery state and the actually voltage.
285
286 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:477px" %)
287 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
288 **Bit(bit)**
289 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
290 |(% style="width:66px" %)(((
291 Value
292 )))|(% style="width:250px" %)(((
293 BAT Status
294 00(b): Ultra Low ( BAT <= 2.50v)
295 01(b): Low (2.50v <=BAT <= 2.55v)
296 10(b): OK (2.55v <= BAT <=2.65v)
297 11(b): Good (BAT >= 2.65v)
298 )))|(% style="width:152px" %)Actually BAT voltage
299
300 **(b)stands for binary**
301
302
303 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
304
305
306 Check the battery voltage for LHT65N/S.
307
308 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
309
310 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
311
312 === 2.4.3 Built-in Temperature ===
313
314
315 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
316
317 * Temperature:  0x0ABB/100=27.47℃
318
319 [[image:image-20220522235639-3.png||_mstalt="432120"]]
320
321 * Temperature:  (0xF5C6-65536)/100=-26.18℃
322
323 === 2.4.4 Built-in Humidity ===
324
325
326 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
327
328 * Humidity:    0x025C/10=60.4%
329
330 === 2.4.5 Ext # ===
331
332
333 Bytes for External Sensor:
334
335 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425px" %)
336 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
337 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
338 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
339 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
340 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
341 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
342 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
343 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
344 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
345
346 === 2.4.6 Ext value ===
347
348 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
349
350
351 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
352 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
353 **Size(bytes)**
354 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
355 **2**
356 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
357 2
358 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
359 **2**
360 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
361 1
362 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
363 2
364 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
365 2
366 )))
367 |(% style="width:110px" %)(((
368 Value
369 )))|(% style="width:71px" %)(((
370 BAT & BAT Status
371 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
372 Status & Ext
373 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
374
375 [[image:image-20220522235639-5.png||_mstalt="432848"]]
376
377
378 * DS18B20 temp=0x0ADD/100=27.81℃
379
380 The last 2 bytes of data are meaningless
381
382 [[image:image-20220522235639-6.png||_mstalt="433212"]]
383
384
385 * External temperature= (0xF54F-65536)/100=-27.37℃
386
387 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
388
389 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
390
391 The last 2 bytes of data are meaningless
392
393 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
394
395
396 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
397
398
399 (((
400 Timestamp mode is designed for LHT65N/S with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
401 )))
402
403 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
404 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
405 **Size(bytes)**
406 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
407 **2**
408 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
409 **2**
410 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
411 **2**
412 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
413 **1**
414 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
415 **4**
416 )))
417 |(% style="width:110px" %)(((
418 Value
419 )))|(% style="width:71px" %)(((
420 External temperature
421 )))|(% style="width:99px" %)(((
422 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
423 )))|(% style="width:132px" %)(((
424 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
425 )))|(% style="width:54px" %)(((
426 Status & Ext
427 )))|(% style="width:64px" %)(((
428 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
429 )))
430
431 * **Battery status & Built-in Humidity**
432
433 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
434 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
435 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
436 BAT Status
437 00(b): Ultra Low ( BAT <= 2.50v)
438 01(b): Low  (2.50v <=BAT <= 2.55v)
439 10(b): OK   (2.55v <= BAT <=2.65v)
440 11(b): Good   (BAT >= 2.65v)
441 )))|(% style="width:132px" %)(((
442 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
443 )))
444
445 * **Status & Ext Byte**
446
447 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
448 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
449 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
450
451 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
452 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
453 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
454
455 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
456
457
458 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
459 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 **Size(bytes)**
461 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
462 **2**
463 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
464 2
465 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
466 **2**
467 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
468 1
469 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
470 2
471 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
472 2
473 )))
474 |(% style="width:110px" %)(((
475 Value
476 )))|(% style="width:71px" %)(((
477 BAT & BAT Status
478 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
479 Status & Ext
480 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
481
482 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
483
484 be used to power the external ADC sensor; user can control the power on time for this
485
486 (% style="color:blue" %)**sensor by setting:**
487
488 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
489
490 **For example:**
491
492 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
493
494
495 Or use **downlink command A2** to set the same.
496
497 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
498
499 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
500
501 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
502
503
504 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
505
506 [[image:image-20220628150714-4.png||_mstalt="431054"]]
507
508
509 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
510
511
512 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
513
514 [[image:image-20220628151005-5.png||_mstalt="429546"]]
515
516
517 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
518
519 [[image:image-20220628151056-6.png||_mstalt="431873"]]
520
521
522 3) Within range
523
524 [[image:image-20220628151143-7.png||_mstalt="431210"]]
525
526
527 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
528
529
530 [[image:image-20230717151328-8.png||_mstalt="433173" height="299" width="249"]]
531
532 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
533
534 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
535 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
536 **Size(bytes)**
537 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
538 **2**
539 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
540 2
541 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
542 **2**
543 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
544 1
545 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
546 2
547 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
548 2
549 )))
550 |(% style="width:110px" %)(((
551 Value
552 )))|(% style="width:71px" %)(((
553 BAT & BAT Status
554 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
555 Status & Ext
556 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
557
558 [[image:image-20220906102307-7.png||_mstalt="430443"]]
559
560 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
561
562 The external cable NE2 can be use for MOD4 and MOD8
563
564
565 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
566
567
568 [[image:image-20230717151245-7.png||_mstalt="432133" height="351" width="350"]]
569
570 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
571
572 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
573 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
574 **Size(bytes)**
575 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
576 **2**
577 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
578 2
579 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
580 **2**
581 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
582 1
583 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
584 2
585 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
586 2
587 )))
588 |(% style="width:110px" %)(((
589 Value
590 )))|(% style="width:71px" %)(((
591 BAT & BAT Status
592 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
593 Status & Ext
594 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
595
596 [[image:SHT31.png||_mstalt="104715"]]
597
598
599 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
600
601
602 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will send an uplink when there is a trigger.**
603
604
605 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
606
607 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
608
609 In Open State, the power consumption is the same as if there is no probe
610
611 In Close state, the power consumption will be 3uA higher than normal.
612
613 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
614
615
616 Ext=4,Interrupt Sensor:
617
618 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
619 |(% style="width:101px" %)(((
620 **AT+EXT=4,1**
621 )))|(% style="width:395px" %)(((
622 **Sent uplink packet in both rising and falling interrupt**
623 )))
624 |(% style="width:101px" %)(((
625 **AT+EXT=4,2**
626 )))|(% style="width:395px" %)(((
627 **Sent uplink packet only in falling interrupt**
628 )))
629 |(% style="width:101px" %)(((
630 **AT+EXT=4,3**
631 )))|(% style="width:395px" %)(((
632 **Sent uplink packet only in rising interrupt**
633 )))
634
635 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
636 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
637 **Size(bytes)**
638 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
639 **2**
640 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
641 2
642 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
643 **2**
644 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
645 1
646 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
647 1
648 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
649 2
650 )))
651 |(% style="width:110px" %)(((
652 Value
653 )))|(% style="width:71px" %)(((
654 BAT & BAT Status
655 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
656 Status & Ext
657 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
658
659 Trigger by falling edge:
660
661 [[image:image-20220906101145-2.png||_mstalt="428324"]]
662
663
664 Trigger by raising edge:
665
666 [[image:image-20220906101145-3.png||_mstalt="428688"]]
667
668
669 (% style="color:blue" %)**BAT & BAT Status :**
670
671 Check the battery voltage.
672
673 Ex1: 0x0B45 = 2885mV
674
675 Ex2: 0x0B49 = 2889mV
676
677
678 (% style="color:blue" %)**TempC_SHT :**
679
680 The temperature detected by the built-in temperature and humidity sensor SHT31.
681
682 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
683
684 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
685
686 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
687
688
689 (% style="color:blue" %)**Hum_SHT :**
690
691 The humidity detected by the built-in temperature and humidity sensor SHT31.
692
693 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
694
695
696 (% style="color:blue" %)**Status & Ext :**
697
698 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
699 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
700 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
701
702 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
703 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
704 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
705
706 (% style="color:blue" %)**Exti_pin_level :**
707
708 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
709 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
710
711 (% style="color:blue" %)**Exti_status :**
712
713 Determines whether the uplink packet is generated by an interrupt.
714
715 1: Interrupt packet
716
717 0: Normal TDC uplink packet
718
719
720 (% style="color:blue" %)**senseless :**
721
722 Reserved position, meaningless. The value is fixed to 0x7FFF.
723
724
725 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
726
727
728 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N/S will count for every interrupt and uplink periodically.**
729
730
731 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N/S.
732
733 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
734
735
736 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
737
738 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
739
740
741 Ext=8, Counting Sensor ( 4 bytes):
742
743 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
744 |(% style="width:131px" %)(((
745 **AT+EXT=8,0**
746 )))|(% style="width:195px" %)(((
747 **Count at falling interrupt**
748 )))
749 |(% style="width:131px" %)(((
750 **AT+EXT=8,1**
751 )))|(% style="width:195px" %)(((
752 **Count at rising interrupt**
753 )))
754 |(% style="width:131px" %)(((
755 **AT+SETCNT=60**
756 )))|(% style="width:195px" %)(((
757 **Sent current count to 60**
758 )))
759
760 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
761 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
762 **Size(bytes)**
763 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
764 **2**
765 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
766 2
767 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
768 **2**
769 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
770 1
771 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
772 4
773 )))
774 |(% style="width:110px" %)(((
775 Value
776 )))|(% style="width:71px" %)(((
777 BAT & BAT Status
778 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
779 Status & Ext
780 )))|(% style="width:64px" %)Exit_count
781
782 [[image:image-20220906101320-6.png||_mstalt="428064"]]
783
784
785 (% style="color:blue" %)**A2 downlink Command:**
786
787 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
788
789 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
790
791 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
792
793 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
794
795 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
796
797
798 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
799
800
801 (((
802 Timestamp mode is designed for LHT65N/S with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
803 )))
804
805 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
806 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
807 **Size(bytes)**
808 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
809 **2**
810 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
811 **2**
812 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
813 **2**
814 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
815 **1**
816 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
817 **4**
818 )))
819 |(% style="width:110px" %)(((
820 Value
821 )))|(% style="width:71px" %)(((
822 External temperature
823 )))|(% style="width:99px" %)(((
824 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
825 )))|(% style="width:132px" %)(((
826 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
827 )))|(% style="width:54px" %)(((
828 Status & Ext
829 )))|(% style="width:64px" %)(((
830 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
831 )))
832
833 * **Battery status & Built-in Humidity**
834
835 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
836 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
837 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
838 BAT Status
839 00(b): Ultra Low ( BAT <= 2.50v)
840 01(b): Low  (2.50v <=BAT <= 2.55v)
841 10(b): OK   (2.55v <= BAT <=2.65v)
842 11(b): Good   (BAT >= 2.65v)
843 )))|(% style="width:132px" %)(((
844 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
845 )))
846
847 * **Status & Ext Byte**
848
849 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
850 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
851 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
852
853 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
854 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N/S will set this bit to 0 until got the time stamp from the application server.
855 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N/S will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
856
857 == 2.5 Show data on Datacake ==
858
859
860 (((
861 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
862 )))
863
864
865 (((
866 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
867 )))
868
869 (((
870 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
871 )))
872
873
874 (((
875 Add Datacake:
876 )))
877
878 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
879
880
881 Select default key as Access Key:
882
883
884 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
885
886
887 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
888
889 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
890
891
892 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
893
894
895 == 2.6 Datalog Feature ==
896
897
898 (((
899 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N/S will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N/S.
900 )))
901
902
903 === 2.6.1 Ways to get datalog via LoRaWAN ===
904
905
906 There are two methods:
907
908 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
909
910
911 (% style="color:blue" %)**Method 2: **(%%)Set PNACKMD=1, LHT65N/S will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N/S will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
912
913
914 (% style="color:red" %)**Note for method 2:**
915
916 * a) LHT65N/S will do an ACK check for data records sending to make sure every data arrive server.
917 * b) LHT65N/S will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N/S won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N/S will consider there is a network connection and resend all NONE-ACK Message.
918
919 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
920
921 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
922
923
924 === 2.6.2 Unix TimeStamp ===
925
926
927 LHT65N/S uses Unix TimeStamp format based on
928
929 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
930
931
932 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
933
934 Below is the converter example
935
936 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
937
938
939 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
940
941
942 === 2.6.3 Set Device Time ===
943
944
945 (((
946 (% style="color:blue" %)**There are two ways to set device's time:**
947 )))
948
949 (((
950 **1.  Through LoRaWAN MAC Command (Default settings)**
951 )))
952
953 (((
954 User need to set SYNCMOD=1 to enable sync time via MAC command.
955 )))
956
957 (((
958 Once LHT65N/S Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N/S. If LHT65N/S fails to get the time from the server, LHT65N/S will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
959 )))
960
961 (((
962 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
963 )))
964
965
966 (((
967 **2. Manually Set Time**
968 )))
969
970 (((
971 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
972 )))
973
974
975 === 2.6.4 Poll sensor value ===
976
977
978 User can poll sensor value based on timestamps from the server. Below is the downlink command.
979
980 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
981 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
982 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
983
984 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
985
986 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
987
988 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
989
990 Uplink Internal =5s, means LHT65N/S will send one packet every 5s. range 5~~255s.
991
992
993 === 2.6.5 Datalog Uplink payload ===
994
995
996 The Datalog poll reply uplink will use below payload format.
997
998 **Retrieval data payload:**
999
1000 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
1001 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
1002 **Size(bytes)**
1003 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
1004 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
1005
1006 **Poll message flag & Ext:**
1007
1008 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1009 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
1010 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
1011
1012 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
1013
1014 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
1015
1016 * Poll Message Flag is set to 1.
1017
1018 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1019
1020 For example, in US915 band, the max payload for different DR is:
1021
1022 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
1023
1024 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1025
1026 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
1027
1028 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
1029
1030 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1031
1032
1033 **Example:**
1034
1035 If LHT65N/S has below data inside Flash:
1036
1037 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1038 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
1039 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
1040 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
1041 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
1042 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
1043 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
1044 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
1045 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
1046 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
1047
1048 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
1049
1050 Where : Start time: 60065F97 = time 21/1/19 04:27:03
1051
1052 Stop time: 60066DA7= time 21/1/19 05:27:03
1053
1054
1055 **LHT65N/S will uplink this payload.**
1056
1057 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
1058
1059
1060 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
1061
1062 Where the first 11 bytes is for the first entry:
1063
1064 7FFF089801464160065F97
1065
1066 Ext sensor data=0x7FFF/100=327.67
1067
1068 Temp=0x088E/100=22.00
1069
1070 Hum=0x014B/10=32.6
1071
1072 poll message flag & Ext=0x41,means reply data,Ext=1
1073
1074 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1075
1076
1077 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1078
1079
1080 (((
1081 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1082 )))
1083
1084 (((
1085 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1086
1087
1088 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1089
1090 (((
1091 (% class="box infomessage" %)
1092 (((
1093 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1094 )))
1095 )))
1096
1097 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1098
1099 **~ AT+WMOD=1,60,-10,20**
1100
1101
1102 Explain:
1103
1104 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1105 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1106 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
1107
1108 (% style="color:#4f81bd" %)**Downlink Command:**
1109
1110 **Example: **A5013CFC1807D0
1111
1112 MOD=01
1113
1114 CITEMP=3C(S) =60(S)
1115
1116 TEMPlow=FC18 = -1000/100=-10(℃)
1117
1118 TEMPhigh=07D0=2000/100=20(℃)
1119
1120
1121 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1122
1123 **AT+WMOD=2,60,5** 
1124
1125 Explain:
1126
1127 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1128 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1129 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1130
1131 (% style="color:#4f81bd" %)**Downlink Command**
1132
1133 **Example: **A5023C05
1134
1135 MOD=02
1136
1137 CITEMP=3C(S)=60(S)
1138
1139 temperature fluctuation=05(℃)
1140
1141
1142 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1143
1144 **AT+WMOD=3,1,60,20,-16,32,1**   
1145
1146 Explain:
1147
1148 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1149 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1150 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1151 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1152 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1153 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1154
1155 (% style="color:#4f81bd" %)**Downlink Command:**
1156
1157 **Example: **A50301003C14FFF0002001
1158
1159 MOD=03
1160
1161 TEMP=DS18B20
1162
1163 CITEMP=003C(S)=60(S)
1164
1165 Total number of acquisitions=14
1166
1167 TEMPlow=FFF0=-16(℃)
1168
1169 TEMPhigh=0020=20(℃)
1170
1171 ARTEMP=01
1172
1173
1174 **Uplink payload( Fport=3)**
1175
1176 **Example: CBEA**01**0992**//0A41//**09C4**
1177
1178 BatV=CBEA
1179
1180 TEMP=DS18B20
1181
1182 Temp1=0992  ~/~/ 24.50℃
1183
1184 Temp2=0A41  ~/~/ 26.25℃
1185
1186 Temp3=09C4  ~/~/ 25.00℃
1187
1188 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1189
1190 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1191 )))
1192
1193
1194 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1195
1196
1197 (% class="box infomessage" %)
1198 (((
1199 (((
1200 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1201 )))
1202
1203 (((
1204 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1205 )))
1206
1207 (((
1208 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1209 )))
1210
1211 (((
1212 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1213 )))
1214
1215 (((
1216 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1217 )))
1218 )))
1219
1220 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1221
1222 Total bytes: 8 bytes
1223
1224 **Example:**AA0100010001003C
1225
1226 WMOD=01
1227
1228 CITEMP=0001
1229
1230 TEMPlow=0001
1231
1232 TEMPhigh=003C
1233
1234
1235 == 2.8 LED Indicator ==
1236
1237
1238 The LHT65 has a triple color LED which for easy showing different stage .
1239
1240 While user press ACT button, the LED will work as per LED status with ACT button.
1241
1242 In a normal working state:
1243
1244 * For each uplink, the BLUE LED or RED LED will blink once.
1245 BLUE LED when external sensor is connected.
1246 * RED LED when external sensor is not connected
1247 * For each success downlink, the PURPLE LED will blink once
1248
1249 == 2.9 installation ==
1250
1251
1252 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1253
1254
1255 = 3. Sensors and Accessories =
1256
1257 == 3.1 E2 Extension Cable ==
1258
1259
1260 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1261
1262
1263 **1m long breakout cable for LHT65N/S. Features:**
1264
1265 * (((
1266 Use for AT Command, works for both LHT52, LHT65N/S
1267 )))
1268 * (((
1269 Update firmware for LHT65N/S, works for both LHT52, LHT65N/S
1270 )))
1271 * (((
1272 Supports ADC mode to monitor external ADC
1273 )))
1274 * (((
1275 Supports Interrupt mode
1276 )))
1277 * (((
1278 Exposed All pins from the LHT65N/S Type-C connector.
1279
1280
1281
1282 )))
1283
1284 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1285
1286
1287 == 3.2 E3 Temperature Probe ==
1288
1289
1290 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1291
1292
1293 Temperature sensor with 2 meters cable long
1294
1295 * Resolution: 0.0625 °C
1296 * ±0.5°C accuracy from -10°C to +85°C
1297 * ±2°C accuracy from -55°C to +125°C
1298 * Operating Range: -40 ~~ 125 °C
1299 * Working voltage 2.35v ~~ 5v
1300
1301 == 3.3 E31F Temperature Probe ==
1302
1303
1304 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1305
1306
1307 Temperature sensor with 1 meters cable long
1308
1309
1310 **Built-in Temperature Sensor:**
1311
1312 * Resolution: 0.01 °C
1313 * Accuracy Tolerance : Typ ±0.3 °C
1314 * Long Term Drift: < 0.02 °C/yr
1315 * Operating Range: -40 ~~ 80 °C
1316
1317 **Built-in Humidity Sensor:**
1318
1319 * Resolution: 0.04 % RH
1320 * Accuracy Tolerance : Typ ±3 % RH
1321 * Long Term Drift: < 0.25 RH/yr
1322 * Operating Range: 0 ~~ 96 % RH
1323
1324 **External Temperature Sensor :**
1325
1326 * Resolution: 0.01 °C
1327 * Accuracy Tolerance : Typical ±0.3 °C
1328 * Long Term Drift: < 0.02 °C/yr
1329 * Operating Range: -40 ~~ 125 °C
1330
1331 **External Humidity Sensor :**
1332
1333 * Resolution: 0.04 % RH
1334 * Accuracy Tolerance : Typ ±3 % RH
1335 * Long Term Drift: < 0.25 RH/yr
1336 * Operating Range: 0 ~~ 96 % RH
1337
1338 == 3.4 NE117 Temperature Probe (Model: LHT65N/S-NE117) ==
1339
1340
1341 External Temperature Sensor – NE117:
1342 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1343
1344 * Silica gel cable
1345 * ±0.1 °C (maximum) from –20 °C to 50 °C
1346 * ±0.2 °C (maximum) from –40 °C to 100 °C
1347 * ±0.3 °C (maximum) from –55 °C to 150 °C
1348
1349 [[image:image-20240422093011-1.png||height="264" width="265"]][[image:image-20250418120031-2.png||height="308" width="211"]]
1350
1351
1352 == 3.5 Dry Contact Probe (Model: LHT65N/S-DC) ==
1353
1354
1355 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1356 * 3 wires: VCC/GND/INT
1357 * Cable Lenght: 1 meter
1358
1359 [[image:image-20240705140520-1.png||height="275" width="238"]](% style="display:none" %) (%%) [[image:image-20250418134933-1.png||height="345" width="193"]]
1360
1361 LHT65N/S-DC can be used to connect various types of external sensor. below.
1362
1363 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1364
1365 [[image:image-20240422100149-5.png||height="163" width="510"]]
1366
1367 [[image:image-20240422100217-6.png||height="141" width="507"]]
1368
1369
1370 == 3.6 Door Sensor (Model: LHT65N/S-DS) ==
1371
1372
1373 * Aluminum Alloy Door Sensor
1374 * Detect Distance: ~~3cm
1375 * Cable Lenght: 1 meter
1376
1377 **Notice: When order LHT65N/S-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1378
1379 [[image:image-20240705144054-2.png||height="256" width="207"]] [[image:image-20250418135348-2.png||height="299" width="168"]]
1380
1381
1382 = 4. Configure LHT65N/S via AT command or LoRaWAN downlink =
1383
1384
1385 (((
1386 Use can configure LHT65N/S via AT Command or LoRaWAN Downlink.
1387 )))
1388
1389 * (((
1390 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1391 )))
1392
1393 * (((
1394 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1395 )))
1396
1397 (((
1398 There are two kinds of commands to configure LHT65N/S, they are:
1399 )))
1400
1401 * (((
1402 (% style="color:#4f81bd" %)**General Commands**.
1403 )))
1404
1405 (((
1406 These commands are to configure:
1407 )))
1408
1409 1. (((
1410 General system settings like: uplink interval.
1411 )))
1412 1. (((
1413 LoRaWAN protocol & radio-related commands.
1414 )))
1415
1416 (((
1417 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1418 )))
1419
1420 * (((
1421 (% style="color:#4f81bd" %)**Commands special design for LHT65N/S**
1422 )))
1423
1424 (((
1425 These commands are only valid for LHT65N/S, as below:
1426 )))
1427
1428
1429 == 4.1 Set Transmit Interval Time ==
1430
1431
1432 Feature: Change LoRaWAN End Node Transmit Interval.
1433
1434
1435 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1436
1437 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1438 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1439 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1440 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1441
1442 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1443
1444 Format: Command Code (0x01) followed by 3 bytes time value.
1445
1446 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1447
1448 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1449
1450 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1451
1452 == 4.2 Set External Sensor Mode ==
1453
1454
1455 Feature: Change External Sensor Mode.
1456
1457 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1458
1459 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500.222px" %)
1460 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**|(% style="background-color:#4f81bd; color:white; width:126px" %)**Dowlink Command**
1461 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1462 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1|(% style="width:126px" %)A201
1463 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp|(% style="width:126px" %)A209
1464 |(% style="width:155px" %)AT+EXT=6|(% colspan="2" rowspan="1" style="width:309px" %)Set to external ADC Sensor(use with E2 Cable)|(% style="width:126px" %)A206
1465 |(% style="width:155px" %)AT+EXT=2|(% colspan="2" rowspan="1" style="width:309px" %)Set to external TMP117 Sensor(Since Firmware v1.3)|(% style="width:126px" %)A202
1466 |(% style="width:155px" %)AT+EXT=11|(% colspan="2" rowspan="1" style="width:309px" %)Set to external SHT31 Sensor (Since Firmware v1.4.1)|(% style="width:126px" %)A20B
1467 |(% style="width:155px" %)AT+EXT=4|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Interrupt Mode(Since Firmware v1.3)|(% style="width:126px" %)A204
1468 |(% style="width:155px" %)AT+EXT=8|(% colspan="2" rowspan="1" style="width:309px" %)Set to external Counting Mode(Since Firmware v1.3)|(% style="width:126px" %)A208
1469 |(% style="width:155px" %)AT+EXT=10|(% colspan="2" rowspan="1" style="width:309px" %)Set to external E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2)|(% style="width:126px" %)A20A
1470
1471 **Response**
1472
1473 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1474
1475 Total bytes: 2 ~~ 5 bytes
1476
1477 **Example:**
1478
1479 * 0xA201: Set external sensor type to E1
1480
1481 * 0xA209: Same as AT+EXT=9
1482
1483 * 0xA20702003c: Same as AT+SETCNT=60
1484
1485 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1486
1487
1488 **Feature**: If PID is enabled, LHT65N/S will send the DS18B20 temperature probe ID on:
1489
1490 * First Packet after OTAA Join
1491 * Every 24 hours since the first packet.
1492
1493 PID is default set to disable (0)
1494
1495 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1496
1497 (% style="color:#4f81bd" %)**AT Command:**
1498
1499 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1500 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1501 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1502
1503 (% style="color:#4f81bd" %)**Downlink Command:**
1504
1505 * **0xA800**  **~-~->** AT+PID=0
1506 * **0xA801**     **~-~->** AT+PID=1
1507
1508 == 4.4 Set Password ==
1509
1510
1511 Feature: Set device password, max 9 digits
1512
1513 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1514
1515 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1516 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1517 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1518 123456
1519
1520 OK
1521 )))
1522 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1523
1524 (% style="color:#4f81bd" %)**Downlink Command:**
1525
1526 No downlink command for this feature.
1527
1528
1529 == 4.5 Quit AT Command ==
1530
1531
1532 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1533
1534 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1535
1536 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1537 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1538 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1539
1540 (% style="color:#4f81bd" %)**Downlink Command:**
1541
1542 No downlink command for this feature.
1543
1544
1545 == 4.6 Set to sleep mode ==
1546
1547
1548 Feature: Set device to sleep mode
1549
1550 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1551 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1552
1553 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1554
1555 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1556 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1557 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1558 Clear all stored sensor data…
1559
1560 OK
1561 )))
1562
1563 (% style="color:#4f81bd" %)**Downlink Command:**
1564
1565 * There is no downlink command to set to Sleep mode.
1566
1567 == 4.7 Set system time ==
1568
1569
1570 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1571
1572 (% style="color:#4f81bd" %)**AT Command:**
1573
1574 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1575 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1576 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1577 OK
1578
1579 Set System time to 2021-01-20 00:59:12
1580 )))
1581
1582 (% style="color:#4f81bd" %)**Downlink Command:**
1583
1584 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1585
1586
1587 == 4.8 Set Time Sync Mode ==
1588
1589
1590 (((
1591 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1592 )))
1593
1594 (((
1595 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1596 )))
1597
1598 (% style="color:#4f81bd" %)**AT Command:**
1599
1600 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1601 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1602 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1603
1604 (% style="color:#4f81bd" %)**Downlink Command:**
1605
1606 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1607 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1608
1609
1610 == 4.9 Set Time Sync Interval ==
1611
1612
1613 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1614
1615 (% style="color:#4f81bd" %)**AT Command:**
1616
1617 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1618 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1619 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1620
1621 (% style="color:#4f81bd" %)**Downlink Command:**
1622
1623 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1624
1625
1626 == 4.10 Get data ==
1627
1628
1629 Feature: Get the current sensor data.
1630
1631 (% style="color:#4f81bd" %)**AT Command:**
1632
1633 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1634 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1635
1636 == 4.11 Print data entries base on page ==
1637
1638
1639 Feature: Print the sector data from start page to stop page (max is 416 pages).
1640
1641 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1642
1643 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1644 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1645 |(% style="width:156px" %)(((
1646 AT+PDTA=1,3
1647 Print page 1 to 3
1648 )))|(% style="width:311px" %)(((
1649 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1650 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1651 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1652 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1653 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1654 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1655 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1656 8019570
1657 8019580
1658 8019590
1659 80195A0
1660 80195B0
1661 80195C0
1662 80195D0
1663 80195E0
1664 80195F0
1665
1666 OK
1667 )))
1668
1669 (% style="color:#4f81bd" %)**Downlink Command:**
1670
1671 No downlink commands for feature
1672
1673
1674 == 4.12 Print last few data entries ==
1675
1676
1677 Feature: Print the last few data entries
1678
1679 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1680
1681 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1682 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1683 |(% style="width:156px" %)(((
1684 AT+PLDTA=5
1685 Print last 5 entries
1686 )))|(% style="width:311px" %)(((
1687 Stop Tx and RTP events when read sensor data
1688 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1689 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1690 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1691 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1692 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1693 Start Tx and RTP events
1694 OK
1695 )))
1696
1697 (% style="color:#4f81bd" %)**Downlink Command:**
1698
1699 No downlink commands for feature
1700
1701
1702 == 4.13 Clear Flash Record ==
1703
1704
1705 Feature: Clear flash storage for data log feature.
1706
1707 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1708
1709 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1710 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1711 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1712 Clear all stored sensor data…
1713
1714 OK
1715 )))
1716
1717 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1718
1719 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1720
1721 == 4.14 Auto Send None-ACK messages ==
1722
1723
1724 Feature: LHT65N/S will wait for ACK for each uplink, If LHT65N/S doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N/S keeps sending messages in normal periodically. Once LHT65N/S gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1725
1726 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1727
1728 The default factory setting is 0
1729
1730 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1731 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1732 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1733
1734 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1735
1736 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1737
1738 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1739
1740
1741 Feature: Set internal and external temperature sensor alarms.
1742
1743 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1744 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1745 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1746
1747 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1748
1749 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1750
1751 0): Cancel
1752
1753 1): Threshold alarm
1754
1755 2): Fluctuation alarm
1756
1757 3): Sampling multiple times and uplink together
1758
1759
1760 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1761
1762 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1763
1764
1765 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1766
1767 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1768
1769 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1770
1771
1772 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1773
1774 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1775
1776 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1777
1778
1779 **3): If Alarm Mode is set to 3:**
1780
1781 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1782 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1783 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1784 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1785 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1786 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1787
1788 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1789
1790 0xA5 00 ~-~- AT+WMOD=0.
1791
1792 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1793
1794 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1795
1796 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1797
1798 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1799
1800 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1801
1802
1803 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1804
1805
1806 Feature: use downlink to get firmware version.
1807
1808 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1809
1810 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1811 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1812 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1813
1814 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1815
1816 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1817
1818 (% style="color:#037691" %)**Sensor model**
1819
1820 0x0b: LHT65N/S
1821
1822
1823 (% style="color:#037691" %)**Firmware version**
1824
1825 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1826
1827 Example: 0x0140=V1.4.0
1828
1829
1830 (% style="color:#037691" %)** Frequency Band:**
1831
1832 * 0x01: EU868
1833 * 0x02: US915
1834 * 0x03: IN865
1835 * 0x04: AU915
1836 * 0x05: KZ865
1837 * 0x06: RU864
1838 * 0x07: AS923
1839 * 0x08: AS923-1
1840 * 0x09: AS923-2
1841 * 0xa0: AS923-3
1842
1843 (% style="color:#037691" %)**Subband**
1844
1845 value 0x00 ~~ 0x08
1846
1847 Example: 0xFF ~-~--> " NULL"
1848
1849
1850 (% style="color:#037691" %)**Battery**
1851
1852 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1853
1854 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1855
1856
1857 == 4.17 Setting LEDAlarm ==
1858
1859 Feature: Setting LEDAlarm
1860
1861 The default factory setting is 0
1862
1863 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1864 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1865 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1866
1867 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1868
1869 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1870
1871 = 5. Battery & How to replace =
1872
1873 == 5.1 Battery Type ==
1874
1875
1876 (((
1877 LHT65N/S is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1878 )))
1879
1880 (((
1881 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1882
1883 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1884 )))
1885
1886 The minimum Working Voltage for the LHT65N/S is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1887
1888 == 5.2 Replace Battery ==
1889
1890
1891 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1892
1893 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1894
1895
1896 == 5.3 Battery Life Analyze ==
1897
1898
1899 (((
1900 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1901 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1902 )))
1903
1904
1905 (((
1906 A full detail test report for LHT65N/S on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1907 )))
1908
1909
1910 = 6. FAQ =
1911
1912 == 6.1 How to connect to LHT65N/S UART interface? ==
1913
1914
1915 The LHT65N/S has the UART interface in its Type-C. The UART Interface can be used for
1916
1917 * Send AT Commands, and get output from LHT65N/S
1918 * Upgrade firmwre of LHT65N/S.
1919
1920 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N/S**
1921
1922
1923 **Option of USB TTL adapter:**
1924
1925 * CP2101 USB TTL Adapter
1926 * CH340 USB TTL Adapter
1927 * FT232 USB TTL Adapter
1928
1929 **Option of Type-C Adapter:**
1930
1931 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1932
1933
1934 **Connection:**
1935
1936 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N/S GND**
1937 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N/S TXD**
1938 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N/S RXD**
1939
1940 (((
1941
1942
1943 Connection Example:
1944
1945 [[image:1655802313617-381.png||_mstalt="293917"]]
1946
1947
1948 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1949
1950
1951 == 6.2 How to use AT Commands? ==
1952
1953
1954 First, Connect PC and LHT65N/S via USB TTL adapter as **FAQ 6.1**
1955
1956 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N/S. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1957 )))
1958
1959
1960 Input password and ATZ to activate LHT65N/S, As shown below:
1961
1962 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1963
1964
1965 AT Command List is as below:
1966
1967 AT+<CMD>? :  Help on <CMD>
1968
1969 AT+<CMD> :  Run <CMD>
1970
1971 AT+<CMD>=<value> :  Set the value
1972
1973 AT+<CMD>=? :  Get the value
1974
1975 AT+DEBUG:  Set more info output
1976
1977 ATZ:  Trig a reset of the MCU
1978
1979 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1980
1981 AT+DEUI:  Get or Set the Device EUI
1982
1983 AT+DADDR:  Get or Set the Device Address
1984
1985 AT+APPKEY:  Get or Set the Application Key
1986
1987 AT+NWKSKEY:  Get or Set the Network Session Key
1988
1989 AT+APPSKEY:  Get or Set the Application Session Key
1990
1991 AT+APPEUI:  Get or Set the Application EUI
1992
1993 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1994
1995 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1996
1997 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1998
1999 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2000
2001 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
2002
2003 AT+RX2FQ:  Get or Set the Rx2 window frequency
2004
2005 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
2006
2007 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2008
2009 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
2010
2011 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2012
2013 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2014
2015 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
2016
2017 AT+NWKID:  Get or Set the Network ID
2018
2019 AT+FCU:  Get or Set the Frame Counter Uplink
2020
2021 AT+FCD:  Get or Set the Frame Counter Downlink
2022
2023 AT+CLASS:  Get or Set the Device Class
2024
2025 AT+JOIN:  Join network
2026
2027 AT+NJS:  Get the join status
2028
2029 AT+SENDB:  Send hexadecimal data along with the application port
2030
2031 AT+SEND:  Send text data along with the application port
2032
2033 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
2034
2035 AT+RECV:  Print last received data in raw format
2036
2037 AT+VER:  Get current image version and Frequency Band
2038
2039 AT+CFM:  Get or Set the confirmation mode (0-1)
2040
2041 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
2042
2043 AT+SNR:  Get the SNR of the last received packet
2044
2045 AT+RSSI:  Get the RSSI of the last received packet
2046
2047 AT+TDC:  Get or set the application data transmission interval in ms
2048
2049 AT+PORT:  Get or set the application port
2050
2051 AT+DISAT:  Disable AT commands
2052
2053 AT+PWORD: Set password, max 9 digits
2054
2055 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
2056
2057 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
2058
2059 AT+PDTA:  Print the sector data from start page to stop page
2060
2061 AT+PLDTA:  Print the last few sets of data
2062
2063 AT+CLRDTA:  Clear the storage, record position back to 1st
2064
2065 AT+SLEEP:  Set sleep mode
2066
2067 AT+EXT:  Get or Set external sensor model
2068
2069 AT+BAT:  Get the current battery voltage in mV
2070
2071 AT+CFG:  Print all configurations
2072
2073 AT+WMOD:  Get or Set Work Mode
2074
2075 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2076
2077 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2078
2079 AT+SETCNT:  Set the count at present
2080
2081 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2082
2083 AT+RPL:  Get or set response level
2084
2085 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2086
2087 AT+LEAPSEC:  Get or Set Leap Second
2088
2089 AT+SYNCMOD:  Get or Set time synchronization method
2090
2091 AT+SYNCTDC:  Get or set time synchronization interval in day
2092
2093 AT+PID:  Get or set the PID
2094
2095
2096 == 6.3 How to use Downlink commands? ==
2097
2098
2099 **Downlink commands:**
2100
2101
2102 (% style="color:blue" %)**TTN:**
2103
2104 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2105
2106
2107
2108 (% style="color:blue" %)**Helium: **
2109
2110 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2111
2112
2113
2114 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2115
2116
2117 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2118
2119
2120 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2121
2122
2123
2124 (% style="color:blue" %)**AWS-IOT :**
2125
2126 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2127
2128
2129 == 6.4 How to change the uplink interval? ==
2130
2131
2132 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2133
2134
2135 == 6.5 How to upgrade firmware? ==
2136
2137
2138 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
2139 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N/S supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
2140
2141
2142 LHT65N/S has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2143
2144
2145 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
2146
2147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
2148
2149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
2150
2151 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N/S.**
2152
2153 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
2154
2155 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
2156
2157 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
2158
2159 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
2160
2161 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
2162
2163 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
2164
2165 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
2166
2167
2168 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
2169
2170 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
2171
2172 [[image:image-20240716174308-1.png||height="523" width="410"]]
2173
2174
2175 === 6.5.2 Updated firmware for V1.4 and above ===
2176
2177
2178 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
2179
2180 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
2181 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
2182
2183 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
2184
2185
2186 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
2187
2188
2189 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2190
2191 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2192
2193
2194 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2195
2196
2197 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
2198
2199
2200 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
2201
2202 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2203
2204 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2205
2206
2207
2208 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2209
2210 Connect PC and LHT65N/S via USB TTL adapter .
2211
2212 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2213
2214 **Connection method:**
2215
2216 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2217
2218 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2219
2220 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2221
2222 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2223
2224 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2225
2226
2227 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2228
2229 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2230
2231
2232 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2233
2234 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2235
2236
2237 When this interface appears, it indicates that the download has been completed.
2238
2239 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2240
2241
2242 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2243
2244
2245 == 6.6 Why can't I see the datalog information ==
2246
2247
2248 ~1. The time is not aligned, and the correct query command is not used.
2249
2250 2. Decoder error, did not parse the datalog data, the data was filtered.
2251
2252
2253 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2254
2255
2256 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2257
2258 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2259
2260
2261 After there is UART Connectio, run below commands:
2262
2263 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2264
2265 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2266
2267 Example output:
2268
2269 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2270
2271
2272 = 7. Order Info =
2273
2274
2275 Part Number: (% style="color:#4f81bd" %)** LHT65N/S-XX-YY**
2276
2277 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2278
2279 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2280 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2281 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2282 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2283 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2284 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2285 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2286 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2287
2288 = 8. Packing Info =
2289
2290
2291 **Package Includes**:
2292
2293 * LHT65N/S Temperature & Humidity Sensor x 1
2294 * 1 x External Lora Antenna for LHT65S
2295 * Optional external sensor
2296
2297 = 9. Reference material =
2298
2299
2300 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2301
2302 = 10. FCC Warning =
2303
2304
2305 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2306
2307 (1) This device may not cause harmful interference;
2308
2309 (2) this device must accept any interference received, including interference that may cause undesired operation.