Version 261.7 by Xiaoling on 2023/07/17 17:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263
264 Check the battery voltage for LHT65N.
265
266 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
267
268 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
269
270
271 === 2.4.3 Built-in Temperature ===
272
273
274 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
275
276 * Temperature:  0x0ABB/100=27.47℃
277
278 [[image:image-20220522235639-3.png||_mstalt="432120"]]
279
280 * Temperature:  (0xF5C6-65536)/100=-26.18℃
281
282
283 (% style="display:none" %)
284
285 === 2.4.4 Built-in Humidity ===
286
287
288 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
289
290 * Humidity:    0x025C/10=60.4%
291
292
293 (% style="display:none" %)
294
295 === 2.4.5 Ext # ===
296
297
298 Bytes for External Sensor:
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
301 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
302 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
303 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
304
305 === 2.4.6 Ext value ===
306
307 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
308
309
310 [[image:image-20220522235639-5.png||_mstalt="432848"]]
311
312
313 * DS18B20 temp=0x0ADD/100=27.81℃
314
315 The last 2 bytes of data are meaningless
316
317
318
319 [[image:image-20220522235639-6.png||_mstalt="433212"]]
320
321
322 * External temperature= (0xF54F-65536)/100=-27.37℃
323
324 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
325
326 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
327
328 The last 2 bytes of data are meaningless
329
330 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
331
332
333
334 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
335
336
337 (((
338 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
339 )))
340
341 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
342 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
343 **Size(bytes)**
344 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
345 **2**
346 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
347 **2**
348 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
349 **2**
350 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
351 **1**
352 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
353 **4**
354 )))
355 |(% style="width:110px" %)(((
356 **Value**
357 )))|(% style="width:71px" %)(((
358 External temperature
359 )))|(% style="width:99px" %)(((
360 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
361 )))|(% style="width:132px" %)(((
362 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
363 )))|(% style="width:54px" %)(((
364 Status & Ext
365 )))|(% style="width:64px" %)(((
366 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
367 )))
368
369 * **Battery status & Built-in Humidity**
370
371 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
372 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
373 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
374 BAT Status
375 00(b): Ultra Low ( BAT <= 2.50v)
376 01(b): Low  (2.50v <=BAT <= 2.55v)
377 10(b): OK   (2.55v <= BAT <=2.65v)
378 11(b): Good   (BAT >= 2.65v)
379 )))|(% style="width:132px" %)(((
380 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
381 )))
382
383 * **Status & Ext Byte**
384
385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
386 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
387 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
388
389 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
390 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
391 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
392
393
394 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
395
396
397 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
398
399 be used to power the external ADC sensor; user can control the power on time for this
400
401 (% style="color:blue" %)**sensor by setting:**
402
403 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
404
405 **For example:**
406
407 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
408
409
410 Or use **downlink command A2** to set the same.
411
412 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
413
414 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
415
416 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
417
418
419 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
420
421 [[image:image-20220628150714-4.png||_mstalt="431054"]]
422
423
424 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
425
426
427 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
428
429 [[image:image-20220628151005-5.png||_mstalt="429546"]]
430
431
432 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
433
434 [[image:image-20220628151056-6.png||_mstalt="431873"]]
435
436
437 3) Within range
438
439 [[image:image-20220628151143-7.png||_mstalt="431210"]]
440
441
442
443 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
444
445 [[image:image-20230717151328-8.png]]
446
447 (% style="display:none" %) (%%)
448
449
450
451 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
452
453 [[image:image-20220906102307-7.png||_mstalt="430443"]]
454
455
456 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
457
458 The external cable NE2 can be use for MOD4 and MOD8
459
460
461
462 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
463
464
465
466 [[image:image-20230717151245-7.png]]
467
468 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
469
470 [[image:SHT31.png]]
471
472
473
474 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
475
476
477 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
478
479
480 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
481
482 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
483
484 In Open State, the power consumption is the same as if there is no probe
485
486 In Close state, the power consumption will be 3uA higher than normal.
487
488 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
489
490
491 Ext=4,Interrupt Sensor:
492
493 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
494 |(% style="width:101px" %)(((
495 **AT+EXT=4,1**
496 )))|(% style="width:395px" %)(((
497 **Sent uplink packet in both rising and falling interrupt**
498 )))
499 |(% style="width:101px" %)(((
500 **AT+EXT=4,2**
501 )))|(% style="width:395px" %)(((
502 **Sent uplink packet only in falling interrupt**
503 )))
504 |(% style="width:101px" %)(((
505 **AT+EXT=4,3**
506 )))|(% style="width:395px" %)(((
507 **Sent uplink packet only in rising interrupt**
508 )))
509
510 Trigger by falling edge:
511
512 [[image:image-20220906101145-2.png||_mstalt="428324"]]
513
514
515 Trigger by raising edge:
516
517 [[image:image-20220906101145-3.png||_mstalt="428688"]]
518
519
520
521 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
522
523
524 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
525
526
527 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
528
529 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
530
531
532 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
533
534 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
535
536
537 Ext=8, Counting Sensor ( 4 bytes):
538
539 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
540 |(% style="width:131px" %)(((
541 **AT+EXT=8,0**
542 )))|(% style="width:195px" %)(((
543 **Count at falling interrupt**
544 )))
545 |(% style="width:131px" %)(((
546 **AT+EXT=8,1**
547 )))|(% style="width:195px" %)(((
548 **Count at rising interrupt**
549 )))
550 |(% style="width:131px" %)(((
551 **AT+SETCNT=60**
552 )))|(% style="width:195px" %)(((
553 **Sent current count to 60**
554 )))
555
556 [[image:image-20220906101320-6.png||_mstalt="428064"]]
557
558
559 (% style="color:blue" %)**A2 downlink Command:**
560
561 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
562
563 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
564
565 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
566
567 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
568
569 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
570
571
572 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
573
574
575 (((
576 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
577 )))
578
579 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
580 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
581 **Size(bytes)**
582 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
583 **2**
584 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
585 **2**
586 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
587 **2**
588 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
589 **1**
590 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
591 **4**
592 )))
593 |(% style="width:110px" %)(((
594 **Value**
595 )))|(% style="width:71px" %)(((
596 External temperature
597 )))|(% style="width:99px" %)(((
598 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
599 )))|(% style="width:132px" %)(((
600 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
601 )))|(% style="width:54px" %)(((
602 Status & Ext
603 )))|(% style="width:64px" %)(((
604 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
605 )))
606
607 * **Battery status & Built-in Humidity**
608
609 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
610 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
611 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
612 BAT Status
613 00(b): Ultra Low ( BAT <= 2.50v)
614 01(b): Low  (2.50v <=BAT <= 2.55v)
615 10(b): OK   (2.55v <= BAT <=2.65v)
616 11(b): Good   (BAT >= 2.65v)
617 )))|(% style="width:132px" %)(((
618 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
619 )))
620
621 * **Status & Ext Byte**
622
623 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
624 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
625 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
626
627 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
628 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
629 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
630
631
632 == 2.5 Show data on Datacake ==
633
634
635 (((
636 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
637 )))
638
639
640 (((
641 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
642 )))
643
644 (((
645 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
646 )))
647
648
649 (((
650 Add Datacake:
651 )))
652
653
654 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
655
656
657
658 Select default key as Access Key:
659
660
661 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
662
663
664 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
665
666
667 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
668
669
670 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
671
672
673 == 2.6 Datalog Feature ==
674
675
676 (((
677 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
678 )))
679
680
681 === 2.6.1 Ways to get datalog via LoRaWAN ===
682
683
684 There are two methods:
685
686 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
687
688
689 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
690
691
692 (% style="color:red" %)**Note for method 2:**
693
694 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
695 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
696
697 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
698
699
700 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
701
702
703 === 2.6.2 Unix TimeStamp ===
704
705
706 LHT65N uses Unix TimeStamp format based on
707
708
709 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
710
711
712
713 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
714
715 Below is the converter example
716
717 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
718
719
720 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
721
722
723 === 2.6.3 Set Device Time ===
724
725
726 (((
727 (% style="color:blue" %)**There are two ways to set device's time:**
728 )))
729
730 (((
731 **1.  Through LoRaWAN MAC Command (Default settings)**
732 )))
733
734 (((
735 User need to set SYNCMOD=1 to enable sync time via MAC command.
736 )))
737
738 (((
739 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
740 )))
741
742 (((
743 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
744 )))
745
746
747 (((
748 **2. Manually Set Time**
749 )))
750
751 (((
752 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
753 )))
754
755
756 === 2.6.4 Poll sensor value ===
757
758
759 User can poll sensor value based on timestamps from the server. Below is the downlink command.
760
761 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
762 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
763 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
764
765 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
766
767 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
768
769 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
770
771 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
772
773
774 === 2.6.5 Datalog Uplink payload ===
775
776
777 The Datalog poll reply uplink will use below payload format.
778
779 **Retrieval data payload:**
780
781 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
782 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
783 **Size(bytes)**
784 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
785 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
786
787 **Poll message flag & Ext:**
788
789 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
790
791 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
792
793 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
794
795 * Poll Message Flag is set to 1.
796
797 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
798
799 For example, in US915 band, the max payload for different DR is:
800
801 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
802
803 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
804
805 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
806
807 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
808
809 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
810
811
812 **Example:**
813
814 If LHT65N has below data inside Flash:
815
816 [[image:image-20230426171833-4.png]]
817
818
819 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
820
821 Where : Start time: 60065F97 = time 21/1/19 04:27:03
822
823 Stop time: 60066DA7= time 21/1/19 05:27:03
824
825
826 **LHT65N will uplink this payload.**
827
828 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
829
830
831 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
832
833 Where the first 11 bytes is for the first entry:
834
835 7FFF089801464160065F97
836
837 Ext sensor data=0x7FFF/100=327.67
838
839 Temp=0x088E/100=22.00
840
841 Hum=0x014B/10=32.6
842
843 poll message flag & Ext=0x41,means reply data,Ext=1
844
845 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
846
847
848 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
849
850
851 (((
852 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
853 )))
854
855 (((
856 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
857
858
859 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
860
861
862 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
863
864 (((
865 (% class="box infomessage" %)
866 (((
867 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
868
869 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
870
871 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
872
873 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
874
875 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
876
877 **AT+LEDALARM=1** :       Enable LED visual Alarm.
878 )))
879 )))
880
881 (% style="color:#4f81bd" %)**Downlink Command:**
882
883 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
884
885 AT+CITEMP=1 : A60001
886
887 AT+ARTEMP=1,60  :  A70001003C
888
889 AT+ARTEMP=-16,60 :  A7FFF0003C
890
891 AT+LEDALARM=1  :  3601
892
893
894 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
895
896 Total bytes: 8 bytes
897
898 **Example: **AA0100010001003C
899
900 WMOD=01
901
902 CITEMP=0001
903
904 TEMPlow=0001
905
906 TEMPhigh=003C
907
908
909 **DS18B20 and TMP117 Threshold Alarm**
910
911 **~ AT+WMOD=1,60,-10,20**
912
913 (% style="color:#4f81bd" %)**Downlink Command:**
914
915 **Example: **A5013CFC180014
916
917 MOD=01
918
919 CITEMP=3C(S)
920
921 TEMPlow=FC18
922
923 TEMPhigh=0014
924
925
926 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
927
928 **AT+WMOD=2,60,5** 
929
930 (% style="color:#4f81bd" %)**Downlink Command:**
931
932 **Example: **A5023C05
933
934 MOD=02
935
936 CITEMP=3C(S)
937
938 temperature fluctuation=05
939
940
941 **Sampling multiple times and uplink together**
942
943 **AT+WMOD=3,1,60,20,-16,32,1**   
944
945 Explain:
946
947 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
948 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
949 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
950 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
951 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
952 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
953
954 (% style="color:#4f81bd" %)**Downlink Command:**
955
956 **Example: **A50301003C14FFF0002001
957
958 MOD=03
959
960 TEMP=DS18B20
961
962 CITEMP=003C(S)
963
964 Total number of acquisitions=14
965
966 TEMPlow=FFF0
967
968 TEMPhigh=0020
969
970 ARTEMP=01
971
972
973 **Uplink payload( Fport=3)**
974
975 **Example: CBEA**01**0992**//0A41//**09C4**
976
977 BatV=CBEA
978
979 TEMP=DS18B20
980
981 Temp1=0992  ~/~/ 24.50℃
982
983 Temp2=0A41  ~/~/ 26.25℃
984
985 Temp3=09C4  ~/~/ 25.00℃
986
987 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
988
989 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
990 )))
991
992
993 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
994
995
996 (% class="box infomessage" %)
997 (((
998 (((
999 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1000 )))
1001
1002 (((
1003 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1004 )))
1005
1006 (((
1007 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1008 )))
1009
1010 (((
1011 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1012 )))
1013
1014 (((
1015 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1016 )))
1017 )))
1018
1019 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1020
1021 Total bytes: 8 bytes
1022
1023 **Example:**AA0100010001003C
1024
1025 WMOD=01
1026
1027 CITEMP=0001
1028
1029 TEMPlow=0001
1030
1031 TEMPhigh=003C
1032
1033
1034 == 2.8 LED Indicator ==
1035
1036
1037 The LHT65 has a triple color LED which for easy showing different stage .
1038
1039 While user press ACT button, the LED will work as per LED status with ACT button.
1040
1041 In a normal working state:
1042
1043 * For each uplink, the BLUE LED or RED LED will blink once.
1044 BLUE LED when external sensor is connected.
1045 * RED LED when external sensor is not connected
1046 * For each success downlink, the PURPLE LED will blink once
1047
1048
1049 == 2.9 installation ==
1050
1051
1052 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1053
1054
1055 = 3. Sensors and Accessories =
1056
1057 == 3.1 E2 Extension Cable ==
1058
1059
1060 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1061
1062
1063 **1m long breakout cable for LHT65N. Features:**
1064
1065 * (((
1066 Use for AT Command, works for both LHT52/LHT65N
1067 )))
1068 * (((
1069 Update firmware for LHT65N, works for both LHT52/LHT65N
1070 )))
1071 * (((
1072 Supports ADC mode to monitor external ADC
1073 )))
1074 * (((
1075 Supports Interrupt mode
1076 )))
1077 * (((
1078 Exposed All pins from the LHT65N Type-C connector.
1079
1080
1081
1082 )))
1083
1084 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1085
1086
1087 == 3.2 E3 Temperature Probe ==
1088
1089
1090 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1091
1092
1093 Temperature sensor with 2 meters cable long
1094
1095 * Resolution: 0.0625 °C
1096 * ±0.5°C accuracy from -10°C to +85°C
1097 * ±2°C accuracy from -55°C to +125°C
1098 * Operating Range: -40 ~~ 125 °C
1099 * Working voltage 2.35v ~~ 5v
1100
1101 == 3.3 E31F Temperature Probe ==
1102
1103
1104 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1105
1106
1107 Temperature sensor with 1 meters cable long
1108
1109
1110 **Built-in Temperature Sensor:**
1111
1112 * Resolution: 0.01 °C
1113 * Accuracy Tolerance : Typ ±0.3 °C
1114 * Long Term Drift: < 0.02 °C/yr
1115 * Operating Range: -40 ~~ 80 °C
1116
1117 **Built-in Humidity Sensor:**
1118
1119 * Resolution: 0.04 % RH
1120 * Accuracy Tolerance : Typ ±3 % RH
1121 * Long Term Drift: < 0.02 °C/yr
1122 * Operating Range: 0 ~~ 96 % RH
1123
1124 **External Temperature Sensor :**
1125
1126 * Resolution: 0.01 °C
1127 * Accuracy Tolerance : Typical ±0.3 °C
1128 * Long Term Drift: < 0.02 °C/yr
1129 * Operating Range: -40 ~~ 125 °C
1130
1131 **External Humidity Sensor :**
1132
1133 * Resolution: 0.04 % RH
1134 * Accuracy Tolerance : Typ ±3 % RH
1135 * Long Term Drift: < 0.02 °C/yr
1136 * Operating Range: 0 ~~ 96 % RH
1137
1138
1139 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1140
1141
1142 (((
1143 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1144 )))
1145
1146 * (((
1147 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1148 )))
1149
1150 * (((
1151 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1152 )))
1153
1154 (((
1155 There are two kinds of commands to configure LHT65N, they are:
1156 )))
1157
1158 * (((
1159 (% style="color:#4f81bd" %)**General Commands**.
1160 )))
1161
1162 (((
1163 These commands are to configure:
1164 )))
1165
1166 1. (((
1167 General system settings like: uplink interval.
1168 )))
1169 1. (((
1170 LoRaWAN protocol & radio-related commands.
1171 )))
1172
1173 (((
1174 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1175 )))
1176
1177 * (((
1178 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1179 )))
1180
1181 (((
1182 These commands are only valid for LHT65N, as below:
1183 )))
1184
1185
1186 == 4.1 Set Transmit Interval Time ==
1187
1188
1189 Feature: Change LoRaWAN End Node Transmit Interval.
1190
1191
1192 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1193
1194 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1195 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1196 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1197 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1198
1199 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1200
1201 Format: Command Code (0x01) followed by 3 bytes time value.
1202
1203 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1204
1205 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1206
1207 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1208
1209
1210 == 4.2 Set External Sensor Mode ==
1211
1212
1213 Feature: Change External Sensor Mode.
1214
1215 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1216
1217 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1218 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1219 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1220 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1221 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1222
1223 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1224
1225 Total bytes: 2 ~~ 5 bytes
1226
1227 **Example:**
1228
1229 * 0xA201: Set external sensor type to E1
1230
1231 * 0xA209: Same as AT+EXT=9
1232
1233 * 0xA20702003c: Same as AT+SETCNT=60
1234
1235
1236 == 4.3 Enable/Disable uplink Temperature probe ID ==
1237
1238
1239 (((
1240 Feature: If PID is enabled, device will send the temperature probe ID on:
1241 )))
1242
1243 * (((
1244 First Packet after OTAA Join
1245 )))
1246 * (((
1247 Every 24 hours since the first packet.
1248 )))
1249
1250 (((
1251 PID is default set to disable (0)
1252
1253
1254 )))
1255
1256 (% style="color:#4f81bd" %)**AT Command:**
1257
1258 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1259 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1260 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1261
1262 (% style="color:#4f81bd" %)**Downlink Command:**
1263
1264 * **0xA800**  **~-~->** AT+PID=0
1265 * **0xA801**     **~-~->** AT+PID=1
1266
1267
1268 == 4.4 Set Password ==
1269
1270
1271 Feature: Set device password, max 9 digits
1272
1273 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1274
1275 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1276 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1277 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1278 123456
1279
1280 OK
1281 )))
1282 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1283
1284 (% style="color:#4f81bd" %)**Downlink Command:**
1285
1286 No downlink command for this feature.
1287
1288
1289 == 4.5 Quit AT Command ==
1290
1291
1292 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1293
1294 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1295
1296 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1297 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1298 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1299
1300 (% style="color:#4f81bd" %)**Downlink Command:**
1301
1302 No downlink command for this feature.
1303
1304
1305 == 4.6 Set to sleep mode ==
1306
1307
1308 Feature: Set device to sleep mode
1309
1310 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1311 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1312
1313 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1314
1315 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1316 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1317 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1318 Clear all stored sensor data…
1319
1320 OK
1321 )))
1322
1323 (% style="color:#4f81bd" %)**Downlink Command:**
1324
1325 * There is no downlink command to set to Sleep mode.
1326
1327
1328 == 4.7 Set system time ==
1329
1330
1331 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1332
1333 (% style="color:#4f81bd" %)**AT Command:**
1334
1335 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1336 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1337 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1338 OK
1339
1340 Set System time to 2021-01-20 00:59:12
1341 )))
1342
1343 (% style="color:#4f81bd" %)**Downlink Command:**
1344
1345 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1346
1347
1348 == 4.8 Set Time Sync Mode ==
1349
1350
1351 (((
1352 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1353 )))
1354
1355 (((
1356 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1357 )))
1358
1359 (% style="color:#4f81bd" %)**AT Command:**
1360
1361 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1362 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1363 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1364
1365 (% style="color:#4f81bd" %)**Downlink Command:**
1366
1367 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1368 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1369
1370
1371 == 4.9 Set Time Sync Interval ==
1372
1373
1374 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1375
1376 (% style="color:#4f81bd" %)**AT Command:**
1377
1378 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1379 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1380 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1381
1382 (% style="color:#4f81bd" %)**Downlink Command:**
1383
1384 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1385
1386
1387 == 4.10 Print data entries base on page. ==
1388
1389
1390 Feature: Print the sector data from start page to stop page (max is 416 pages).
1391
1392 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1393
1394 [[image:image-20230426164330-2.png]]
1395
1396 (% style="color:#4f81bd" %)**Downlink Command:**
1397
1398 No downlink commands for feature
1399
1400
1401 == 4.11 Print last few data entries. ==
1402
1403
1404 Feature: Print the last few data entries
1405
1406 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1407
1408 [[image:image-20230426164932-3.png]]
1409
1410 (% style="color:#4f81bd" %)**Downlink Command:**
1411
1412 No downlink commands for feature
1413
1414
1415 == 4.12 Clear Flash Record ==
1416
1417
1418 Feature: Clear flash storage for data log feature.
1419
1420 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1421
1422 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1423 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1424 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1425 Clear all stored sensor data…
1426
1427 OK
1428 )))
1429
1430 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1431
1432 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1433
1434
1435 == 4.13 Auto Send None-ACK messages ==
1436
1437
1438 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1439
1440 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1441
1442 The default factory setting is 0
1443
1444 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1445 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1446 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1447
1448 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1449
1450 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1451
1452
1453 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1454
1455
1456 Feature: Set internal and external temperature sensor alarms.
1457
1458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1459 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1460 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1461
1462 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1463
1464 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1465
1466 0): Cancel
1467
1468 1): Threshold alarm
1469
1470 2): Fluctuation alarm
1471
1472
1473 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1474
1475 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1476
1477
1478 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1479
1480 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1481
1482 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1483
1484
1485 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1486
1487 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1488
1489 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1490
1491
1492 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1493
1494 0xA5 00 ~-~- AT+WMOD=0.
1495
1496 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1497
1498 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1499
1500 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1501
1502 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1503
1504
1505 = 5. Battery & How to replace =
1506
1507 == 5.1 Battery Type ==
1508
1509
1510 (((
1511 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1512 )))
1513
1514 (((
1515 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1516
1517
1518 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1519 )))
1520
1521 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1522
1523
1524 == 5.2 Replace Battery ==
1525
1526
1527 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1528
1529 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1530
1531
1532 == 5.3 Battery Life Analyze ==
1533
1534
1535 (((
1536 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1537 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1538 )))
1539
1540
1541 (((
1542 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1543 )))
1544
1545
1546 = 6. FAQ =
1547
1548 == 6.1 How to use AT Command? ==
1549
1550
1551 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1552
1553 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1554
1555
1556 **Connection:**
1557
1558 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1559 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1560 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1561
1562 (((
1563 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1564
1565 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1566 )))
1567
1568
1569 Input password and ATZ to activate LHT65N,As shown below:
1570
1571 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1572
1573
1574 AT Command List is as below:
1575
1576 AT+<CMD>? :  Help on <CMD>
1577
1578 AT+<CMD> :  Run <CMD>
1579
1580 AT+<CMD>=<value> :  Set the value
1581
1582 AT+<CMD>=? :  Get the value
1583
1584 AT+DEBUG:  Set more info output
1585
1586 ATZ:  Trig a reset of the MCU
1587
1588 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1589
1590 AT+DEUI:  Get or Set the Device EUI
1591
1592 AT+DADDR:  Get or Set the Device Address
1593
1594 AT+APPKEY:  Get or Set the Application Key
1595
1596 AT+NWKSKEY:  Get or Set the Network Session Key
1597
1598 AT+APPSKEY:  Get or Set the Application Session Key
1599
1600 AT+APPEUI:  Get or Set the Application EUI
1601
1602 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1603
1604 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1605
1606 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1607
1608 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1609
1610 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1611
1612 AT+RX2FQ:  Get or Set the Rx2 window frequency
1613
1614 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1615
1616 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1617
1618 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1619
1620 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1621
1622 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1623
1624 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1625
1626 AT+NWKID:  Get or Set the Network ID
1627
1628 AT+FCU:  Get or Set the Frame Counter Uplink
1629
1630 AT+FCD:  Get or Set the Frame Counter Downlink
1631
1632 AT+CLASS:  Get or Set the Device Class
1633
1634 AT+JOIN:  Join network
1635
1636 AT+NJS:  Get the join status
1637
1638 AT+SENDB:  Send hexadecimal data along with the application port
1639
1640 AT+SEND:  Send text data along with the application port
1641
1642 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1643
1644 AT+RECV:  Print last received data in raw format
1645
1646 AT+VER:  Get current image version and Frequency Band
1647
1648 AT+CFM:  Get or Set the confirmation mode (0-1)
1649
1650 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1651
1652 AT+SNR:  Get the SNR of the last received packet
1653
1654 AT+RSSI:  Get the RSSI of the last received packet
1655
1656 AT+TDC:  Get or set the application data transmission interval in ms
1657
1658 AT+PORT:  Get or set the application port
1659
1660 AT+DISAT:  Disable AT commands
1661
1662 AT+PWORD: Set password, max 9 digits
1663
1664 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1665
1666 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1667
1668 AT+PDTA:  Print the sector data from start page to stop page
1669
1670 AT+PLDTA:  Print the last few sets of data
1671
1672 AT+CLRDTA:  Clear the storage, record position back to 1st
1673
1674 AT+SLEEP:  Set sleep mode
1675
1676 AT+EXT:  Get or Set external sensor model
1677
1678 AT+BAT:  Get the current battery voltage in mV
1679
1680 AT+CFG:  Print all configurations
1681
1682 AT+WMOD:  Get or Set Work Mode
1683
1684 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1685
1686 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1687
1688 AT+SETCNT:  Set the count at present
1689
1690 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1691
1692 AT+RPL:  Get or set response level
1693
1694 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1695
1696 AT+LEAPSEC:  Get or Set Leap Second
1697
1698 AT+SYNCMOD:  Get or Set time synchronization method
1699
1700 AT+SYNCTDC:  Get or set time synchronization interval in day
1701
1702 AT+PID:  Get or set the PID
1703
1704
1705 == 6.2 Where to use AT commands and Downlink commands ==
1706
1707
1708 **AT commands: **
1709
1710 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1711
1712
1713 **Downlink commands:**
1714
1715
1716 (% style="color:blue" %)**TTN:**
1717
1718 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1719
1720
1721
1722 (% style="color:blue" %)**Helium: **
1723
1724 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1725
1726
1727
1728 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1729
1730
1731 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1732
1733
1734 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1735
1736
1737
1738 (% style="color:blue" %)**Aws:**
1739
1740 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1741
1742
1743 == 6.3 How to change the uplink interval? ==
1744
1745
1746 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1747
1748
1749 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1750
1751
1752 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1753
1754 [[image:1655802313617-381.png||_mstalt="293917"]]
1755
1756
1757 (((
1758 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1759 )))
1760
1761
1762 Input password and ATZ to activate LHT65N, As shown below:
1763
1764 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1765
1766
1767 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1768
1769
1770 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1771
1772
1773 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1774
1775 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1776
1777
1778
1779 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1780
1781 First connect the four lines;(% style="display:none" %)
1782
1783 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1784
1785
1786 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1787
1788 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1789
1790
1791
1792 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1793
1794 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1795
1796
1797 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1798
1799
1800 When this interface appears, it indicates that the download has been completed.
1801
1802 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1803
1804
1805 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1806
1807
1808 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1809
1810
1811 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1812
1813
1814 **UART Port of LHT65N:**
1815
1816 * (% class="mark" %)**PB0: RXD**
1817 * (% class="mark" %)**PB1: TXD**
1818 * (% class="mark" %)**GND**
1819
1820 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1821
1822
1823 (((
1824 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1825 )))
1826
1827
1828 Input password and ATZ to activate LHT65N,As shown below:
1829
1830 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1831
1832
1833 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1834
1835
1836 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1837
1838
1839 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1840
1841 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1842
1843
1844
1845 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1846
1847 First connect the four lines;
1848
1849 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1850
1851 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1852
1853
1854
1855 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1856
1857 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1858
1859
1860 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1861
1862
1863 When this interface appears, it indicates that the download has been completed.
1864
1865 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1866
1867
1868 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1869
1870
1871 == 6.8 Why can't I see the datalog information ==
1872
1873
1874 ~1. The time is not aligned, and the correct query command is not used.
1875
1876 2. Decoder error, did not parse the datalog data, the data was filtered.
1877
1878
1879 = 7. Order Info =
1880
1881
1882 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1883
1884 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1885
1886 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1887 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1888 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1889 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1890 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1891 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1892 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1893 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1894
1895 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1896
1897 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1898
1899
1900 = 8. Packing Info =
1901
1902
1903 **Package Includes**:
1904
1905 * LHT65N Temperature & Humidity Sensor x 1
1906 * Optional external sensor
1907
1908 **Dimension and weight**:
1909
1910 * Device Size:  10 x 10 x 3.5 mm
1911 * Device Weight: 120.5g
1912
1913
1914 = 9. Reference material =
1915
1916
1917 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1918
1919
1920 = 10. FCC Warning =
1921
1922
1923 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1924
1925 (1) This device may not cause harmful interference;
1926
1927 (2) this device must accept any interference received, including interference that may cause undesired operation.