Version 261.6 by Xiaoling on 2023/07/17 17:27

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decoder in TTN V3 ===
233
234
235 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
236
237 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 BAT-Battery Info ===
244
245
246 These two bytes of BAT include the battery state and the actually voltage.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)(((
253 **Value**
254 )))|(% style="width:250px" %)(((
255 BAT Status
256 00(b): Ultra Low ( BAT <= 2.50v)
257 01(b): Low (2.50v <=BAT <= 2.55v)
258 10(b): OK (2.55v <= BAT <=2.65v)
259 11(b): Good (BAT >= 2.65v)
260 )))|(% style="width:152px" %)Actually BAT voltage
261
262 **(b)stands for binary**
263
264
265 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
266
267
268 Check the battery voltage for LHT65N.
269
270 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
271
272 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
273
274
275 === 2.4.3 Built-in Temperature ===
276
277
278 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
279
280 * Temperature:  0x0ABB/100=27.47℃
281
282 [[image:image-20220522235639-3.png||_mstalt="432120"]]
283
284 * Temperature:  (0xF5C6-65536)/100=-26.18℃
285
286
287 (% style="display:none" %)
288
289 === 2.4.4 Built-in Humidity ===
290
291
292 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
293
294 * Humidity:    0x025C/10=60.4%
295
296
297 (% style="display:none" %)
298
299 === 2.4.5 Ext # ===
300
301
302 Bytes for External Sensor:
303
304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
305 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
306 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
307 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
308
309 === 2.4.6 Ext value ===
310
311 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
312
313
314 [[image:image-20220522235639-5.png||_mstalt="432848"]]
315
316
317 * DS18B20 temp=0x0ADD/100=27.81℃
318
319 The last 2 bytes of data are meaningless
320
321
322
323 [[image:image-20220522235639-6.png||_mstalt="433212"]]
324
325
326 * External temperature= (0xF54F-65536)/100=-27.37℃
327
328 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
329
330 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
331
332 The last 2 bytes of data are meaningless
333
334 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
335
336
337
338 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
339
340
341 (((
342 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
343 )))
344
345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
346 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
347 **Size(bytes)**
348 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
349 **2**
350 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
351 **2**
352 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
353 **2**
354 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
355 **1**
356 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
357 **4**
358 )))
359 |(% style="width:110px" %)(((
360 **Value**
361 )))|(% style="width:71px" %)(((
362 External temperature
363 )))|(% style="width:99px" %)(((
364 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
365 )))|(% style="width:132px" %)(((
366 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
367 )))|(% style="width:54px" %)(((
368 Status & Ext
369 )))|(% style="width:64px" %)(((
370 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
371 )))
372
373 * **Battery status & Built-in Humidity**
374
375 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
376 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
377 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
378 BAT Status
379 00(b): Ultra Low ( BAT <= 2.50v)
380 01(b): Low  (2.50v <=BAT <= 2.55v)
381 10(b): OK   (2.55v <= BAT <=2.65v)
382 11(b): Good   (BAT >= 2.65v)
383 )))|(% style="width:132px" %)(((
384 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
385 )))
386
387 * **Status & Ext Byte**
388
389 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
390 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
391 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
392
393 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
394 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
395 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
396
397
398 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
399
400
401 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
402
403 be used to power the external ADC sensor; user can control the power on time for this
404
405 (% style="color:blue" %)**sensor by setting:**
406
407 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
408
409 **For example:**
410
411 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
412
413
414 Or use **downlink command A2** to set the same.
415
416 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
417
418 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
419
420 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
421
422
423 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
424
425 [[image:image-20220628150714-4.png||_mstalt="431054"]]
426
427
428 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
429
430
431 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
432
433 [[image:image-20220628151005-5.png||_mstalt="429546"]]
434
435
436 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
437
438 [[image:image-20220628151056-6.png||_mstalt="431873"]]
439
440
441 3) Within range
442
443 [[image:image-20220628151143-7.png||_mstalt="431210"]]
444
445
446
447 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
448
449 [[image:image-20230717151328-8.png]]
450
451 (% style="display:none" %) (%%)
452
453
454
455 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
456
457 [[image:image-20220906102307-7.png||_mstalt="430443"]]
458
459
460 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
461
462 The external cable NE2 can be use for MOD4 and MOD8
463
464
465
466 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
467
468
469
470 [[image:image-20230717151245-7.png]]
471
472 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
473
474 [[image:SHT31.png]]
475
476
477
478 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
479
480
481 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
482
483
484 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
485
486 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
487
488 In Open State, the power consumption is the same as if there is no probe
489
490 In Close state, the power consumption will be 3uA higher than normal.
491
492 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
493
494
495 Ext=4,Interrupt Sensor:
496
497 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
498 |(% style="width:101px" %)(((
499 **AT+EXT=4,1**
500 )))|(% style="width:395px" %)(((
501 **Sent uplink packet in both rising and falling interrupt**
502 )))
503 |(% style="width:101px" %)(((
504 **AT+EXT=4,2**
505 )))|(% style="width:395px" %)(((
506 **Sent uplink packet only in falling interrupt**
507 )))
508 |(% style="width:101px" %)(((
509 **AT+EXT=4,3**
510 )))|(% style="width:395px" %)(((
511 **Sent uplink packet only in rising interrupt**
512 )))
513
514 Trigger by falling edge:
515
516 [[image:image-20220906101145-2.png||_mstalt="428324"]]
517
518
519 Trigger by raising edge:
520
521 [[image:image-20220906101145-3.png||_mstalt="428688"]]
522
523
524
525 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
526
527
528 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
529
530
531 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
532
533 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
534
535
536 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
537
538 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
539
540
541 Ext=8, Counting Sensor ( 4 bytes):
542
543 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
544 |(% style="width:131px" %)(((
545 **AT+EXT=8,0**
546 )))|(% style="width:195px" %)(((
547 **Count at falling interrupt**
548 )))
549 |(% style="width:131px" %)(((
550 **AT+EXT=8,1**
551 )))|(% style="width:195px" %)(((
552 **Count at rising interrupt**
553 )))
554 |(% style="width:131px" %)(((
555 **AT+SETCNT=60**
556 )))|(% style="width:195px" %)(((
557 **Sent current count to 60**
558 )))
559
560 [[image:image-20220906101320-6.png||_mstalt="428064"]]
561
562
563 (% style="color:blue" %)**A2 downlink Command:**
564
565 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
566
567 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
568
569 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
570
571 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
572
573 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
574
575
576 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
577
578
579 (((
580 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
581 )))
582
583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
584 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
585 **Size(bytes)**
586 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
587 **2**
588 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
589 **2**
590 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
591 **2**
592 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
593 **1**
594 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
595 **4**
596 )))
597 |(% style="width:110px" %)(((
598 **Value**
599 )))|(% style="width:71px" %)(((
600 External temperature
601 )))|(% style="width:99px" %)(((
602 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
603 )))|(% style="width:132px" %)(((
604 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
605 )))|(% style="width:54px" %)(((
606 Status & Ext
607 )))|(% style="width:64px" %)(((
608 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
609 )))
610
611 * **Battery status & Built-in Humidity**
612
613 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
614 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
615 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
616 BAT Status
617 00(b): Ultra Low ( BAT <= 2.50v)
618 01(b): Low  (2.50v <=BAT <= 2.55v)
619 10(b): OK   (2.55v <= BAT <=2.65v)
620 11(b): Good   (BAT >= 2.65v)
621 )))|(% style="width:132px" %)(((
622 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
623 )))
624
625 * **Status & Ext Byte**
626
627 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
628 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
629 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
630
631 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
632 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
633 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
634
635
636 == 2.5 Show data on Datacake ==
637
638
639 (((
640 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
641 )))
642
643
644 (((
645 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
646 )))
647
648 (((
649 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
650 )))
651
652
653 (((
654 Add Datacake:
655 )))
656
657
658 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
659
660
661
662 Select default key as Access Key:
663
664
665 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
666
667
668 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
669
670
671 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
672
673
674 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
675
676
677 == 2.6 Datalog Feature ==
678
679
680 (((
681 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
682 )))
683
684
685 === 2.6.1 Ways to get datalog via LoRaWAN ===
686
687
688 There are two methods:
689
690 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
691
692
693 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
694
695
696 (% style="color:red" %)**Note for method 2:**
697
698 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
699 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
700
701 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
702
703
704 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
705
706
707 === 2.6.2 Unix TimeStamp ===
708
709
710 LHT65N uses Unix TimeStamp format based on
711
712
713 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
714
715
716
717 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
718
719 Below is the converter example
720
721 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
722
723
724 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
725
726
727 === 2.6.3 Set Device Time ===
728
729
730 (((
731 (% style="color:blue" %)**There are two ways to set device's time:**
732 )))
733
734 (((
735 **1.  Through LoRaWAN MAC Command (Default settings)**
736 )))
737
738 (((
739 User need to set SYNCMOD=1 to enable sync time via MAC command.
740 )))
741
742 (((
743 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
744 )))
745
746 (((
747 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
748 )))
749
750
751 (((
752 **2. Manually Set Time**
753 )))
754
755 (((
756 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
757 )))
758
759
760 === 2.6.4 Poll sensor value ===
761
762
763 User can poll sensor value based on timestamps from the server. Below is the downlink command.
764
765 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
766 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
767 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
768
769 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
770
771 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
772
773 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
774
775 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
776
777
778 === 2.6.5 Datalog Uplink payload ===
779
780
781 The Datalog poll reply uplink will use below payload format.
782
783 **Retrieval data payload:**
784
785 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
786 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
787 **Size(bytes)**
788 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
789 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
790
791 **Poll message flag & Ext:**
792
793 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
794
795 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
796
797 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
798
799 * Poll Message Flag is set to 1.
800
801 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
802
803 For example, in US915 band, the max payload for different DR is:
804
805 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
806
807 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
808
809 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
810
811 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
812
813 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
814
815
816 **Example:**
817
818 If LHT65N has below data inside Flash:
819
820 [[image:image-20230426171833-4.png]]
821
822
823 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
824
825 Where : Start time: 60065F97 = time 21/1/19 04:27:03
826
827 Stop time: 60066DA7= time 21/1/19 05:27:03
828
829
830 **LHT65N will uplink this payload.**
831
832 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
833
834
835 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
836
837 Where the first 11 bytes is for the first entry:
838
839 7FFF089801464160065F97
840
841 Ext sensor data=0x7FFF/100=327.67
842
843 Temp=0x088E/100=22.00
844
845 Hum=0x014B/10=32.6
846
847 poll message flag & Ext=0x41,means reply data,Ext=1
848
849 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
850
851
852 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
853
854
855 (((
856 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
857 )))
858
859 (((
860 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
861
862
863 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
864
865
866 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
867
868 (((
869 (% class="box infomessage" %)
870 (((
871 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
872
873 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
874
875 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
876
877 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
878
879 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
880
881 **AT+LEDALARM=1** :       Enable LED visual Alarm.
882 )))
883 )))
884
885 (% style="color:#4f81bd" %)**Downlink Command:**
886
887 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
888
889 AT+CITEMP=1 : A60001
890
891 AT+ARTEMP=1,60  :  A70001003C
892
893 AT+ARTEMP=-16,60 :  A7FFF0003C
894
895 AT+LEDALARM=1  :  3601
896
897
898 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
899
900 Total bytes: 8 bytes
901
902 **Example: **AA0100010001003C
903
904 WMOD=01
905
906 CITEMP=0001
907
908 TEMPlow=0001
909
910 TEMPhigh=003C
911
912
913 **DS18B20 and TMP117 Threshold Alarm**
914
915 **~ AT+WMOD=1,60,-10,20**
916
917 (% style="color:#4f81bd" %)**Downlink Command:**
918
919 **Example: **A5013CFC180014
920
921 MOD=01
922
923 CITEMP=3C(S)
924
925 TEMPlow=FC18
926
927 TEMPhigh=0014
928
929
930 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
931
932 **AT+WMOD=2,60,5** 
933
934 (% style="color:#4f81bd" %)**Downlink Command:**
935
936 **Example: **A5023C05
937
938 MOD=02
939
940 CITEMP=3C(S)
941
942 temperature fluctuation=05
943
944
945 **Sampling multiple times and uplink together**
946
947 **AT+WMOD=3,1,60,20,-16,32,1**   
948
949 Explain:
950
951 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
952 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
953 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
954 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
955 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
956 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
957
958 (% style="color:#4f81bd" %)**Downlink Command:**
959
960 **Example: **A50301003C14FFF0002001
961
962 MOD=03
963
964 TEMP=DS18B20
965
966 CITEMP=003C(S)
967
968 Total number of acquisitions=14
969
970 TEMPlow=FFF0
971
972 TEMPhigh=0020
973
974 ARTEMP=01
975
976
977 **Uplink payload( Fport=3)**
978
979 **Example: CBEA**01**0992**//0A41//**09C4**
980
981 BatV=CBEA
982
983 TEMP=DS18B20
984
985 Temp1=0992  ~/~/ 24.50℃
986
987 Temp2=0A41  ~/~/ 26.25℃
988
989 Temp3=09C4  ~/~/ 25.00℃
990
991 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
992
993 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
994 )))
995
996
997 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
998
999
1000 (% class="box infomessage" %)
1001 (((
1002 (((
1003 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1004 )))
1005
1006 (((
1007 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1008 )))
1009
1010 (((
1011 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1012 )))
1013
1014 (((
1015 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1016 )))
1017
1018 (((
1019 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1020 )))
1021 )))
1022
1023 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1024
1025 Total bytes: 8 bytes
1026
1027 **Example:**AA0100010001003C
1028
1029 WMOD=01
1030
1031 CITEMP=0001
1032
1033 TEMPlow=0001
1034
1035 TEMPhigh=003C
1036
1037
1038 == 2.8 LED Indicator ==
1039
1040
1041 The LHT65 has a triple color LED which for easy showing different stage .
1042
1043 While user press ACT button, the LED will work as per LED status with ACT button.
1044
1045 In a normal working state:
1046
1047 * For each uplink, the BLUE LED or RED LED will blink once.
1048 BLUE LED when external sensor is connected.
1049 * RED LED when external sensor is not connected
1050 * For each success downlink, the PURPLE LED will blink once
1051
1052
1053 == 2.9 installation ==
1054
1055
1056 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1057
1058
1059 = 3. Sensors and Accessories =
1060
1061 == 3.1 E2 Extension Cable ==
1062
1063
1064 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1065
1066
1067 **1m long breakout cable for LHT65N. Features:**
1068
1069 * (((
1070 Use for AT Command, works for both LHT52/LHT65N
1071 )))
1072 * (((
1073 Update firmware for LHT65N, works for both LHT52/LHT65N
1074 )))
1075 * (((
1076 Supports ADC mode to monitor external ADC
1077 )))
1078 * (((
1079 Supports Interrupt mode
1080 )))
1081 * (((
1082 Exposed All pins from the LHT65N Type-C connector.
1083
1084
1085
1086 )))
1087
1088 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1089
1090
1091 == 3.2 E3 Temperature Probe ==
1092
1093
1094 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1095
1096
1097 Temperature sensor with 2 meters cable long
1098
1099 * Resolution: 0.0625 °C
1100 * ±0.5°C accuracy from -10°C to +85°C
1101 * ±2°C accuracy from -55°C to +125°C
1102 * Operating Range: -40 ~~ 125 °C
1103 * Working voltage 2.35v ~~ 5v
1104
1105 == 3.3 E31F Temperature Probe ==
1106
1107
1108 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1109
1110
1111 Temperature sensor with 1 meters cable long
1112
1113
1114 **Built-in Temperature Sensor:**
1115
1116 * Resolution: 0.01 °C
1117 * Accuracy Tolerance : Typ ±0.3 °C
1118 * Long Term Drift: < 0.02 °C/yr
1119 * Operating Range: -40 ~~ 80 °C
1120
1121 **Built-in Humidity Sensor:**
1122
1123 * Resolution: 0.04 % RH
1124 * Accuracy Tolerance : Typ ±3 % RH
1125 * Long Term Drift: < 0.02 °C/yr
1126 * Operating Range: 0 ~~ 96 % RH
1127
1128 **External Temperature Sensor :**
1129
1130 * Resolution: 0.01 °C
1131 * Accuracy Tolerance : Typical ±0.3 °C
1132 * Long Term Drift: < 0.02 °C/yr
1133 * Operating Range: -40 ~~ 125 °C
1134
1135 **External Humidity Sensor :**
1136
1137 * Resolution: 0.04 % RH
1138 * Accuracy Tolerance : Typ ±3 % RH
1139 * Long Term Drift: < 0.02 °C/yr
1140 * Operating Range: 0 ~~ 96 % RH
1141
1142
1143 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1144
1145
1146 (((
1147 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1148 )))
1149
1150 * (((
1151 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1152 )))
1153
1154 * (((
1155 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1156 )))
1157
1158 (((
1159 There are two kinds of commands to configure LHT65N, they are:
1160 )))
1161
1162 * (((
1163 (% style="color:#4f81bd" %)**General Commands**.
1164 )))
1165
1166 (((
1167 These commands are to configure:
1168 )))
1169
1170 1. (((
1171 General system settings like: uplink interval.
1172 )))
1173 1. (((
1174 LoRaWAN protocol & radio-related commands.
1175 )))
1176
1177 (((
1178 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1179 )))
1180
1181 * (((
1182 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1183 )))
1184
1185 (((
1186 These commands are only valid for LHT65N, as below:
1187 )))
1188
1189
1190 == 4.1 Set Transmit Interval Time ==
1191
1192
1193 Feature: Change LoRaWAN End Node Transmit Interval.
1194
1195
1196 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1197
1198 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1199 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1200 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1201 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1202
1203 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1204
1205 Format: Command Code (0x01) followed by 3 bytes time value.
1206
1207 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1208
1209 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1210
1211 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1212
1213
1214 == 4.2 Set External Sensor Mode ==
1215
1216
1217 Feature: Change External Sensor Mode.
1218
1219 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1220
1221 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1222 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1223 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1224 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1225 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1226
1227 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1228
1229 Total bytes: 2 ~~ 5 bytes
1230
1231 **Example:**
1232
1233 * 0xA201: Set external sensor type to E1
1234
1235 * 0xA209: Same as AT+EXT=9
1236
1237 * 0xA20702003c: Same as AT+SETCNT=60
1238
1239
1240 == 4.3 Enable/Disable uplink Temperature probe ID ==
1241
1242
1243 (((
1244 Feature: If PID is enabled, device will send the temperature probe ID on:
1245 )))
1246
1247 * (((
1248 First Packet after OTAA Join
1249 )))
1250 * (((
1251 Every 24 hours since the first packet.
1252 )))
1253
1254 (((
1255 PID is default set to disable (0)
1256
1257
1258 )))
1259
1260 (% style="color:#4f81bd" %)**AT Command:**
1261
1262 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1263 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1264 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1265
1266 (% style="color:#4f81bd" %)**Downlink Command:**
1267
1268 * **0xA800**  **~-~->** AT+PID=0
1269 * **0xA801**     **~-~->** AT+PID=1
1270
1271
1272 == 4.4 Set Password ==
1273
1274
1275 Feature: Set device password, max 9 digits
1276
1277 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1278
1279 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1280 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1281 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1282 123456
1283
1284 OK
1285 )))
1286 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1287
1288 (% style="color:#4f81bd" %)**Downlink Command:**
1289
1290 No downlink command for this feature.
1291
1292
1293 == 4.5 Quit AT Command ==
1294
1295
1296 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1297
1298 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1299
1300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1301 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1302 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1303
1304 (% style="color:#4f81bd" %)**Downlink Command:**
1305
1306 No downlink command for this feature.
1307
1308
1309 == 4.6 Set to sleep mode ==
1310
1311
1312 Feature: Set device to sleep mode
1313
1314 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1315 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1316
1317 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1318
1319 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1320 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1321 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1322 Clear all stored sensor data…
1323
1324 OK
1325 )))
1326
1327 (% style="color:#4f81bd" %)**Downlink Command:**
1328
1329 * There is no downlink command to set to Sleep mode.
1330
1331
1332 == 4.7 Set system time ==
1333
1334
1335 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1336
1337 (% style="color:#4f81bd" %)**AT Command:**
1338
1339 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1340 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1341 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1342 OK
1343
1344 Set System time to 2021-01-20 00:59:12
1345 )))
1346
1347 (% style="color:#4f81bd" %)**Downlink Command:**
1348
1349 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1350
1351
1352 == 4.8 Set Time Sync Mode ==
1353
1354
1355 (((
1356 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1357 )))
1358
1359 (((
1360 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1361 )))
1362
1363 (% style="color:#4f81bd" %)**AT Command:**
1364
1365 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1366 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1367 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1368
1369 (% style="color:#4f81bd" %)**Downlink Command:**
1370
1371 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1372 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1373
1374
1375 == 4.9 Set Time Sync Interval ==
1376
1377
1378 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1379
1380 (% style="color:#4f81bd" %)**AT Command:**
1381
1382 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1383 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1384 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1385
1386 (% style="color:#4f81bd" %)**Downlink Command:**
1387
1388 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1389
1390
1391 == 4.10 Print data entries base on page. ==
1392
1393
1394 Feature: Print the sector data from start page to stop page (max is 416 pages).
1395
1396 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1397
1398 [[image:image-20230426164330-2.png]]
1399
1400 (% style="color:#4f81bd" %)**Downlink Command:**
1401
1402 No downlink commands for feature
1403
1404
1405 == 4.11 Print last few data entries. ==
1406
1407
1408 Feature: Print the last few data entries
1409
1410 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1411
1412 [[image:image-20230426164932-3.png]]
1413
1414 (% style="color:#4f81bd" %)**Downlink Command:**
1415
1416 No downlink commands for feature
1417
1418
1419 == 4.12 Clear Flash Record ==
1420
1421
1422 Feature: Clear flash storage for data log feature.
1423
1424 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1425
1426 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1427 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1428 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1429 Clear all stored sensor data…
1430
1431 OK
1432 )))
1433
1434 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1435
1436 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1437
1438
1439 == 4.13 Auto Send None-ACK messages ==
1440
1441
1442 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1443
1444 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1445
1446 The default factory setting is 0
1447
1448 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1449 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1450 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1451
1452 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1453
1454 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1455
1456
1457 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1458
1459
1460 Feature: Set internal and external temperature sensor alarms.
1461
1462 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1463 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1464 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1465
1466 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1467
1468 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1469
1470 0): Cancel
1471
1472 1): Threshold alarm
1473
1474 2): Fluctuation alarm
1475
1476
1477 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1478
1479 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1480
1481
1482 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1483
1484 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1485
1486 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1487
1488
1489 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1490
1491 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1492
1493 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1494
1495
1496 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1497
1498 0xA5 00 ~-~- AT+WMOD=0.
1499
1500 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1501
1502 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1503
1504 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1505
1506 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1507
1508
1509 = 5. Battery & How to replace =
1510
1511 == 5.1 Battery Type ==
1512
1513
1514 (((
1515 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1516 )))
1517
1518 (((
1519 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1520
1521
1522 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1523 )))
1524
1525 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1526
1527
1528 == 5.2 Replace Battery ==
1529
1530
1531 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1532
1533 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1534
1535
1536 == 5.3 Battery Life Analyze ==
1537
1538
1539 (((
1540 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1541 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1542 )))
1543
1544
1545 (((
1546 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1547 )))
1548
1549
1550 = 6. FAQ =
1551
1552 == 6.1 How to use AT Command? ==
1553
1554
1555 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1556
1557 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1558
1559
1560 **Connection:**
1561
1562 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1563 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1564 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1565
1566 (((
1567 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1568
1569 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1570 )))
1571
1572
1573 Input password and ATZ to activate LHT65N,As shown below:
1574
1575 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1576
1577
1578 AT Command List is as below:
1579
1580 AT+<CMD>? :  Help on <CMD>
1581
1582 AT+<CMD> :  Run <CMD>
1583
1584 AT+<CMD>=<value> :  Set the value
1585
1586 AT+<CMD>=? :  Get the value
1587
1588 AT+DEBUG:  Set more info output
1589
1590 ATZ:  Trig a reset of the MCU
1591
1592 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1593
1594 AT+DEUI:  Get or Set the Device EUI
1595
1596 AT+DADDR:  Get or Set the Device Address
1597
1598 AT+APPKEY:  Get or Set the Application Key
1599
1600 AT+NWKSKEY:  Get or Set the Network Session Key
1601
1602 AT+APPSKEY:  Get or Set the Application Session Key
1603
1604 AT+APPEUI:  Get or Set the Application EUI
1605
1606 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1607
1608 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1609
1610 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1611
1612 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1613
1614 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1615
1616 AT+RX2FQ:  Get or Set the Rx2 window frequency
1617
1618 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1619
1620 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1621
1622 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1623
1624 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1625
1626 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1627
1628 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1629
1630 AT+NWKID:  Get or Set the Network ID
1631
1632 AT+FCU:  Get or Set the Frame Counter Uplink
1633
1634 AT+FCD:  Get or Set the Frame Counter Downlink
1635
1636 AT+CLASS:  Get or Set the Device Class
1637
1638 AT+JOIN:  Join network
1639
1640 AT+NJS:  Get the join status
1641
1642 AT+SENDB:  Send hexadecimal data along with the application port
1643
1644 AT+SEND:  Send text data along with the application port
1645
1646 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1647
1648 AT+RECV:  Print last received data in raw format
1649
1650 AT+VER:  Get current image version and Frequency Band
1651
1652 AT+CFM:  Get or Set the confirmation mode (0-1)
1653
1654 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1655
1656 AT+SNR:  Get the SNR of the last received packet
1657
1658 AT+RSSI:  Get the RSSI of the last received packet
1659
1660 AT+TDC:  Get or set the application data transmission interval in ms
1661
1662 AT+PORT:  Get or set the application port
1663
1664 AT+DISAT:  Disable AT commands
1665
1666 AT+PWORD: Set password, max 9 digits
1667
1668 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1669
1670 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1671
1672 AT+PDTA:  Print the sector data from start page to stop page
1673
1674 AT+PLDTA:  Print the last few sets of data
1675
1676 AT+CLRDTA:  Clear the storage, record position back to 1st
1677
1678 AT+SLEEP:  Set sleep mode
1679
1680 AT+EXT:  Get or Set external sensor model
1681
1682 AT+BAT:  Get the current battery voltage in mV
1683
1684 AT+CFG:  Print all configurations
1685
1686 AT+WMOD:  Get or Set Work Mode
1687
1688 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1689
1690 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1691
1692 AT+SETCNT:  Set the count at present
1693
1694 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1695
1696 AT+RPL:  Get or set response level
1697
1698 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1699
1700 AT+LEAPSEC:  Get or Set Leap Second
1701
1702 AT+SYNCMOD:  Get or Set time synchronization method
1703
1704 AT+SYNCTDC:  Get or set time synchronization interval in day
1705
1706 AT+PID:  Get or set the PID
1707
1708
1709 == 6.2 Where to use AT commands and Downlink commands ==
1710
1711
1712 **AT commands: **
1713
1714 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1715
1716
1717 **Downlink commands:**
1718
1719
1720 (% style="color:blue" %)**TTN:**
1721
1722 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1723
1724
1725
1726 (% style="color:blue" %)**Helium: **
1727
1728 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1729
1730
1731
1732 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1733
1734
1735 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1736
1737
1738 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1739
1740
1741
1742 (% style="color:blue" %)**Aws:**
1743
1744 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1745
1746
1747 == 6.3 How to change the uplink interval? ==
1748
1749
1750 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1751
1752
1753 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1754
1755
1756 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1757
1758 [[image:1655802313617-381.png||_mstalt="293917"]]
1759
1760
1761 (((
1762 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1763 )))
1764
1765
1766 Input password and ATZ to activate LHT65N, As shown below:
1767
1768 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1769
1770
1771 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1772
1773
1774 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1775
1776
1777 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1778
1779 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1780
1781
1782
1783 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1784
1785 First connect the four lines;(% style="display:none" %)
1786
1787 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1788
1789
1790 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1791
1792 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1793
1794
1795
1796 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1797
1798 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1799
1800
1801 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1802
1803
1804 When this interface appears, it indicates that the download has been completed.
1805
1806 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1807
1808
1809 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1810
1811
1812 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1813
1814
1815 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1816
1817
1818 **UART Port of LHT65N:**
1819
1820 * (% class="mark" %)**PB0: RXD**
1821 * (% class="mark" %)**PB1: TXD**
1822 * (% class="mark" %)**GND**
1823
1824 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1825
1826
1827 (((
1828 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1829 )))
1830
1831
1832 Input password and ATZ to activate LHT65N,As shown below:
1833
1834 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1835
1836
1837 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1838
1839
1840 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1841
1842
1843 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1844
1845 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1846
1847
1848
1849 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1850
1851 First connect the four lines;
1852
1853 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1854
1855 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1856
1857
1858
1859 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1860
1861 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1862
1863
1864 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1865
1866
1867 When this interface appears, it indicates that the download has been completed.
1868
1869 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1870
1871
1872 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1873
1874
1875 == 6.8 Why can't I see the datalog information ==
1876
1877
1878 ~1. The time is not aligned, and the correct query command is not used.
1879
1880 2. Decoder error, did not parse the datalog data, the data was filtered.
1881
1882
1883 = 7. Order Info =
1884
1885
1886 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1887
1888 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1889
1890 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1891 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1892 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1893 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1894 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1895 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1896 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1897 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1898
1899 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1900
1901 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1902
1903
1904 = 8. Packing Info =
1905
1906
1907 **Package Includes**:
1908
1909 * LHT65N Temperature & Humidity Sensor x 1
1910 * Optional external sensor
1911
1912 **Dimension and weight**:
1913
1914 * Device Size:  10 x 10 x 3.5 mm
1915 * Device Weight: 120.5g
1916
1917
1918 = 9. Reference material =
1919
1920
1921 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1922
1923
1924 = 10. FCC Warning =
1925
1926
1927 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1928
1929 (1) This device may not cause harmful interference;
1930
1931 (2) this device must accept any interference received, including interference that may cause undesired operation.