Version 261.8 by Xiaoling on 2023/07/17 17:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27.81℃
313
314 The last 2 bytes of data are meaningless
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320
321 * External temperature= (0xF54F-65536)/100=-27.37℃
322
323 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
324
325 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
326
327 The last 2 bytes of data are meaningless
328
329 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
330
331
332
333 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
334
335
336 (((
337 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
338 )))
339
340 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
341 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **Size(bytes)**
343 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **2**
347 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **2**
349 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
350 **1**
351 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
352 **4**
353 )))
354 |(% style="width:110px" %)(((
355 **Value**
356 )))|(% style="width:71px" %)(((
357 External temperature
358 )))|(% style="width:99px" %)(((
359 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
360 )))|(% style="width:132px" %)(((
361 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
362 )))|(% style="width:54px" %)(((
363 Status & Ext
364 )))|(% style="width:64px" %)(((
365 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
366 )))
367
368 * **Battery status & Built-in Humidity**
369
370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
371 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
372 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
373 BAT Status
374 00(b): Ultra Low ( BAT <= 2.50v)
375 01(b): Low  (2.50v <=BAT <= 2.55v)
376 10(b): OK   (2.55v <= BAT <=2.65v)
377 11(b): Good   (BAT >= 2.65v)
378 )))|(% style="width:132px" %)(((
379 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
380 )))
381
382 * **Status & Ext Byte**
383
384 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
385 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
386 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
387
388 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
389 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
390 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
391
392
393 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
394
395
396 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
397
398 be used to power the external ADC sensor; user can control the power on time for this
399
400 (% style="color:blue" %)**sensor by setting:**
401
402 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
403
404 **For example:**
405
406 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
407
408
409 Or use **downlink command A2** to set the same.
410
411 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
412
413 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
414
415 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
416
417
418 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
419
420 [[image:image-20220628150714-4.png||_mstalt="431054"]]
421
422
423 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
424
425
426 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
427
428 [[image:image-20220628151005-5.png||_mstalt="429546"]]
429
430
431 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
432
433 [[image:image-20220628151056-6.png||_mstalt="431873"]]
434
435
436 3) Within range
437
438 [[image:image-20220628151143-7.png||_mstalt="431210"]]
439
440
441
442 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
443
444 [[image:image-20230717151328-8.png]]
445
446 (% style="display:none" %) (%%)
447
448
449
450 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
451
452 [[image:image-20220906102307-7.png||_mstalt="430443"]]
453
454
455 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
456
457 The external cable NE2 can be use for MOD4 and MOD8
458
459
460
461 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
462
463
464
465 [[image:image-20230717151245-7.png]]
466
467 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
468
469 [[image:SHT31.png]]
470
471
472
473 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
474
475
476 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
477
478
479 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
480
481 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
482
483 In Open State, the power consumption is the same as if there is no probe
484
485 In Close state, the power consumption will be 3uA higher than normal.
486
487 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
488
489
490 Ext=4,Interrupt Sensor:
491
492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
493 |(% style="width:101px" %)(((
494 **AT+EXT=4,1**
495 )))|(% style="width:395px" %)(((
496 **Sent uplink packet in both rising and falling interrupt**
497 )))
498 |(% style="width:101px" %)(((
499 **AT+EXT=4,2**
500 )))|(% style="width:395px" %)(((
501 **Sent uplink packet only in falling interrupt**
502 )))
503 |(% style="width:101px" %)(((
504 **AT+EXT=4,3**
505 )))|(% style="width:395px" %)(((
506 **Sent uplink packet only in rising interrupt**
507 )))
508
509 Trigger by falling edge:
510
511 [[image:image-20220906101145-2.png||_mstalt="428324"]]
512
513
514 Trigger by raising edge:
515
516 [[image:image-20220906101145-3.png||_mstalt="428688"]]
517
518
519
520 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
521
522
523 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
524
525
526 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
527
528 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
529
530
531 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
532
533 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
534
535
536 Ext=8, Counting Sensor ( 4 bytes):
537
538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
539 |(% style="width:131px" %)(((
540 **AT+EXT=8,0**
541 )))|(% style="width:195px" %)(((
542 **Count at falling interrupt**
543 )))
544 |(% style="width:131px" %)(((
545 **AT+EXT=8,1**
546 )))|(% style="width:195px" %)(((
547 **Count at rising interrupt**
548 )))
549 |(% style="width:131px" %)(((
550 **AT+SETCNT=60**
551 )))|(% style="width:195px" %)(((
552 **Sent current count to 60**
553 )))
554
555 [[image:image-20220906101320-6.png||_mstalt="428064"]]
556
557
558 (% style="color:blue" %)**A2 downlink Command:**
559
560 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
561
562 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
563
564 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
565
566 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
567
568 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
569
570
571 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
572
573
574 (((
575 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
576 )))
577
578 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
579 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
580 **Size(bytes)**
581 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
582 **2**
583 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
584 **2**
585 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
586 **2**
587 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
588 **1**
589 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
590 **4**
591 )))
592 |(% style="width:110px" %)(((
593 **Value**
594 )))|(% style="width:71px" %)(((
595 External temperature
596 )))|(% style="width:99px" %)(((
597 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
598 )))|(% style="width:132px" %)(((
599 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
600 )))|(% style="width:54px" %)(((
601 Status & Ext
602 )))|(% style="width:64px" %)(((
603 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
604 )))
605
606 * **Battery status & Built-in Humidity**
607
608 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
609 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
610 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
611 BAT Status
612 00(b): Ultra Low ( BAT <= 2.50v)
613 01(b): Low  (2.50v <=BAT <= 2.55v)
614 10(b): OK   (2.55v <= BAT <=2.65v)
615 11(b): Good   (BAT >= 2.65v)
616 )))|(% style="width:132px" %)(((
617 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
618 )))
619
620 * **Status & Ext Byte**
621
622 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
623 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
624 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
625
626 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
627 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
628 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
629
630
631 == 2.5 Show data on Datacake ==
632
633
634 (((
635 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
636 )))
637
638
639 (((
640 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
641 )))
642
643 (((
644 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
645 )))
646
647
648 (((
649 Add Datacake:
650 )))
651
652
653 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
654
655
656
657 Select default key as Access Key:
658
659
660 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
661
662
663 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
664
665
666 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
667
668
669 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
670
671
672 == 2.6 Datalog Feature ==
673
674
675 (((
676 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
677 )))
678
679
680 === 2.6.1 Ways to get datalog via LoRaWAN ===
681
682
683 There are two methods:
684
685 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
686
687
688 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
689
690
691 (% style="color:red" %)**Note for method 2:**
692
693 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
694 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
695
696 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
697
698
699 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
700
701
702 === 2.6.2 Unix TimeStamp ===
703
704
705 LHT65N uses Unix TimeStamp format based on
706
707
708 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
709
710
711
712 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
713
714 Below is the converter example
715
716 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
717
718
719 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
720
721
722 === 2.6.3 Set Device Time ===
723
724
725 (((
726 (% style="color:blue" %)**There are two ways to set device's time:**
727 )))
728
729 (((
730 **1.  Through LoRaWAN MAC Command (Default settings)**
731 )))
732
733 (((
734 User need to set SYNCMOD=1 to enable sync time via MAC command.
735 )))
736
737 (((
738 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
739 )))
740
741 (((
742 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
743 )))
744
745
746 (((
747 **2. Manually Set Time**
748 )))
749
750 (((
751 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
752 )))
753
754
755 === 2.6.4 Poll sensor value ===
756
757
758 User can poll sensor value based on timestamps from the server. Below is the downlink command.
759
760 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
761 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
762 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
763
764 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
765
766 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
767
768 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
769
770 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
771
772
773 === 2.6.5 Datalog Uplink payload ===
774
775
776 The Datalog poll reply uplink will use below payload format.
777
778 **Retrieval data payload:**
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
781 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
782 **Size(bytes)**
783 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
784 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
785
786 **Poll message flag & Ext:**
787
788 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
789
790 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
791
792 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
793
794 * Poll Message Flag is set to 1.
795
796 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
797
798 For example, in US915 band, the max payload for different DR is:
799
800 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
801
802 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
803
804 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
805
806 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
807
808 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
809
810
811 **Example:**
812
813 If LHT65N has below data inside Flash:
814
815 [[image:image-20230426171833-4.png]]
816
817
818 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
819
820 Where : Start time: 60065F97 = time 21/1/19 04:27:03
821
822 Stop time: 60066DA7= time 21/1/19 05:27:03
823
824
825 **LHT65N will uplink this payload.**
826
827 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
828
829
830 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
831
832 Where the first 11 bytes is for the first entry:
833
834 7FFF089801464160065F97
835
836 Ext sensor data=0x7FFF/100=327.67
837
838 Temp=0x088E/100=22.00
839
840 Hum=0x014B/10=32.6
841
842 poll message flag & Ext=0x41,means reply data,Ext=1
843
844 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
845
846
847 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
848
849
850 (((
851 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
852 )))
853
854 (((
855 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
856
857
858 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
859
860
861 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
862
863 (((
864 (% class="box infomessage" %)
865 (((
866 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
867
868 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
869
870 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
871
872 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
873
874 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
875
876 **AT+LEDALARM=1** :       Enable LED visual Alarm.
877 )))
878 )))
879
880 (% style="color:#4f81bd" %)**Downlink Command:**
881
882 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
883
884 AT+CITEMP=1 : A60001
885
886 AT+ARTEMP=1,60  :  A70001003C
887
888 AT+ARTEMP=-16,60 :  A7FFF0003C
889
890 AT+LEDALARM=1  :  3601
891
892
893 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
894
895 Total bytes: 8 bytes
896
897 **Example: **AA0100010001003C
898
899 WMOD=01
900
901 CITEMP=0001
902
903 TEMPlow=0001
904
905 TEMPhigh=003C
906
907
908 **DS18B20 and TMP117 Threshold Alarm**
909
910 **~ AT+WMOD=1,60,-10,20**
911
912 (% style="color:#4f81bd" %)**Downlink Command:**
913
914 **Example: **A5013CFC180014
915
916 MOD=01
917
918 CITEMP=3C(S)
919
920 TEMPlow=FC18
921
922 TEMPhigh=0014
923
924
925 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
926
927 **AT+WMOD=2,60,5** 
928
929 (% style="color:#4f81bd" %)**Downlink Command:**
930
931 **Example: **A5023C05
932
933 MOD=02
934
935 CITEMP=3C(S)
936
937 temperature fluctuation=05
938
939
940 **Sampling multiple times and uplink together**
941
942 **AT+WMOD=3,1,60,20,-16,32,1**   
943
944 Explain:
945
946 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
947 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
948 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
949 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
950 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
951 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
952
953 (% style="color:#4f81bd" %)**Downlink Command:**
954
955 **Example: **A50301003C14FFF0002001
956
957 MOD=03
958
959 TEMP=DS18B20
960
961 CITEMP=003C(S)
962
963 Total number of acquisitions=14
964
965 TEMPlow=FFF0
966
967 TEMPhigh=0020
968
969 ARTEMP=01
970
971
972 **Uplink payload( Fport=3)**
973
974 **Example: CBEA**01**0992**//0A41//**09C4**
975
976 BatV=CBEA
977
978 TEMP=DS18B20
979
980 Temp1=0992  ~/~/ 24.50℃
981
982 Temp2=0A41  ~/~/ 26.25℃
983
984 Temp3=09C4  ~/~/ 25.00℃
985
986 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
987
988 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
989 )))
990
991
992 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
993
994
995 (% class="box infomessage" %)
996 (((
997 (((
998 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
999 )))
1000
1001 (((
1002 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1003 )))
1004
1005 (((
1006 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1007 )))
1008
1009 (((
1010 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1011 )))
1012
1013 (((
1014 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1015 )))
1016 )))
1017
1018 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1019
1020 Total bytes: 8 bytes
1021
1022 **Example:**AA0100010001003C
1023
1024 WMOD=01
1025
1026 CITEMP=0001
1027
1028 TEMPlow=0001
1029
1030 TEMPhigh=003C
1031
1032
1033 == 2.8 LED Indicator ==
1034
1035
1036 The LHT65 has a triple color LED which for easy showing different stage .
1037
1038 While user press ACT button, the LED will work as per LED status with ACT button.
1039
1040 In a normal working state:
1041
1042 * For each uplink, the BLUE LED or RED LED will blink once.
1043 BLUE LED when external sensor is connected.
1044 * RED LED when external sensor is not connected
1045 * For each success downlink, the PURPLE LED will blink once
1046
1047
1048 == 2.9 installation ==
1049
1050
1051 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1052
1053
1054 = 3. Sensors and Accessories =
1055
1056 == 3.1 E2 Extension Cable ==
1057
1058
1059 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1060
1061
1062 **1m long breakout cable for LHT65N. Features:**
1063
1064 * (((
1065 Use for AT Command, works for both LHT52/LHT65N
1066 )))
1067 * (((
1068 Update firmware for LHT65N, works for both LHT52/LHT65N
1069 )))
1070 * (((
1071 Supports ADC mode to monitor external ADC
1072 )))
1073 * (((
1074 Supports Interrupt mode
1075 )))
1076 * (((
1077 Exposed All pins from the LHT65N Type-C connector.
1078
1079
1080
1081 )))
1082
1083 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1084
1085
1086 == 3.2 E3 Temperature Probe ==
1087
1088
1089 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1090
1091
1092 Temperature sensor with 2 meters cable long
1093
1094 * Resolution: 0.0625 °C
1095 * ±0.5°C accuracy from -10°C to +85°C
1096 * ±2°C accuracy from -55°C to +125°C
1097 * Operating Range: -40 ~~ 125 °C
1098 * Working voltage 2.35v ~~ 5v
1099
1100 == 3.3 E31F Temperature Probe ==
1101
1102
1103 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1104
1105
1106 Temperature sensor with 1 meters cable long
1107
1108
1109 **Built-in Temperature Sensor:**
1110
1111 * Resolution: 0.01 °C
1112 * Accuracy Tolerance : Typ ±0.3 °C
1113 * Long Term Drift: < 0.02 °C/yr
1114 * Operating Range: -40 ~~ 80 °C
1115
1116 **Built-in Humidity Sensor:**
1117
1118 * Resolution: 0.04 % RH
1119 * Accuracy Tolerance : Typ ±3 % RH
1120 * Long Term Drift: < 0.02 °C/yr
1121 * Operating Range: 0 ~~ 96 % RH
1122
1123 **External Temperature Sensor :**
1124
1125 * Resolution: 0.01 °C
1126 * Accuracy Tolerance : Typical ±0.3 °C
1127 * Long Term Drift: < 0.02 °C/yr
1128 * Operating Range: -40 ~~ 125 °C
1129
1130 **External Humidity Sensor :**
1131
1132 * Resolution: 0.04 % RH
1133 * Accuracy Tolerance : Typ ±3 % RH
1134 * Long Term Drift: < 0.02 °C/yr
1135 * Operating Range: 0 ~~ 96 % RH
1136
1137
1138 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1139
1140
1141 (((
1142 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1143 )))
1144
1145 * (((
1146 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1147 )))
1148
1149 * (((
1150 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1151 )))
1152
1153 (((
1154 There are two kinds of commands to configure LHT65N, they are:
1155 )))
1156
1157 * (((
1158 (% style="color:#4f81bd" %)**General Commands**.
1159 )))
1160
1161 (((
1162 These commands are to configure:
1163 )))
1164
1165 1. (((
1166 General system settings like: uplink interval.
1167 )))
1168 1. (((
1169 LoRaWAN protocol & radio-related commands.
1170 )))
1171
1172 (((
1173 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1174 )))
1175
1176 * (((
1177 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1178 )))
1179
1180 (((
1181 These commands are only valid for LHT65N, as below:
1182 )))
1183
1184
1185 == 4.1 Set Transmit Interval Time ==
1186
1187
1188 Feature: Change LoRaWAN End Node Transmit Interval.
1189
1190
1191 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1192
1193 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1194 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1195 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1196 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1197
1198 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1199
1200 Format: Command Code (0x01) followed by 3 bytes time value.
1201
1202 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1203
1204 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1205
1206 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1207
1208
1209 == 4.2 Set External Sensor Mode ==
1210
1211
1212 Feature: Change External Sensor Mode.
1213
1214 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1215
1216 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1217 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1218 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1219 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1220 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1221
1222 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1223
1224 Total bytes: 2 ~~ 5 bytes
1225
1226 **Example:**
1227
1228 * 0xA201: Set external sensor type to E1
1229
1230 * 0xA209: Same as AT+EXT=9
1231
1232 * 0xA20702003c: Same as AT+SETCNT=60
1233
1234
1235 == 4.3 Enable/Disable uplink Temperature probe ID ==
1236
1237
1238 (((
1239 Feature: If PID is enabled, device will send the temperature probe ID on:
1240 )))
1241
1242 * (((
1243 First Packet after OTAA Join
1244 )))
1245 * (((
1246 Every 24 hours since the first packet.
1247 )))
1248
1249 (((
1250 PID is default set to disable (0)
1251
1252
1253 )))
1254
1255 (% style="color:#4f81bd" %)**AT Command:**
1256
1257 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1258 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1259 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1260
1261 (% style="color:#4f81bd" %)**Downlink Command:**
1262
1263 * **0xA800**  **~-~->** AT+PID=0
1264 * **0xA801**     **~-~->** AT+PID=1
1265
1266
1267 == 4.4 Set Password ==
1268
1269
1270 Feature: Set device password, max 9 digits
1271
1272 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1273
1274 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1275 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1276 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1277 123456
1278
1279 OK
1280 )))
1281 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1282
1283 (% style="color:#4f81bd" %)**Downlink Command:**
1284
1285 No downlink command for this feature.
1286
1287
1288 == 4.5 Quit AT Command ==
1289
1290
1291 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1292
1293 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1294
1295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1296 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1297 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1298
1299 (% style="color:#4f81bd" %)**Downlink Command:**
1300
1301 No downlink command for this feature.
1302
1303
1304 == 4.6 Set to sleep mode ==
1305
1306
1307 Feature: Set device to sleep mode
1308
1309 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1310 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1311
1312 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1313
1314 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1315 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1316 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1317 Clear all stored sensor data…
1318
1319 OK
1320 )))
1321
1322 (% style="color:#4f81bd" %)**Downlink Command:**
1323
1324 * There is no downlink command to set to Sleep mode.
1325
1326
1327 == 4.7 Set system time ==
1328
1329
1330 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1331
1332 (% style="color:#4f81bd" %)**AT Command:**
1333
1334 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1335 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1336 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1337 OK
1338
1339 Set System time to 2021-01-20 00:59:12
1340 )))
1341
1342 (% style="color:#4f81bd" %)**Downlink Command:**
1343
1344 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1345
1346
1347 == 4.8 Set Time Sync Mode ==
1348
1349
1350 (((
1351 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1352 )))
1353
1354 (((
1355 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1356 )))
1357
1358 (% style="color:#4f81bd" %)**AT Command:**
1359
1360 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1361 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1362 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1363
1364 (% style="color:#4f81bd" %)**Downlink Command:**
1365
1366 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1367 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1368
1369
1370 == 4.9 Set Time Sync Interval ==
1371
1372
1373 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1374
1375 (% style="color:#4f81bd" %)**AT Command:**
1376
1377 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1378 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1379 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1380
1381 (% style="color:#4f81bd" %)**Downlink Command:**
1382
1383 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1384
1385
1386 == 4.10 Print data entries base on page. ==
1387
1388
1389 Feature: Print the sector data from start page to stop page (max is 416 pages).
1390
1391 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1392
1393 [[image:image-20230426164330-2.png]]
1394
1395 (% style="color:#4f81bd" %)**Downlink Command:**
1396
1397 No downlink commands for feature
1398
1399
1400 == 4.11 Print last few data entries. ==
1401
1402
1403 Feature: Print the last few data entries
1404
1405 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1406
1407 [[image:image-20230426164932-3.png]]
1408
1409 (% style="color:#4f81bd" %)**Downlink Command:**
1410
1411 No downlink commands for feature
1412
1413
1414 == 4.12 Clear Flash Record ==
1415
1416
1417 Feature: Clear flash storage for data log feature.
1418
1419 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1420
1421 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1422 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1423 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1424 Clear all stored sensor data…
1425
1426 OK
1427 )))
1428
1429 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1430
1431 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1432
1433
1434 == 4.13 Auto Send None-ACK messages ==
1435
1436
1437 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1438
1439 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1440
1441 The default factory setting is 0
1442
1443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1444 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1445 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1446
1447 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1448
1449 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1450
1451
1452 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1453
1454
1455 Feature: Set internal and external temperature sensor alarms.
1456
1457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1458 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1459 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1460
1461 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1462
1463 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1464
1465 0): Cancel
1466
1467 1): Threshold alarm
1468
1469 2): Fluctuation alarm
1470
1471
1472 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1473
1474 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1475
1476
1477 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1478
1479 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1480
1481 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1482
1483
1484 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1485
1486 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1487
1488 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1489
1490
1491 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1492
1493 0xA5 00 ~-~- AT+WMOD=0.
1494
1495 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1496
1497 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1498
1499 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1500
1501 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1502
1503
1504 = 5. Battery & How to replace =
1505
1506 == 5.1 Battery Type ==
1507
1508
1509 (((
1510 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1511 )))
1512
1513 (((
1514 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1515
1516
1517 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1518 )))
1519
1520 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1521
1522
1523 == 5.2 Replace Battery ==
1524
1525
1526 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1527
1528 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1529
1530
1531 == 5.3 Battery Life Analyze ==
1532
1533
1534 (((
1535 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1536 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1537 )))
1538
1539
1540 (((
1541 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1542 )))
1543
1544
1545 = 6. FAQ =
1546
1547 == 6.1 How to use AT Command? ==
1548
1549
1550 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1551
1552 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1553
1554
1555 **Connection:**
1556
1557 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1558 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1559 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1560
1561 (((
1562 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1563
1564 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1565 )))
1566
1567
1568 Input password and ATZ to activate LHT65N,As shown below:
1569
1570 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1571
1572
1573 AT Command List is as below:
1574
1575 AT+<CMD>? :  Help on <CMD>
1576
1577 AT+<CMD> :  Run <CMD>
1578
1579 AT+<CMD>=<value> :  Set the value
1580
1581 AT+<CMD>=? :  Get the value
1582
1583 AT+DEBUG:  Set more info output
1584
1585 ATZ:  Trig a reset of the MCU
1586
1587 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1588
1589 AT+DEUI:  Get or Set the Device EUI
1590
1591 AT+DADDR:  Get or Set the Device Address
1592
1593 AT+APPKEY:  Get or Set the Application Key
1594
1595 AT+NWKSKEY:  Get or Set the Network Session Key
1596
1597 AT+APPSKEY:  Get or Set the Application Session Key
1598
1599 AT+APPEUI:  Get or Set the Application EUI
1600
1601 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1602
1603 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1604
1605 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1606
1607 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1608
1609 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1610
1611 AT+RX2FQ:  Get or Set the Rx2 window frequency
1612
1613 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1614
1615 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1616
1617 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1618
1619 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1620
1621 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1622
1623 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1624
1625 AT+NWKID:  Get or Set the Network ID
1626
1627 AT+FCU:  Get or Set the Frame Counter Uplink
1628
1629 AT+FCD:  Get or Set the Frame Counter Downlink
1630
1631 AT+CLASS:  Get or Set the Device Class
1632
1633 AT+JOIN:  Join network
1634
1635 AT+NJS:  Get the join status
1636
1637 AT+SENDB:  Send hexadecimal data along with the application port
1638
1639 AT+SEND:  Send text data along with the application port
1640
1641 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1642
1643 AT+RECV:  Print last received data in raw format
1644
1645 AT+VER:  Get current image version and Frequency Band
1646
1647 AT+CFM:  Get or Set the confirmation mode (0-1)
1648
1649 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1650
1651 AT+SNR:  Get the SNR of the last received packet
1652
1653 AT+RSSI:  Get the RSSI of the last received packet
1654
1655 AT+TDC:  Get or set the application data transmission interval in ms
1656
1657 AT+PORT:  Get or set the application port
1658
1659 AT+DISAT:  Disable AT commands
1660
1661 AT+PWORD: Set password, max 9 digits
1662
1663 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1664
1665 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1666
1667 AT+PDTA:  Print the sector data from start page to stop page
1668
1669 AT+PLDTA:  Print the last few sets of data
1670
1671 AT+CLRDTA:  Clear the storage, record position back to 1st
1672
1673 AT+SLEEP:  Set sleep mode
1674
1675 AT+EXT:  Get or Set external sensor model
1676
1677 AT+BAT:  Get the current battery voltage in mV
1678
1679 AT+CFG:  Print all configurations
1680
1681 AT+WMOD:  Get or Set Work Mode
1682
1683 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1684
1685 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1686
1687 AT+SETCNT:  Set the count at present
1688
1689 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1690
1691 AT+RPL:  Get or set response level
1692
1693 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1694
1695 AT+LEAPSEC:  Get or Set Leap Second
1696
1697 AT+SYNCMOD:  Get or Set time synchronization method
1698
1699 AT+SYNCTDC:  Get or set time synchronization interval in day
1700
1701 AT+PID:  Get or set the PID
1702
1703
1704 == 6.2 Where to use AT commands and Downlink commands ==
1705
1706
1707 **AT commands: **
1708
1709 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1710
1711
1712 **Downlink commands:**
1713
1714
1715 (% style="color:blue" %)**TTN:**
1716
1717 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1718
1719
1720
1721 (% style="color:blue" %)**Helium: **
1722
1723 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1724
1725
1726
1727 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1728
1729
1730 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1731
1732
1733 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1734
1735
1736
1737 (% style="color:blue" %)**Aws:**
1738
1739 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1740
1741
1742 == 6.3 How to change the uplink interval? ==
1743
1744
1745 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1746
1747
1748 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1749
1750
1751 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1752
1753 [[image:1655802313617-381.png||_mstalt="293917"]]
1754
1755
1756 (((
1757 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1758 )))
1759
1760
1761 Input password and ATZ to activate LHT65N, As shown below:
1762
1763 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1764
1765
1766 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1767
1768
1769 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1770
1771
1772 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1773
1774 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1775
1776
1777
1778 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1779
1780 First connect the four lines;(% style="display:none" %)
1781
1782 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1783
1784
1785 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1786
1787 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1788
1789
1790
1791 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1792
1793 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1794
1795
1796 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1797
1798
1799 When this interface appears, it indicates that the download has been completed.
1800
1801 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1802
1803
1804 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1805
1806
1807 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1808
1809
1810 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1811
1812
1813 **UART Port of LHT65N:**
1814
1815 * (% class="mark" %)**PB0: RXD**
1816 * (% class="mark" %)**PB1: TXD**
1817 * (% class="mark" %)**GND**
1818
1819 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1820
1821
1822 (((
1823 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1824 )))
1825
1826
1827 Input password and ATZ to activate LHT65N,As shown below:
1828
1829 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1830
1831
1832 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1833
1834
1835 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1836
1837
1838 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1839
1840 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1841
1842
1843
1844 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1845
1846 First connect the four lines;
1847
1848 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1849
1850 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1851
1852
1853
1854 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1855
1856 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1857
1858
1859 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1860
1861
1862 When this interface appears, it indicates that the download has been completed.
1863
1864 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1865
1866
1867 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1868
1869
1870 == 6.8 Why can't I see the datalog information ==
1871
1872
1873 ~1. The time is not aligned, and the correct query command is not used.
1874
1875 2. Decoder error, did not parse the datalog data, the data was filtered.
1876
1877
1878 = 7. Order Info =
1879
1880
1881 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1882
1883 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1884
1885 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1886 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1887 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1888 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1889 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1890 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1891 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1892 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1893
1894 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1895
1896 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1897
1898
1899 = 8. Packing Info =
1900
1901
1902 **Package Includes**:
1903
1904 * LHT65N Temperature & Humidity Sensor x 1
1905 * Optional external sensor
1906
1907 **Dimension and weight**:
1908
1909 * Device Size:  10 x 10 x 3.5 mm
1910 * Device Weight: 120.5g
1911
1912
1913 = 9. Reference material =
1914
1915
1916 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1917
1918
1919 = 10. FCC Warning =
1920
1921
1922 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1923
1924 (1) This device may not cause harmful interference;
1925
1926 (2) this device must accept any interference received, including interference that may cause undesired operation.