Version 266.1 by Bei Jinggeng on 2023/10/17 14:59

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN (% style="display:none" %) (%%)Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino LHT65N (% style="display:none" %) (%%)Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114
115 [[image:image-20230717144740-2.png||height="391" width="267"]]
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
118 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
119 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
120 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
121 )))
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
124 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
125 )))
126 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
127
128 == 2.3 Example to join LoRaWAN network ==
129
130
131 (% class="wikigeneratedid" %)
132 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
133
134
135 (% class="wikigeneratedid" %)
136 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
137
138
139 (((
140 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
141 )))
142
143
144 === 2.3.1 Step 1: Create Device n TTN ===
145
146
147 (((
148 Create a device in TTN V3 with the OTAA keys from LHT65N.
149 )))
150
151 (((
152 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
153 )))
154
155 [[image:image-20230426083319-1.png||height="258" width="556"]]
156
157 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
158
159 Add APP EUI in the application.
160
161
162 [[image:image-20220522232916-3.png||_mstalt="430495"]]
163
164
165 [[image:image-20220522232932-4.png||_mstalt="430157"]]
166
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 **Value**
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
263 |(% style="width:66px" %)(((
264 **Value**
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 (% style="display:none" %)
297
298 === 2.4.4 Built-in Humidity ===
299
300
301 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
302
303 * Humidity:    0x025C/10=60.4%
304
305 (% style="display:none" %)
306
307 === 2.4.5 Ext # ===
308
309
310 Bytes for External Sensor:
311
312 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
313 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
314 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
315 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
316 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
317 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
318 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
319 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
320 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
321 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
322
323 === ===
324
325 === 2.4.6 Ext value ===
326
327 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
330 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
331 **Size(bytes)**
332 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
333 **2**
334 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
335 2
336 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
337 **2**
338 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
339 1
340 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
341 2
342 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
343 2
344 )))
345 |(% style="width:110px" %)(((
346 **Value**
347 )))|(% style="width:71px" %)(((
348 BAT & BAT Status
349 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
350 Status & Ext
351 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
352
353 [[image:image-20220522235639-5.png||_mstalt="432848"]]
354
355
356 * DS18B20 temp=0x0ADD/100=27.81℃
357
358 The last 2 bytes of data are meaningless
359
360
361
362 [[image:image-20220522235639-6.png||_mstalt="433212"]]
363
364
365 * External temperature= (0xF54F-65536)/100=-27.37℃
366
367 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
368
369 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
370
371 The last 2 bytes of data are meaningless
372
373 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
374
375
376
377 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
378
379
380 (((
381 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
382 )))
383
384 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
385 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
386 **Size(bytes)**
387 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
388 **2**
389 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
390 **2**
391 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
392 **2**
393 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 **1**
395 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
396 **4**
397 )))
398 |(% style="width:110px" %)(((
399 **Value**
400 )))|(% style="width:71px" %)(((
401 External temperature
402 )))|(% style="width:99px" %)(((
403 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
404 )))|(% style="width:132px" %)(((
405 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
406 )))|(% style="width:54px" %)(((
407 Status & Ext
408 )))|(% style="width:64px" %)(((
409 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
410 )))
411
412 * **Battery status & Built-in Humidity**
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
415 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
416 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
417 BAT Status
418 00(b): Ultra Low ( BAT <= 2.50v)
419 01(b): Low  (2.50v <=BAT <= 2.55v)
420 10(b): OK   (2.55v <= BAT <=2.65v)
421 11(b): Good   (BAT >= 2.65v)
422 )))|(% style="width:132px" %)(((
423 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
424 )))
425
426 * **Status & Ext Byte**
427
428 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
429 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
430 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
431
432 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
433 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
434 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
435
436 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
437
438 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
439 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
440 **Size(bytes)**
441 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
442 **2**
443 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
444 2
445 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
446 **2**
447 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
448 1
449 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
450 2
451 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
452 2
453 )))
454 |(% style="width:110px" %)(((
455 **Value**
456 )))|(% style="width:71px" %)(((
457 BAT & BAT Status
458 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
459 Status & Ext
460 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
461
462 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
463
464 be used to power the external ADC sensor; user can control the power on time for this
465
466 (% style="color:blue" %)**sensor by setting:**
467
468 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
469
470 **For example:**
471
472 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
473
474
475 Or use **downlink command A2** to set the same.
476
477 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
478
479 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
480
481 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
482
483
484 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
485
486 [[image:image-20220628150714-4.png||_mstalt="431054"]]
487
488
489 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
490
491
492 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
493
494 [[image:image-20220628151005-5.png||_mstalt="429546"]]
495
496
497 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
498
499 [[image:image-20220628151056-6.png||_mstalt="431873"]]
500
501
502 3) Within range
503
504 [[image:image-20220628151143-7.png||_mstalt="431210"]]
505
506
507
508 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3) ====
509
510 ==== ====
511
512 ==== (% style="display:none" %) (%%) ====
513
514 [[image:image-20230717151328-8.png]]
515
516 (% style="display:none" %) (%%)
517
518
519
520 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
521
522
523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 **ze(bytes)**
526 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
527 **2**
528 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
529 2
530 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
531 **2**
532 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
533 1
534 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
535 2
536 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
537 2
538 )))
539 |(% style="width:110px" %)(((
540 **Value**
541 )))|(% style="width:71px" %)(((
542 BAT & BAT Status
543 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
544 Status & Ext
545 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
546
547 [[image:image-20220906102307-7.png||_mstalt="430443"]]
548
549
550 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
551
552 The external cable NE2 can be use for MOD4 and MOD8
553
554
555
556 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
557
558 [[image:image-20230717151245-7.png]]
559
560 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
561
562
563 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
564 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
565 **Size(bytes)**
566 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
567 **2**
568 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
569 2
570 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
571 **2**
572 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
573 1
574 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
575 2
576 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
577 2
578 )))
579 |(% style="width:110px" %)(((
580 **Value**
581 )))|(% style="width:71px" %)(((
582 BAT & BAT Status
583 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
584 Status & Ext
585 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
586
587 [[image:SHT31.png]]
588
589
590
591 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
592
593
594 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
595
596
597 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
598
599 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
600
601 In Open State, the power consumption is the same as if there is no probe
602
603 In Close state, the power consumption will be 3uA higher than normal.
604
605 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
606
607
608 Ext=4,Interrupt Sensor:
609
610 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
611 |(% style="width:101px" %)(((
612 **AT+EXT=4,1**
613 )))|(% style="width:395px" %)(((
614 **Sent uplink packet in both rising and falling interrupt**
615 )))
616 |(% style="width:101px" %)(((
617 **AT+EXT=4,2**
618 )))|(% style="width:395px" %)(((
619 **Sent uplink packet only in falling interrupt**
620 )))
621 |(% style="width:101px" %)(((
622 **AT+EXT=4,3**
623 )))|(% style="width:395px" %)(((
624 **Sent uplink packet only in rising interrupt**
625 )))
626
627
628 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
629 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
630 **Size(bytes)**
631 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
632 **2**
633 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
634 2
635 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
636 **2**
637 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
638 1
639 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
640 1
641 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
642 1
643 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
644 3
645 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
646 3
647 )))
648 |(% style="width:110px" %)(((
649 **Value**
650 )))|(% style="width:71px" %)(((
651 BAT & BAT Status
652 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
653 Status & Ext
654 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
655
656 Trigger by falling edge:
657
658 [[image:image-20220906101145-2.png||_mstalt="428324"]]
659
660
661 Trigger by raising edge:
662
663 [[image:image-20220906101145-3.png||_mstalt="428688"]]
664
665
666
667 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
668
669
670 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
671
672
673 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
674
675 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
676
677
678 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
679
680 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
681
682
683 Ext=8, Counting Sensor ( 4 bytes):
684
685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
686 |(% style="width:131px" %)(((
687 **AT+EXT=8,0**
688 )))|(% style="width:195px" %)(((
689 **Count at falling interrupt**
690 )))
691 |(% style="width:131px" %)(((
692 **AT+EXT=8,1**
693 )))|(% style="width:195px" %)(((
694 **Count at rising interrupt**
695 )))
696 |(% style="width:131px" %)(((
697 **AT+SETCNT=60**
698 )))|(% style="width:195px" %)(((
699 **Sent current count to 60**
700 )))
701
702 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
703 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
704 **Size(bytes)**
705 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
706 **2**
707 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
708 2
709 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
710 **2**
711 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
712 1
713 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
714 4
715 )))
716 |(% style="width:110px" %)(((
717 **Value**
718 )))|(% style="width:71px" %)(((
719 BAT & BAT Status
720 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
721 Status & Ext
722 )))|(% style="width:64px" %)Exit_count
723
724 [[image:image-20220906101320-6.png||_mstalt="428064"]]
725
726
727 (% style="color:blue" %)**A2 downlink Command:**
728
729 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
730
731 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
732
733 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
734
735 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
736
737 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
738
739
740 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
741
742
743 (((
744 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
745 )))
746
747 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
748 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
749 **Size(bytes)**
750 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
751 **2**
752 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
753 **2**
754 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
755 **2**
756 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
757 **1**
758 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
759 **4**
760 )))
761 |(% style="width:110px" %)(((
762 **Value**
763 )))|(% style="width:71px" %)(((
764 External temperature
765 )))|(% style="width:99px" %)(((
766 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
767 )))|(% style="width:132px" %)(((
768 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
769 )))|(% style="width:54px" %)(((
770 Status & Ext
771 )))|(% style="width:64px" %)(((
772 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
773 )))
774
775 * **Battery status & Built-in Humidity**
776
777 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
778 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
779 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
780 BAT Status
781 00(b): Ultra Low ( BAT <= 2.50v)
782 01(b): Low  (2.50v <=BAT <= 2.55v)
783 10(b): OK   (2.55v <= BAT <=2.65v)
784 11(b): Good   (BAT >= 2.65v)
785 )))|(% style="width:132px" %)(((
786 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
787 )))
788
789 * **Status & Ext Byte**
790
791 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
792 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
793 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
794
795 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
796 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
797 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
798
799 == 2.5 Show data on Datacake ==
800
801
802 (((
803 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
804 )))
805
806
807 (((
808 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
809 )))
810
811 (((
812 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
813 )))
814
815
816 (((
817 Add Datacake:
818 )))
819
820
821 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
822
823
824
825 Select default key as Access Key:
826
827
828 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
829
830
831 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
832
833
834 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
835
836
837 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
838
839
840 == 2.6 Datalog Feature ==
841
842
843 (((
844 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
845 )))
846
847
848 === 2.6.1 Ways to get datalog via LoRaWAN ===
849
850
851 There are two methods:
852
853 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
854
855
856 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
857
858
859 (% style="color:red" %)**Note for method 2:**
860
861 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
862 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
863
864 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
865
866
867 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
868
869
870 === 2.6.2 Unix TimeStamp ===
871
872
873 LHT65N uses Unix TimeStamp format based on
874
875
876 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
877
878
879
880 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
881
882 Below is the converter example
883
884 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
885
886
887 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
888
889
890 === 2.6.3 Set Device Time ===
891
892
893 (((
894 (% style="color:blue" %)**There are two ways to set device's time:**
895 )))
896
897 (((
898 **1.  Through LoRaWAN MAC Command (Default settings)**
899 )))
900
901 (((
902 User need to set SYNCMOD=1 to enable sync time via MAC command.
903 )))
904
905 (((
906 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
907 )))
908
909 (((
910 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
911 )))
912
913
914 (((
915 **2. Manually Set Time**
916 )))
917
918 (((
919 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
920 )))
921
922
923 === 2.6.4 Poll sensor value ===
924
925
926 User can poll sensor value based on timestamps from the server. Below is the downlink command.
927
928 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
929 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
930 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
931
932 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
933
934 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
935
936 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
937
938 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
939
940
941 === 2.6.5 Datalog Uplink payload ===
942
943
944 The Datalog poll reply uplink will use below payload format.
945
946 **Retrieval data payload:**
947
948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
949 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
950 **Size(bytes)**
951 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
952 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
953
954 **Poll message flag & Ext:**
955
956 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
957
958 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
959
960 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
961
962 * Poll Message Flag is set to 1.
963
964 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
965
966 For example, in US915 band, the max payload for different DR is:
967
968 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
969
970 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
971
972 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
973
974 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
975
976 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
977
978
979 **Example:**
980
981 If LHT65N has below data inside Flash:
982
983 [[image:image-20230426171833-4.png]]
984
985
986 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
987
988 Where : Start time: 60065F97 = time 21/1/19 04:27:03
989
990 Stop time: 60066DA7= time 21/1/19 05:27:03
991
992
993 **LHT65N will uplink this payload.**
994
995 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
996
997
998 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
999
1000 Where the first 11 bytes is for the first entry:
1001
1002 7FFF089801464160065F97
1003
1004 Ext sensor data=0x7FFF/100=327.67
1005
1006 Temp=0x088E/100=22.00
1007
1008 Hum=0x014B/10=32.6
1009
1010 poll message flag & Ext=0x41,means reply data,Ext=1
1011
1012 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1013
1014
1015 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1016
1017
1018 (((
1019 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1020 )))
1021
1022 (((
1023 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1024
1025
1026 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1027
1028
1029 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1030
1031 (((
1032 (% class="box infomessage" %)
1033 (((
1034 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1035
1036 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1037
1038 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1039
1040 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1041
1042 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1043
1044 **AT+LEDALARM=1** :       Enable LED visual Alarm.
1045 )))
1046 )))
1047
1048 (% style="color:#4f81bd" %)**Downlink Command:**
1049
1050 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
1051
1052 AT+CITEMP=1 : A60001
1053
1054 AT+ARTEMP=1,60  :  A70001003C
1055
1056 AT+ARTEMP=-16,60 :  A7FFF0003C
1057
1058 AT+LEDALARM=1  :  3601
1059
1060
1061 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1062
1063 Total bytes: 8 bytes
1064
1065 **Example: **AA0100010001003C
1066
1067 WMOD=01
1068
1069 CITEMP=0001
1070
1071 TEMPlow=0001
1072
1073 TEMPhigh=003C
1074
1075
1076 **DS18B20 and TMP117 Threshold Alarm**
1077
1078 **~ AT+WMOD=1,60,-10,20**
1079
1080 (% style="color:#4f81bd" %)**Downlink Command:**
1081
1082 **Example: **A5013CFC180014
1083
1084 MOD=01
1085
1086 CITEMP=3C(S)
1087
1088 TEMPlow=FC18
1089
1090 TEMPhigh=0014
1091
1092
1093 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
1094
1095 **AT+WMOD=2,60,5** 
1096
1097 (% style="color:#4f81bd" %)**Downlink Command:**
1098
1099 **Example: **A5023C05
1100
1101 MOD=02
1102
1103 CITEMP=3C(S)
1104
1105 temperature fluctuation=05
1106
1107
1108 **Sampling multiple times and uplink together**
1109
1110 **AT+WMOD=3,1,60,20,-16,32,1**   
1111
1112 Explain:
1113
1114 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1115 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1116 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1117 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1118 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1119 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1120
1121 (% style="color:#4f81bd" %)**Downlink Command:**
1122
1123 **Example: **A50301003C14FFF0002001
1124
1125 MOD=03
1126
1127 TEMP=DS18B20
1128
1129 CITEMP=003C(S)
1130
1131 Total number of acquisitions=14
1132
1133 TEMPlow=FFF0
1134
1135 TEMPhigh=0020
1136
1137 ARTEMP=01
1138
1139
1140 **Uplink payload( Fport=3)**
1141
1142 **Example: CBEA**01**0992**//0A41//**09C4**
1143
1144 BatV=CBEA
1145
1146 TEMP=DS18B20
1147
1148 Temp1=0992  ~/~/ 24.50℃
1149
1150 Temp2=0A41  ~/~/ 26.25℃
1151
1152 Temp3=09C4  ~/~/ 25.00℃
1153
1154 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1155
1156 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1157 )))
1158
1159
1160 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1161
1162
1163 (% class="box infomessage" %)
1164 (((
1165 (((
1166 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1167 )))
1168
1169 (((
1170 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1171 )))
1172
1173 (((
1174 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1175 )))
1176
1177 (((
1178 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1179 )))
1180
1181 (((
1182 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1183 )))
1184 )))
1185
1186 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1187
1188 Total bytes: 8 bytes
1189
1190 **Example:**AA0100010001003C
1191
1192 WMOD=01
1193
1194 CITEMP=0001
1195
1196 TEMPlow=0001
1197
1198 TEMPhigh=003C
1199
1200
1201 == 2.8 LED Indicator ==
1202
1203
1204 The LHT65 has a triple color LED which for easy showing different stage .
1205
1206 While user press ACT button, the LED will work as per LED status with ACT button.
1207
1208 In a normal working state:
1209
1210 * For each uplink, the BLUE LED or RED LED will blink once.
1211 BLUE LED when external sensor is connected.
1212 * RED LED when external sensor is not connected
1213 * For each success downlink, the PURPLE LED will blink once
1214
1215 == 2.9 installation ==
1216
1217
1218 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1219
1220
1221 = 3. Sensors and Accessories =
1222
1223 == 3.1 E2 Extension Cable ==
1224
1225
1226 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1227
1228
1229 **1m long breakout cable for LHT65N. Features:**
1230
1231 * (((
1232 Use for AT Command, works for both LHT52/LHT65N
1233 )))
1234 * (((
1235 Update firmware for LHT65N, works for both LHT52/LHT65N
1236 )))
1237 * (((
1238 Supports ADC mode to monitor external ADC
1239 )))
1240 * (((
1241 Supports Interrupt mode
1242 )))
1243 * (((
1244 Exposed All pins from the LHT65N Type-C connector.
1245
1246
1247
1248 )))
1249
1250 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1251
1252
1253 == 3.2 E3 Temperature Probe ==
1254
1255
1256 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1257
1258
1259 Temperature sensor with 2 meters cable long
1260
1261 * Resolution: 0.0625 °C
1262 * ±0.5°C accuracy from -10°C to +85°C
1263 * ±2°C accuracy from -55°C to +125°C
1264 * Operating Range: -40 ~~ 125 °C
1265 * Working voltage 2.35v ~~ 5v
1266
1267 == 3.3 E31F Temperature Probe ==
1268
1269
1270 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1271
1272
1273 Temperature sensor with 1 meters cable long
1274
1275
1276 **Built-in Temperature Sensor:**
1277
1278 * Resolution: 0.01 °C
1279 * Accuracy Tolerance : Typ ±0.3 °C
1280 * Long Term Drift: < 0.02 °C/yr
1281 * Operating Range: -40 ~~ 80 °C
1282
1283 **Built-in Humidity Sensor:**
1284
1285 * Resolution: 0.04 % RH
1286 * Accuracy Tolerance : Typ ±3 % RH
1287 * Long Term Drift: < 0.02 °C/yr
1288 * Operating Range: 0 ~~ 96 % RH
1289
1290 **External Temperature Sensor :**
1291
1292 * Resolution: 0.01 °C
1293 * Accuracy Tolerance : Typical ±0.3 °C
1294 * Long Term Drift: < 0.02 °C/yr
1295 * Operating Range: -40 ~~ 125 °C
1296
1297 **External Humidity Sensor :**
1298
1299 * Resolution: 0.04 % RH
1300 * Accuracy Tolerance : Typ ±3 % RH
1301 * Long Term Drift: < 0.02 °C/yr
1302 * Operating Range: 0 ~~ 96 % RH
1303
1304 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1305
1306
1307 (((
1308 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1309 )))
1310
1311 * (((
1312 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1313 )))
1314
1315 * (((
1316 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1317 )))
1318
1319 (((
1320 There are two kinds of commands to configure LHT65N, they are:
1321 )))
1322
1323 * (((
1324 (% style="color:#4f81bd" %)**General Commands**.
1325 )))
1326
1327 (((
1328 These commands are to configure:
1329 )))
1330
1331 1. (((
1332 General system settings like: uplink interval.
1333 )))
1334 1. (((
1335 LoRaWAN protocol & radio-related commands.
1336 )))
1337
1338 (((
1339 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1340 )))
1341
1342 * (((
1343 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1344 )))
1345
1346 (((
1347 These commands are only valid for LHT65N, as below:
1348 )))
1349
1350
1351 == 4.1 Set Transmit Interval Time ==
1352
1353
1354 Feature: Change LoRaWAN End Node Transmit Interval.
1355
1356
1357 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1358
1359 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1360 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1361 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1362 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1363
1364 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1365
1366 Format: Command Code (0x01) followed by 3 bytes time value.
1367
1368 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1369
1370 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1371
1372 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1373
1374 == 4.2 Set External Sensor Mode ==
1375
1376
1377 Feature: Change External Sensor Mode.
1378
1379 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1380
1381 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1382 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1383 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1384 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1385 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1386
1387 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1388
1389 Total bytes: 2 ~~ 5 bytes
1390
1391 **Example:**
1392
1393 * 0xA201: Set external sensor type to E1
1394
1395 * 0xA209: Same as AT+EXT=9
1396
1397 * 0xA20702003c: Same as AT+SETCNT=60
1398
1399 == 4.3 Enable/Disable uplink Temperature probe ID ==
1400
1401
1402 (((
1403 Feature: If PID is enabled, device will send the temperature probe ID on:
1404 )))
1405
1406 * (((
1407 First Packet after OTAA Join
1408 )))
1409 * (((
1410 Every 24 hours since the first packet.
1411 )))
1412
1413 (((
1414 PID is default set to disable (0)
1415
1416
1417 )))
1418
1419 (% style="color:#4f81bd" %)**AT Command:**
1420
1421 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1422 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1423 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1424
1425 (% style="color:#4f81bd" %)**Downlink Command:**
1426
1427 * **0xA800**  **~-~->** AT+PID=0
1428 * **0xA801**     **~-~->** AT+PID=1
1429
1430 == 4.4 Set Password ==
1431
1432
1433 Feature: Set device password, max 9 digits
1434
1435 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1436
1437 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1438 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1439 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1440 123456
1441
1442 OK
1443 )))
1444 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1445
1446 (% style="color:#4f81bd" %)**Downlink Command:**
1447
1448 No downlink command for this feature.
1449
1450
1451 == 4.5 Quit AT Command ==
1452
1453
1454 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1455
1456 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1457
1458 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1459 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1460 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1461
1462 (% style="color:#4f81bd" %)**Downlink Command:**
1463
1464 No downlink command for this feature.
1465
1466
1467 == 4.6 Set to sleep mode ==
1468
1469
1470 Feature: Set device to sleep mode
1471
1472 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1473 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1474
1475 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1476
1477 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1478 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1479 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1480 Clear all stored sensor data…
1481
1482 OK
1483 )))
1484
1485 (% style="color:#4f81bd" %)**Downlink Command:**
1486
1487 * There is no downlink command to set to Sleep mode.
1488
1489 == 4.7 Set system time ==
1490
1491
1492 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1493
1494 (% style="color:#4f81bd" %)**AT Command:**
1495
1496 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1497 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1498 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1499 OK
1500
1501 Set System time to 2021-01-20 00:59:12
1502 )))
1503
1504 (% style="color:#4f81bd" %)**Downlink Command:**
1505
1506 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1507
1508
1509 == 4.8 Set Time Sync Mode ==
1510
1511
1512 (((
1513 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1514 )))
1515
1516 (((
1517 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1518 )))
1519
1520 (% style="color:#4f81bd" %)**AT Command:**
1521
1522 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1523 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1524 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1525
1526 (% style="color:#4f81bd" %)**Downlink Command:**
1527
1528 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1529 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1530
1531
1532 == 4.9 Set Time Sync Interval ==
1533
1534
1535 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1536
1537 (% style="color:#4f81bd" %)**AT Command:**
1538
1539 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1540 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1541 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1542
1543 (% style="color:#4f81bd" %)**Downlink Command:**
1544
1545 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1546
1547
1548 == 4.10 Print data entries base on page. ==
1549
1550
1551 Feature: Print the sector data from start page to stop page (max is 416 pages).
1552
1553 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1554
1555 [[image:image-20230426164330-2.png]]
1556
1557 (% style="color:#4f81bd" %)**Downlink Command:**
1558
1559 No downlink commands for feature
1560
1561
1562 == 4.11 Print last few data entries. ==
1563
1564
1565 Feature: Print the last few data entries
1566
1567 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1568
1569 [[image:image-20230426164932-3.png]]
1570
1571 (% style="color:#4f81bd" %)**Downlink Command:**
1572
1573 No downlink commands for feature
1574
1575
1576 == 4.12 Clear Flash Record ==
1577
1578
1579 Feature: Clear flash storage for data log feature.
1580
1581 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1582
1583 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1584 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1585 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1586 Clear all stored sensor data…
1587
1588 OK
1589 )))
1590
1591 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1592
1593 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1594
1595 == 4.13 Auto Send None-ACK messages ==
1596
1597
1598 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1599
1600 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1601
1602 The default factory setting is 0
1603
1604 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1605 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1606 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1607
1608 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1609
1610 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1611
1612 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1613
1614
1615 Feature: Set internal and external temperature sensor alarms.
1616
1617 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1618 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1619 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1620
1621 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1622
1623 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1624
1625 0): Cancel
1626
1627 1): Threshold alarm
1628
1629 2): Fluctuation alarm
1630
1631 3):Sampling multiple times and uplink together
1632
1633
1634 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1635
1636 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1637
1638
1639 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1640
1641 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1642
1643 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1644
1645
1646 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1647
1648 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1649
1650 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1651
1652
1653 3): If Alarm Mode is set to 3:
1654
1655 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1656 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1657 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1658 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1659 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1660 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1661
1662 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1663
1664 0xA5 00 ~-~- AT+WMOD=0.
1665
1666 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1667
1668 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1669
1670 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1671
1672 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1673
1674 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1675
1676
1677 = 5. Battery & How to replace =
1678
1679 == 5.1 Battery Type ==
1680
1681
1682 (((
1683 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1684 )))
1685
1686 (((
1687 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1688
1689
1690 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1691 )))
1692
1693 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1694
1695
1696 == 5.2 Replace Battery ==
1697
1698
1699 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1700
1701 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1702
1703
1704 == 5.3 Battery Life Analyze ==
1705
1706
1707 (((
1708 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1709 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1710 )))
1711
1712
1713 (((
1714 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1715 )))
1716
1717
1718 = 6. FAQ =
1719
1720 == 6.1 How to use AT Command? ==
1721
1722
1723 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1724
1725 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1726
1727
1728 **Connection:**
1729
1730 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1731 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1732 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1733
1734 (((
1735 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1736
1737 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1738 )))
1739
1740
1741 Input password and ATZ to activate LHT65N,As shown below:
1742
1743 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1744
1745
1746 AT Command List is as below:
1747
1748 AT+<CMD>? :  Help on <CMD>
1749
1750 AT+<CMD> :  Run <CMD>
1751
1752 AT+<CMD>=<value> :  Set the value
1753
1754 AT+<CMD>=? :  Get the value
1755
1756 AT+DEBUG:  Set more info output
1757
1758 ATZ:  Trig a reset of the MCU
1759
1760 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1761
1762 AT+DEUI:  Get or Set the Device EUI
1763
1764 AT+DADDR:  Get or Set the Device Address
1765
1766 AT+APPKEY:  Get or Set the Application Key
1767
1768 AT+NWKSKEY:  Get or Set the Network Session Key
1769
1770 AT+APPSKEY:  Get or Set the Application Session Key
1771
1772 AT+APPEUI:  Get or Set the Application EUI
1773
1774 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1775
1776 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1777
1778 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1779
1780 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1781
1782 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1783
1784 AT+RX2FQ:  Get or Set the Rx2 window frequency
1785
1786 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1787
1788 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1789
1790 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1791
1792 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1793
1794 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1795
1796 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1797
1798 AT+NWKID:  Get or Set the Network ID
1799
1800 AT+FCU:  Get or Set the Frame Counter Uplink
1801
1802 AT+FCD:  Get or Set the Frame Counter Downlink
1803
1804 AT+CLASS:  Get or Set the Device Class
1805
1806 AT+JOIN:  Join network
1807
1808 AT+NJS:  Get the join status
1809
1810 AT+SENDB:  Send hexadecimal data along with the application port
1811
1812 AT+SEND:  Send text data along with the application port
1813
1814 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1815
1816 AT+RECV:  Print last received data in raw format
1817
1818 AT+VER:  Get current image version and Frequency Band
1819
1820 AT+CFM:  Get or Set the confirmation mode (0-1)
1821
1822 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1823
1824 AT+SNR:  Get the SNR of the last received packet
1825
1826 AT+RSSI:  Get the RSSI of the last received packet
1827
1828 AT+TDC:  Get or set the application data transmission interval in ms
1829
1830 AT+PORT:  Get or set the application port
1831
1832 AT+DISAT:  Disable AT commands
1833
1834 AT+PWORD: Set password, max 9 digits
1835
1836 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1837
1838 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1839
1840 AT+PDTA:  Print the sector data from start page to stop page
1841
1842 AT+PLDTA:  Print the last few sets of data
1843
1844 AT+CLRDTA:  Clear the storage, record position back to 1st
1845
1846 AT+SLEEP:  Set sleep mode
1847
1848 AT+EXT:  Get or Set external sensor model
1849
1850 AT+BAT:  Get the current battery voltage in mV
1851
1852 AT+CFG:  Print all configurations
1853
1854 AT+WMOD:  Get or Set Work Mode
1855
1856 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1857
1858 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1859
1860 AT+SETCNT:  Set the count at present
1861
1862 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1863
1864 AT+RPL:  Get or set response level
1865
1866 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1867
1868 AT+LEAPSEC:  Get or Set Leap Second
1869
1870 AT+SYNCMOD:  Get or Set time synchronization method
1871
1872 AT+SYNCTDC:  Get or set time synchronization interval in day
1873
1874 AT+PID:  Get or set the PID
1875
1876
1877 == 6.2 Where to use AT commands and Downlink commands ==
1878
1879
1880 **AT commands: **
1881
1882 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1883
1884
1885 **Downlink commands:**
1886
1887
1888 (% style="color:blue" %)**TTN:**
1889
1890 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1891
1892
1893
1894 (% style="color:blue" %)**Helium: **
1895
1896 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1897
1898
1899
1900 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1901
1902
1903 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1904
1905
1906 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1907
1908
1909
1910 (% style="color:blue" %)**Aws:**
1911
1912 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1913
1914
1915 == 6.3 How to change the uplink interval? ==
1916
1917
1918 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1919
1920
1921 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1922
1923
1924 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1925
1926 [[image:1655802313617-381.png||_mstalt="293917"]]
1927
1928
1929 (((
1930 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1931 )))
1932
1933
1934 Input password and ATZ to activate LHT65N, As shown below:
1935
1936 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1937
1938
1939 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1940
1941
1942 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1943
1944
1945 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1946
1947 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1948
1949
1950
1951 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1952
1953 First connect the four lines;(% style="display:none" %)
1954
1955 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1956
1957
1958 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1959
1960 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1961
1962
1963
1964 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1965
1966 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1967
1968
1969 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1970
1971
1972 When this interface appears, it indicates that the download has been completed.
1973
1974 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1975
1976
1977 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1978
1979
1980 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1981
1982
1983 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1984
1985
1986 **UART Port of LHT65N:**
1987
1988 * (% class="mark" %)**PB0: RXD**
1989 * (% class="mark" %)**PB1: TXD**
1990 * (% class="mark" %)**GND**
1991
1992 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1993
1994
1995 (((
1996 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1997 )))
1998
1999
2000 Input password and ATZ to activate LHT65N,As shown below:
2001
2002 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
2003
2004
2005 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
2006
2007
2008 [[image:image-20220623110706-1.png||_mstalt="427869"]]
2009
2010
2011 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
2012
2013 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2014
2015
2016
2017 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
2018
2019 First connect the four lines;
2020
2021 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
2022
2023 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
2024
2025
2026
2027 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2028
2029 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2030
2031
2032 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2033
2034
2035 When this interface appears, it indicates that the download has been completed.
2036
2037 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2038
2039
2040 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
2041
2042
2043 == 6.8 Why can't I see the datalog information ==
2044
2045
2046 ~1. The time is not aligned, and the correct query command is not used.
2047
2048 2. Decoder error, did not parse the datalog data, the data was filtered.
2049
2050
2051 = 7. Order Info =
2052
2053
2054 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2055
2056 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2057
2058 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2059 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2060 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2061 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2062 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2063 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2064 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2065 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2066
2067 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2068
2069 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2070
2071 = 8. Packing Info =
2072
2073
2074 **Package Includes**:
2075
2076 * LHT65N Temperature & Humidity Sensor x 1
2077 * Optional external sensor
2078
2079 = 9. Reference material =
2080
2081
2082 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2083
2084 = 10. FCC Warning =
2085
2086
2087 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2088
2089 (1) This device may not cause harmful interference;
2090
2091 (2) this device must accept any interference received, including interference that may cause undesired operation.