Version 261.9 by Xiaoling on 2023/07/17 17:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320
321 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
322
323
324 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
325 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
326 Os últimos 2 bytes de dados não têm sentido
327 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
328
329 * Temperatura externa= (0xF54F-65536)/100=-27,37ÿ
330
331 F54F: (F54F & 8000 == 1), temp = (F54F - 65536)/100 = 27,37 ÿ
332
333 ÿ0105 & 8000ÿJulga se o bit mais alto é 1, quando o bit mais alto é 1, é negativoÿ
334
335 Os últimos 2 bytes de dados não têm sentido
336
337 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327,67 ÿ
338
339
340
341 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
342
343
344 (((
345 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
346 )))
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
349 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
350 **Size(bytes)**
351 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
352 **2**
353 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
354 **2**
355 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
356 **2**
357 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
358 **1**
359 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
360 **4**
361 )))
362 |(% style="width:110px" %)(((
363 **Value**
364 )))|(% style="width:71px" %)(((
365 External temperature
366 )))|(% style="width:99px" %)(((
367 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
368 )))|(% style="width:132px" %)(((
369 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
370 )))|(% style="width:54px" %)(((
371 Status & Ext
372 )))|(% style="width:64px" %)(((
373 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
374 )))
375
376 * **Battery status & Built-in Humidity**
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
379 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
380 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
381 BAT Status
382 00(b): Ultra Low ( BAT <= 2.50v)
383 01(b): Low  (2.50v <=BAT <= 2.55v)
384 10(b): OK   (2.55v <= BAT <=2.65v)
385 11(b): Good   (BAT >= 2.65v)
386 )))|(% style="width:132px" %)(((
387 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
388 )))
389
390 * **Status & Ext Byte**
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
393 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
394 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
395
396 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
397 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
398 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
399
400
401 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
402
403
404 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
405
406 be used to power the external ADC sensor; user can control the power on time for this
407
408 (% style="color:blue" %)**sensor by setting:**
409
410 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
411
412 **For example:**
413
414 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
415
416
417 Or use **downlink command A2** to set the same.
418
419 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
420
421 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
422
423 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
424
425
426 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
427
428 [[image:image-20220628150714-4.png||_mstalt="431054"]]
429
430
431 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
432
433
434 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
435
436 [[image:image-20220628151005-5.png||_mstalt="429546"]]
437
438
439 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
440
441 [[image:image-20220628151056-6.png||_mstalt="431873"]]
442
443
444 3) Within range
445
446 [[image:image-20220628151143-7.png||_mstalt="431210"]]
447
448
449
450 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
451
452 [[image:image-20230717151328-8.png]]
453
454 (% style="display:none" %) (%%)
455
456
457
458 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
459
460 [[image:image-20220906102307-7.png||_mstalt="430443"]]
461
462
463 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
464
465 The external cable NE2 can be use for MOD4 and MOD8
466
467
468
469 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
470
471
472
473 [[image:image-20230717151245-7.png]]
474
475 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
476
477 [[image:SHT31.png]]
478
479
480
481 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
482
483
484 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
485
486
487 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
488
489 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
490
491 In Open State, the power consumption is the same as if there is no probe
492
493 In Close state, the power consumption will be 3uA higher than normal.
494
495 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
496
497
498 Ext=4,Interrupt Sensor:
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
501 |(% style="width:101px" %)(((
502 **AT+EXT=4,1**
503 )))|(% style="width:395px" %)(((
504 **Sent uplink packet in both rising and falling interrupt**
505 )))
506 |(% style="width:101px" %)(((
507 **AT+EXT=4,2**
508 )))|(% style="width:395px" %)(((
509 **Sent uplink packet only in falling interrupt**
510 )))
511 |(% style="width:101px" %)(((
512 **AT+EXT=4,3**
513 )))|(% style="width:395px" %)(((
514 **Sent uplink packet only in rising interrupt**
515 )))
516
517 Trigger by falling edge:
518
519 [[image:image-20220906101145-2.png||_mstalt="428324"]]
520
521
522 Trigger by raising edge:
523
524 [[image:image-20220906101145-3.png||_mstalt="428688"]]
525
526
527
528 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
529
530
531 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
532
533
534 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
535
536 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
537
538
539 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
540
541 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
542
543
544 Ext=8, Counting Sensor ( 4 bytes):
545
546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
547 |(% style="width:131px" %)(((
548 **AT+EXT=8,0**
549 )))|(% style="width:195px" %)(((
550 **Count at falling interrupt**
551 )))
552 |(% style="width:131px" %)(((
553 **AT+EXT=8,1**
554 )))|(% style="width:195px" %)(((
555 **Count at rising interrupt**
556 )))
557 |(% style="width:131px" %)(((
558 **AT+SETCNT=60**
559 )))|(% style="width:195px" %)(((
560 **Sent current count to 60**
561 )))
562
563 [[image:image-20220906101320-6.png||_mstalt="428064"]]
564
565
566 (% style="color:blue" %)**A2 downlink Command:**
567
568 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
569
570 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
571
572 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
573
574 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
575
576 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
577
578
579 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
580
581
582 (((
583 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
584 )))
585
586 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
587 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
588 **Size(bytes)**
589 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
590 **2**
591 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
592 **2**
593 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
594 **2**
595 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
596 **1**
597 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
598 **4**
599 )))
600 |(% style="width:110px" %)(((
601 **Value**
602 )))|(% style="width:71px" %)(((
603 External temperature
604 )))|(% style="width:99px" %)(((
605 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
606 )))|(% style="width:132px" %)(((
607 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
608 )))|(% style="width:54px" %)(((
609 Status & Ext
610 )))|(% style="width:64px" %)(((
611 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
612 )))
613
614 * **Battery status & Built-in Humidity**
615
616 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
617 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
618 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
619 BAT Status
620 00(b): Ultra Low ( BAT <= 2.50v)
621 01(b): Low  (2.50v <=BAT <= 2.55v)
622 10(b): OK   (2.55v <= BAT <=2.65v)
623 11(b): Good   (BAT >= 2.65v)
624 )))|(% style="width:132px" %)(((
625 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
626 )))
627
628 * **Status & Ext Byte**
629
630 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
631 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
632 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
633
634 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
635 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
636 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
637
638
639 == 2.5 Show data on Datacake ==
640
641
642 (((
643 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
644 )))
645
646
647 (((
648 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
649 )))
650
651 (((
652 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
653 )))
654
655
656 (((
657 Add Datacake:
658 )))
659
660
661 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
662
663
664
665 Select default key as Access Key:
666
667
668 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
669
670
671 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
672
673
674 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
675
676
677 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
678
679
680 == 2.6 Datalog Feature ==
681
682
683 (((
684 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
685 )))
686
687
688 === 2.6.1 Ways to get datalog via LoRaWAN ===
689
690
691 There are two methods:
692
693 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
694
695
696 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
697
698
699 (% style="color:red" %)**Note for method 2:**
700
701 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
702 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
703
704 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
705
706
707 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
708
709
710 === 2.6.2 Unix TimeStamp ===
711
712
713 LHT65N uses Unix TimeStamp format based on
714
715
716 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
717
718
719
720 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
721
722 Below is the converter example
723
724 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
725
726
727 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
728
729
730 === 2.6.3 Set Device Time ===
731
732
733 (((
734 (% style="color:blue" %)**There are two ways to set device's time:**
735 )))
736
737 (((
738 **1.  Through LoRaWAN MAC Command (Default settings)**
739 )))
740
741 (((
742 User need to set SYNCMOD=1 to enable sync time via MAC command.
743 )))
744
745 (((
746 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
747 )))
748
749 (((
750 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
751 )))
752
753
754 (((
755 **2. Manually Set Time**
756 )))
757
758 (((
759 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
760 )))
761
762
763 === 2.6.4 Poll sensor value ===
764
765
766 User can poll sensor value based on timestamps from the server. Below is the downlink command.
767
768 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
769 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
770 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
771
772 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
773
774 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
775
776 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
777
778 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
779
780
781 === 2.6.5 Datalog Uplink payload ===
782
783
784 The Datalog poll reply uplink will use below payload format.
785
786 **Retrieval data payload:**
787
788 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
789 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
790 **Size(bytes)**
791 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
792 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
793
794 **Poll message flag & Ext:**
795
796 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
797
798 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
799
800 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
801
802 * Poll Message Flag is set to 1.
803
804 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
805
806 For example, in US915 band, the max payload for different DR is:
807
808 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
809
810 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
811
812 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
813
814 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
815
816 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
817
818
819 **Example:**
820
821 If LHT65N has below data inside Flash:
822
823 [[image:image-20230426171833-4.png]]
824
825
826 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
827
828 Where : Start time: 60065F97 = time 21/1/19 04:27:03
829
830 Stop time: 60066DA7= time 21/1/19 05:27:03
831
832
833 **LHT65N will uplink this payload.**
834
835 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
836
837
838 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
839
840 Where the first 11 bytes is for the first entry:
841
842 7FFF089801464160065F97
843
844 Ext sensor data=0x7FFF/100=327.67
845
846 Temp=0x088E/100=22.00
847
848 Hum=0x014B/10=32.6
849
850 poll message flag & Ext=0x41,means reply data,Ext=1
851
852 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
853
854
855 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
856
857
858 (((
859 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
860 )))
861
862 (((
863 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
864
865
866 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
867
868
869 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
870
871 (((
872 (% class="box infomessage" %)
873 (((
874 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
875
876 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
877
878 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
879
880 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
881
882 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
883
884 **AT+LEDALARM=1** :       Enable LED visual Alarm.
885 )))
886 )))
887
888 (% style="color:#4f81bd" %)**Downlink Command:**
889
890 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
891
892 AT+CITEMP=1 : A60001
893
894 AT+ARTEMP=1,60  :  A70001003C
895
896 AT+ARTEMP=-16,60 :  A7FFF0003C
897
898 AT+LEDALARM=1  :  3601
899
900
901 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
902
903 Total bytes: 8 bytes
904
905 **Example: **AA0100010001003C
906
907 WMOD=01
908
909 CITEMP=0001
910
911 TEMPlow=0001
912
913 TEMPhigh=003C
914
915
916 **DS18B20 and TMP117 Threshold Alarm**
917
918 **~ AT+WMOD=1,60,-10,20**
919
920 (% style="color:#4f81bd" %)**Downlink Command:**
921
922 **Example: **A5013CFC180014
923
924 MOD=01
925
926 CITEMP=3C(S)
927
928 TEMPlow=FC18
929
930 TEMPhigh=0014
931
932
933 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
934
935 **AT+WMOD=2,60,5** 
936
937 (% style="color:#4f81bd" %)**Downlink Command:**
938
939 **Example: **A5023C05
940
941 MOD=02
942
943 CITEMP=3C(S)
944
945 temperature fluctuation=05
946
947
948 **Sampling multiple times and uplink together**
949
950 **AT+WMOD=3,1,60,20,-16,32,1**   
951
952 Explain:
953
954 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
955 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
956 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
957 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
958 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
959 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
960
961 (% style="color:#4f81bd" %)**Downlink Command:**
962
963 **Example: **A50301003C14FFF0002001
964
965 MOD=03
966
967 TEMP=DS18B20
968
969 CITEMP=003C(S)
970
971 Total number of acquisitions=14
972
973 TEMPlow=FFF0
974
975 TEMPhigh=0020
976
977 ARTEMP=01
978
979
980 **Uplink payload( Fport=3)**
981
982 **Example: CBEA**01**0992**//0A41//**09C4**
983
984 BatV=CBEA
985
986 TEMP=DS18B20
987
988 Temp1=0992  ~/~/ 24.50℃
989
990 Temp2=0A41  ~/~/ 26.25℃
991
992 Temp3=09C4  ~/~/ 25.00℃
993
994 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
995
996 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
997 )))
998
999
1000 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1001
1002
1003 (% class="box infomessage" %)
1004 (((
1005 (((
1006 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1007 )))
1008
1009 (((
1010 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1011 )))
1012
1013 (((
1014 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1015 )))
1016
1017 (((
1018 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1019 )))
1020
1021 (((
1022 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1023 )))
1024 )))
1025
1026 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1027
1028 Total bytes: 8 bytes
1029
1030 **Example:**AA0100010001003C
1031
1032 WMOD=01
1033
1034 CITEMP=0001
1035
1036 TEMPlow=0001
1037
1038 TEMPhigh=003C
1039
1040
1041 == 2.8 LED Indicator ==
1042
1043
1044 The LHT65 has a triple color LED which for easy showing different stage .
1045
1046 While user press ACT button, the LED will work as per LED status with ACT button.
1047
1048 In a normal working state:
1049
1050 * For each uplink, the BLUE LED or RED LED will blink once.
1051 BLUE LED when external sensor is connected.
1052 * RED LED when external sensor is not connected
1053 * For each success downlink, the PURPLE LED will blink once
1054
1055
1056 == 2.9 installation ==
1057
1058
1059 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1060
1061
1062 = 3. Sensors and Accessories =
1063
1064 == 3.1 E2 Extension Cable ==
1065
1066
1067 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1068
1069
1070 **1m long breakout cable for LHT65N. Features:**
1071
1072 * (((
1073 Use for AT Command, works for both LHT52/LHT65N
1074 )))
1075 * (((
1076 Update firmware for LHT65N, works for both LHT52/LHT65N
1077 )))
1078 * (((
1079 Supports ADC mode to monitor external ADC
1080 )))
1081 * (((
1082 Supports Interrupt mode
1083 )))
1084 * (((
1085 Exposed All pins from the LHT65N Type-C connector.
1086
1087
1088
1089 )))
1090
1091 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1092
1093
1094 == 3.2 E3 Temperature Probe ==
1095
1096
1097 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1098
1099
1100 Temperature sensor with 2 meters cable long
1101
1102 * Resolution: 0.0625 °C
1103 * ±0.5°C accuracy from -10°C to +85°C
1104 * ±2°C accuracy from -55°C to +125°C
1105 * Operating Range: -40 ~~ 125 °C
1106 * Working voltage 2.35v ~~ 5v
1107
1108 == 3.3 E31F Temperature Probe ==
1109
1110
1111 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1112
1113
1114 Temperature sensor with 1 meters cable long
1115
1116
1117 **Built-in Temperature Sensor:**
1118
1119 * Resolution: 0.01 °C
1120 * Accuracy Tolerance : Typ ±0.3 °C
1121 * Long Term Drift: < 0.02 °C/yr
1122 * Operating Range: -40 ~~ 80 °C
1123
1124 **Built-in Humidity Sensor:**
1125
1126 * Resolution: 0.04 % RH
1127 * Accuracy Tolerance : Typ ±3 % RH
1128 * Long Term Drift: < 0.02 °C/yr
1129 * Operating Range: 0 ~~ 96 % RH
1130
1131 **External Temperature Sensor :**
1132
1133 * Resolution: 0.01 °C
1134 * Accuracy Tolerance : Typical ±0.3 °C
1135 * Long Term Drift: < 0.02 °C/yr
1136 * Operating Range: -40 ~~ 125 °C
1137
1138 **External Humidity Sensor :**
1139
1140 * Resolution: 0.04 % RH
1141 * Accuracy Tolerance : Typ ±3 % RH
1142 * Long Term Drift: < 0.02 °C/yr
1143 * Operating Range: 0 ~~ 96 % RH
1144
1145
1146 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1147
1148
1149 (((
1150 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1151 )))
1152
1153 * (((
1154 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1155 )))
1156
1157 * (((
1158 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1159 )))
1160
1161 (((
1162 There are two kinds of commands to configure LHT65N, they are:
1163 )))
1164
1165 * (((
1166 (% style="color:#4f81bd" %)**General Commands**.
1167 )))
1168
1169 (((
1170 These commands are to configure:
1171 )))
1172
1173 1. (((
1174 General system settings like: uplink interval.
1175 )))
1176 1. (((
1177 LoRaWAN protocol & radio-related commands.
1178 )))
1179
1180 (((
1181 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1182 )))
1183
1184 * (((
1185 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1186 )))
1187
1188 (((
1189 These commands are only valid for LHT65N, as below:
1190 )))
1191
1192
1193 == 4.1 Set Transmit Interval Time ==
1194
1195
1196 Feature: Change LoRaWAN End Node Transmit Interval.
1197
1198
1199 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1200
1201 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1202 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1203 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1204 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1205
1206 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1207
1208 Format: Command Code (0x01) followed by 3 bytes time value.
1209
1210 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1211
1212 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1213
1214 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1215
1216
1217 == 4.2 Set External Sensor Mode ==
1218
1219
1220 Feature: Change External Sensor Mode.
1221
1222 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1223
1224 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1225 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1226 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1227 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1228 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1229
1230 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1231
1232 Total bytes: 2 ~~ 5 bytes
1233
1234 **Example:**
1235
1236 * 0xA201: Set external sensor type to E1
1237
1238 * 0xA209: Same as AT+EXT=9
1239
1240 * 0xA20702003c: Same as AT+SETCNT=60
1241
1242
1243 == 4.3 Enable/Disable uplink Temperature probe ID ==
1244
1245
1246 (((
1247 Feature: If PID is enabled, device will send the temperature probe ID on:
1248 )))
1249
1250 * (((
1251 First Packet after OTAA Join
1252 )))
1253 * (((
1254 Every 24 hours since the first packet.
1255 )))
1256
1257 (((
1258 PID is default set to disable (0)
1259
1260
1261 )))
1262
1263 (% style="color:#4f81bd" %)**AT Command:**
1264
1265 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1266 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1267 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1268
1269 (% style="color:#4f81bd" %)**Downlink Command:**
1270
1271 * **0xA800**  **~-~->** AT+PID=0
1272 * **0xA801**     **~-~->** AT+PID=1
1273
1274
1275 == 4.4 Set Password ==
1276
1277
1278 Feature: Set device password, max 9 digits
1279
1280 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1281
1282 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1283 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1284 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1285 123456
1286
1287 OK
1288 )))
1289 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1290
1291 (% style="color:#4f81bd" %)**Downlink Command:**
1292
1293 No downlink command for this feature.
1294
1295
1296 == 4.5 Quit AT Command ==
1297
1298
1299 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1300
1301 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1302
1303 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1304 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1305 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1306
1307 (% style="color:#4f81bd" %)**Downlink Command:**
1308
1309 No downlink command for this feature.
1310
1311
1312 == 4.6 Set to sleep mode ==
1313
1314
1315 Feature: Set device to sleep mode
1316
1317 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1318 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1319
1320 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1321
1322 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1323 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1324 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1325 Clear all stored sensor data…
1326
1327 OK
1328 )))
1329
1330 (% style="color:#4f81bd" %)**Downlink Command:**
1331
1332 * There is no downlink command to set to Sleep mode.
1333
1334
1335 == 4.7 Set system time ==
1336
1337
1338 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1339
1340 (% style="color:#4f81bd" %)**AT Command:**
1341
1342 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1343 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1344 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1345 OK
1346
1347 Set System time to 2021-01-20 00:59:12
1348 )))
1349
1350 (% style="color:#4f81bd" %)**Downlink Command:**
1351
1352 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1353
1354
1355 == 4.8 Set Time Sync Mode ==
1356
1357
1358 (((
1359 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1360 )))
1361
1362 (((
1363 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1364 )))
1365
1366 (% style="color:#4f81bd" %)**AT Command:**
1367
1368 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1369 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1370 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1371
1372 (% style="color:#4f81bd" %)**Downlink Command:**
1373
1374 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1375 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1376
1377
1378 == 4.9 Set Time Sync Interval ==
1379
1380
1381 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1382
1383 (% style="color:#4f81bd" %)**AT Command:**
1384
1385 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1386 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1387 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1388
1389 (% style="color:#4f81bd" %)**Downlink Command:**
1390
1391 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1392
1393
1394 == 4.10 Print data entries base on page. ==
1395
1396
1397 Feature: Print the sector data from start page to stop page (max is 416 pages).
1398
1399 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1400
1401 [[image:image-20230426164330-2.png]]
1402
1403 (% style="color:#4f81bd" %)**Downlink Command:**
1404
1405 No downlink commands for feature
1406
1407
1408 == 4.11 Print last few data entries. ==
1409
1410
1411 Feature: Print the last few data entries
1412
1413 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1414
1415 [[image:image-20230426164932-3.png]]
1416
1417 (% style="color:#4f81bd" %)**Downlink Command:**
1418
1419 No downlink commands for feature
1420
1421
1422 == 4.12 Clear Flash Record ==
1423
1424
1425 Feature: Clear flash storage for data log feature.
1426
1427 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1428
1429 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1430 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1431 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1432 Clear all stored sensor data…
1433
1434 OK
1435 )))
1436
1437 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1438
1439 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1440
1441
1442 == 4.13 Auto Send None-ACK messages ==
1443
1444
1445 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1446
1447 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1448
1449 The default factory setting is 0
1450
1451 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1452 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1453 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1454
1455 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1456
1457 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1458
1459
1460 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1461
1462
1463 Feature: Set internal and external temperature sensor alarms.
1464
1465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1466 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1467 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1468
1469 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1470
1471 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1472
1473 0): Cancel
1474
1475 1): Threshold alarm
1476
1477 2): Fluctuation alarm
1478
1479
1480 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1481
1482 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1483
1484
1485 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1486
1487 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1488
1489 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1490
1491
1492 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1493
1494 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1495
1496 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1497
1498
1499 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1500
1501 0xA5 00 ~-~- AT+WMOD=0.
1502
1503 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1504
1505 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1506
1507 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1508
1509 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1510
1511
1512 = 5. Battery & How to replace =
1513
1514 == 5.1 Battery Type ==
1515
1516
1517 (((
1518 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1519 )))
1520
1521 (((
1522 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1523
1524
1525 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1526 )))
1527
1528 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1529
1530
1531 == 5.2 Replace Battery ==
1532
1533
1534 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1535
1536 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1537
1538
1539 == 5.3 Battery Life Analyze ==
1540
1541
1542 (((
1543 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1544 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1545 )))
1546
1547
1548 (((
1549 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1550 )))
1551
1552
1553 = 6. FAQ =
1554
1555 == 6.1 How to use AT Command? ==
1556
1557
1558 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1559
1560 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1561
1562
1563 **Connection:**
1564
1565 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1566 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1567 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1568
1569 (((
1570 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1571
1572 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1573 )))
1574
1575
1576 Input password and ATZ to activate LHT65N,As shown below:
1577
1578 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1579
1580
1581 AT Command List is as below:
1582
1583 AT+<CMD>? :  Help on <CMD>
1584
1585 AT+<CMD> :  Run <CMD>
1586
1587 AT+<CMD>=<value> :  Set the value
1588
1589 AT+<CMD>=? :  Get the value
1590
1591 AT+DEBUG:  Set more info output
1592
1593 ATZ:  Trig a reset of the MCU
1594
1595 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1596
1597 AT+DEUI:  Get or Set the Device EUI
1598
1599 AT+DADDR:  Get or Set the Device Address
1600
1601 AT+APPKEY:  Get or Set the Application Key
1602
1603 AT+NWKSKEY:  Get or Set the Network Session Key
1604
1605 AT+APPSKEY:  Get or Set the Application Session Key
1606
1607 AT+APPEUI:  Get or Set the Application EUI
1608
1609 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1610
1611 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1612
1613 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1614
1615 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1616
1617 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1618
1619 AT+RX2FQ:  Get or Set the Rx2 window frequency
1620
1621 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1622
1623 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1624
1625 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1626
1627 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1628
1629 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1630
1631 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1632
1633 AT+NWKID:  Get or Set the Network ID
1634
1635 AT+FCU:  Get or Set the Frame Counter Uplink
1636
1637 AT+FCD:  Get or Set the Frame Counter Downlink
1638
1639 AT+CLASS:  Get or Set the Device Class
1640
1641 AT+JOIN:  Join network
1642
1643 AT+NJS:  Get the join status
1644
1645 AT+SENDB:  Send hexadecimal data along with the application port
1646
1647 AT+SEND:  Send text data along with the application port
1648
1649 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1650
1651 AT+RECV:  Print last received data in raw format
1652
1653 AT+VER:  Get current image version and Frequency Band
1654
1655 AT+CFM:  Get or Set the confirmation mode (0-1)
1656
1657 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1658
1659 AT+SNR:  Get the SNR of the last received packet
1660
1661 AT+RSSI:  Get the RSSI of the last received packet
1662
1663 AT+TDC:  Get or set the application data transmission interval in ms
1664
1665 AT+PORT:  Get or set the application port
1666
1667 AT+DISAT:  Disable AT commands
1668
1669 AT+PWORD: Set password, max 9 digits
1670
1671 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1672
1673 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1674
1675 AT+PDTA:  Print the sector data from start page to stop page
1676
1677 AT+PLDTA:  Print the last few sets of data
1678
1679 AT+CLRDTA:  Clear the storage, record position back to 1st
1680
1681 AT+SLEEP:  Set sleep mode
1682
1683 AT+EXT:  Get or Set external sensor model
1684
1685 AT+BAT:  Get the current battery voltage in mV
1686
1687 AT+CFG:  Print all configurations
1688
1689 AT+WMOD:  Get or Set Work Mode
1690
1691 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1692
1693 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1694
1695 AT+SETCNT:  Set the count at present
1696
1697 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1698
1699 AT+RPL:  Get or set response level
1700
1701 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1702
1703 AT+LEAPSEC:  Get or Set Leap Second
1704
1705 AT+SYNCMOD:  Get or Set time synchronization method
1706
1707 AT+SYNCTDC:  Get or set time synchronization interval in day
1708
1709 AT+PID:  Get or set the PID
1710
1711
1712 == 6.2 Where to use AT commands and Downlink commands ==
1713
1714
1715 **AT commands: **
1716
1717 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1718
1719
1720 **Downlink commands:**
1721
1722
1723 (% style="color:blue" %)**TTN:**
1724
1725 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1726
1727
1728
1729 (% style="color:blue" %)**Helium: **
1730
1731 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1732
1733
1734
1735 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1736
1737
1738 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1739
1740
1741 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1742
1743
1744
1745 (% style="color:blue" %)**Aws:**
1746
1747 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1748
1749
1750 == 6.3 How to change the uplink interval? ==
1751
1752
1753 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1754
1755
1756 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1757
1758
1759 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1760
1761 [[image:1655802313617-381.png||_mstalt="293917"]]
1762
1763
1764 (((
1765 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1766 )))
1767
1768
1769 Input password and ATZ to activate LHT65N, As shown below:
1770
1771 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1772
1773
1774 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1775
1776
1777 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1778
1779
1780 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1781
1782 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1783
1784
1785
1786 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1787
1788 First connect the four lines;(% style="display:none" %)
1789
1790 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1791
1792
1793 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1794
1795 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1796
1797
1798
1799 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1800
1801 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1802
1803
1804 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1805
1806
1807 When this interface appears, it indicates that the download has been completed.
1808
1809 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1810
1811
1812 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1813
1814
1815 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1816
1817
1818 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1819
1820
1821 **UART Port of LHT65N:**
1822
1823 * (% class="mark" %)**PB0: RXD**
1824 * (% class="mark" %)**PB1: TXD**
1825 * (% class="mark" %)**GND**
1826
1827 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1828
1829
1830 (((
1831 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1832 )))
1833
1834
1835 Input password and ATZ to activate LHT65N,As shown below:
1836
1837 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1838
1839
1840 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1841
1842
1843 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1844
1845
1846 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1847
1848 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1849
1850
1851
1852 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1853
1854 First connect the four lines;
1855
1856 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1857
1858 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1859
1860
1861
1862 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1863
1864 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1865
1866
1867 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1868
1869
1870 When this interface appears, it indicates that the download has been completed.
1871
1872 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1873
1874
1875 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1876
1877
1878 == 6.8 Why can't I see the datalog information ==
1879
1880
1881 ~1. The time is not aligned, and the correct query command is not used.
1882
1883 2. Decoder error, did not parse the datalog data, the data was filtered.
1884
1885
1886 = 7. Order Info =
1887
1888
1889 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1890
1891 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1892
1893 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1894 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1895 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1896 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1897 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1898 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1899 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1900 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1901
1902 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1903
1904 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1905
1906
1907 = 8. Packing Info =
1908
1909
1910 **Package Includes**:
1911
1912 * LHT65N Temperature & Humidity Sensor x 1
1913 * Optional external sensor
1914
1915 **Dimension and weight**:
1916
1917 * Device Size:  10 x 10 x 3.5 mm
1918 * Device Weight: 120.5g
1919
1920
1921 = 9. Reference material =
1922
1923
1924 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1925
1926
1927 = 10. FCC Warning =
1928
1929
1930 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1931
1932 (1) This device may not cause harmful interference;
1933
1934 (2) this device must accept any interference received, including interference that may cause undesired operation.