Version 261.15 by Xiaoling on 2023/07/17 18:07

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 O modo Timestamp é projetado para LHT65N com sonda E3, ele enviará a carga útil de uplink com timestamp Unix. Com a limitação de 11 bytes (distância máxima da banda AU915/US915/AS923), o modo de carimbo de hora será falta de campo de tensão BAT, em vez disso, ele mostra o status da bateria. A carga útil é a seguinte:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)Valor|(% style="width:71px" %)Temperatura externa|(% style="width:99px" %)(((
351 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
352 )))|(% style="width:132px" %)(((
353 Estado MTD & [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
354 )))|(% style="width:54px" %)Estado & Ext|(% style="width:64px" %)(((
355 [[Carimbo Horário do Unix>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Status da bateria e umidade interna**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 269px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[15:14]|=(% style="width: 121px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[11:0]
362 |(% style="width:67px" %)Valor|(% style="width:269px" %)Estado MTD
363 00 b): Ultra baixo ( MTD <= 2,50v)
364 01 b): Baixo (2,50v <=MTD <= 2,55v)
365 10 b): OK (2,55v <= MTD <=2,65v)
366 11 b): Bom (MTD >= 2,65v)|(% style="width:121px" %)(((
367 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
368 )))
369
370 * ** Status e byte externo**
371
372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
373 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
374 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)Sinalizador Nenhum-ACK|(% style="width:146px" %)Mensagem de Enquete FLAG|(% style="width:109px" %)Sincronizar hora OK|(% style="width:143px" %)Solicitação de Horário Unix |(% style="width:106px" %)Ext: 0b(1001)
375
376
377 * **Bandeira da mensagem da enquete:  **1: Esta mensagem é uma resposta da mensagem da enquete, 0: significa que esta é uma ligação uplink normal.
378 * **Tempo de sincronização OK:  **1: Definir tempo ok, 0: N/A. Após o envio da solicitação SYNC, LHT65N definirá este bit como 0 até obter o carimbo de hora do servidor de aplicativos.
379 * **Unix Time Request:  **1: Request server downlink Unix time, 0: N/A. Neste modo, o LHT65N definirá este bit para 1 a cada 10 dias para solicitar um tempo SYNC. (AT+SYNCMOD para definir isto)
380
381
382
383
384 ==== 2.4.6.3 Ext~=6, Sensor ADC (use com cabo E2) ====
385
386
387 Neste modo, o usuário pode conectar sensor ADC externo para verificar o valor ADC. O 3V3_OUT pode ser usado para alimentar o sensor ADC externo; o usuário pode controlar o poder no tempo para isso.
388
389 (% style="color:blue" %)**sensor configurando:**
390
391 **AT+EXT=6, **timeout Tempo para ligar este sensor, de 0 ~~ 65535ms
392
393 **Por exemplo:**
394
395 AT+EXT=6.1000 alimentará este sensor por 1000ms antes de amostrar o valor ADC.
396
397
398 Ou use o comando downlink A2 para definir o mesmo.
399 A faixa de medição do nó é de apenas cerca de 0.1V a 1.1V A resolução da tensão é de cerca de 0.24mv.
400 Quando a tensão de saída medida do sensor não está dentro da faixa de 0,1V e 1,1V, o terminal de tensão de saída do sensor deve ser dividido O exemplo na figura a seguir é reduzir a tensão de saída do sensor por três vezes Se for necessário reduzir mais vezes, calcule de acordo com a fórmula na figura e conecte a resistência correspondente em série.
401
402 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
403
404
405 Quando o pino ADC_IN1 é conectado ao GND ou suspenso, o valor de ADC é 0
406
407 [[image:image-20220628150714-4.png||_mstalt="431054"]]
408
409
410 Quando a tensão coletada por ADC_IN1 for menor do que a faixa mínima, a faixa mínima será usada como saída; Da mesma forma, quando a tensão coletada é maior do que a faixa máxima, a faixa máxima será usada como saída.
411
412
413 1) A faixa mínima é de cerca de 0.1V. Cada chip tem calibração interna, assim que este valor está perto de 0.1V
414
415 [[image:image-20220628151005-5.png||_mstalt="429546"]]
416
417
418 2) A faixa máxima é de cerca de 1.1V. Cada chip tem calibração interna, assim que este valor está perto de 1.1v
419
420 [[image:image-20220628151056-6.png||_mstalt="431873"]]
421
422
423 3) Dentro do alcance
424
425 [[image:image-20220628151143-7.png||_mstalt="431210"]]
426
427
428
429 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (desde Firmware v1.3)(% style="display:none" %) (%%) ====
430
431 [[image:image-20230717151328-8.png]]
432
433 (% style="display:none" %) (%%)
434
435
436
437 (% style="color:blue" %)**Ext=2, Sensor de temperatura (TMP117):**
438
439 [[image:image-20220906102307-7.png||_mstalt="430443"]]
440
441
442 (% style="color:blue" %)**Modo de Interrupção e Modo de Contagem:**(% style="color:blue; display:none" %)** **
443
444 O cabo externo NE2 pode ser usado para MOD4 e MOD8
445
446
447
448 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (desde Firmware v1.4.1) ====
449
450
451
452 [[image:image-20230717151245-7.png]]
453
454 (% style="color:blue" %)**Ext=11, sensor de temperatura e umidade (SHT31):**
455
456 [[image:SHT31.png]]
457
458
459
460 ==== 2.4.6.6 Ext~=4 Interrupt Mode (Desde Firmware v1.3) ====
461
462
463 (% style="color:red" %)**Nota: Neste modo, a saída de 3.3v estará sempre ligada. LHT65N enviará um uplink quando houver um gatilho.**
464
465
466 (% style="color:blue" %)**O modo de interrupção pode ser usado para conectar-se a sensores externos de interrupção, tais como:**
467
468 (% style="color:#037691" %)**Caso 1: sensor de porta.** (%%)3.3v Out para tal sensor é apenas detectar Abrir / Fechar.
469
470 No estado aberto, o consumo de energia é o mesmo que se não houver nenhuma sonda
471
472 No estado Close, o consumo de energia será 3uA maior do que o normal.
473
474 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
475
476
477 Ext=4, Sensor de Interrupção:
478
479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
480 |(% style="width:101px" %)(((
481 **AT+EXT=4,1**
482 )))|(% style="width:421px" %)Pacote de uplink enviado na interrupção ascendente e caindo
483 |(% style="width:101px" %)(((
484 **AT+EXT=4,2**
485 )))|(% style="width:421px" %)Enviou um pacote de ligação ascendente apenas na interrupção em queda
486 |(% style="width:101px" %)(((
487 **AT+EXT=4,3**
488 )))|(% style="width:421px" %)Enviou o pacote de uplink apenas na interrupção crescente
489
490 Acionador pela borda de queda:
491
492 [[image:image-20220906101145-2.png||_mstalt="428324"]]
493
494
495 Trigger by raise edge:
496
497 [[image:image-20220906101145-3.png||_mstalt="428688"]]
498
499
500
501 ==== 2.4.6.7 Ext~=8 Modo de contagem (desde Firmware v1.3) ====
502
503
504 (% style="color:red" %)**Nota: Neste modo, a saída de 3,3 V estará sempre ligada. O LHT65N contará para cada interrupção e uplink periodicamente.**
505
506
507 (% style="color:blue" %)**Caso 1: **Sensor de fluxo de baixo consumo de energia, esse sensor de fluxo tem saída de pulso e o consumo de energia no nível uA e pode ser alimentado por LHT65N.
508
509 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
510
511
512 (% style="color:blue" %)**Caso 2: **Sensor de Fluxo Normal: Este sensor de fluxo tem maior consumo de energia e não é adequado para ser alimentado por LHT65N. É alimentado por energia externa e saída <3,3 v pulso
513
514 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
515
516
517 Ext=8, Counting Sensor ( 4 bytes):
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:407px" %)
520 |(% style="width:131px" %)(((
521 **AT+EXT=8,0**
522 )))|(% style="width:271px" %)Contagem na interrupção de queda
523 |(% style="width:131px" %)(((
524 **AT+EXT=8,1**
525 )))|(% style="width:271px" %)Contagem na interrupção ascendente
526 |(% style="width:131px" %)(((
527 **AT+SETCNT=60**
528 )))|(% style="width:271px" %)Enviou a contagem atual para 60
529
530 [[image:image-20220906101320-6.png||_mstalt="428064"]]
531
532
533 (% style="color:blue" %)**Comando de ligação descendente A2:**
534
535 A2 02: O mesmo que AT+EXT=2 (AT+EXT= segundo byte)
536
537 A2 06 01 F4: O mesmo que AT+EXT=6.500 (AT+EXT= segundo byte, terceiro e quarto bytes)
538
539 A2 04 02: O mesmo que AT+EXT=4,2 (AT+EXT= segundo byte, terceiro byte)
540
541 A2 08 01 00: O mesmo que AT+EXT=8,0 (AT+EXT= segundo byte, quarto byte)
542
543 A2 08 02 00 00 00 3C: O mesmo que AT+ SETCNT=60 (AT+ SETCNT = 4º byte e 5º byte e 6º byte e 7º byte)
544
545
546 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
547
548
549 (((
550 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
551 )))
552
553 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
554 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
555 **Size(bytes)**
556 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
557 **2**
558 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
559 **2**
560 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
561 **2**
562 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
563 **1**
564 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
565 **4**
566 )))
567 |(% style="width:110px" %)(((
568 **Value**
569 )))|(% style="width:71px" %)(((
570 External temperature
571 )))|(% style="width:99px" %)(((
572 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
573 )))|(% style="width:132px" %)(((
574 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
575 )))|(% style="width:54px" %)(((
576 Status & Ext
577 )))|(% style="width:64px" %)(((
578 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
579 )))
580
581 * **Battery status & Built-in Humidity**
582
583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
584 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
585 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
586 BAT Status
587 00(b): Ultra Low ( BAT <= 2.50v)
588 01(b): Low  (2.50v <=BAT <= 2.55v)
589 10(b): OK   (2.55v <= BAT <=2.65v)
590 11(b): Good   (BAT >= 2.65v)
591 )))|(% style="width:132px" %)(((
592 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
593 )))
594
595 * **Status & Ext Byte**
596
597 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
598 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
599 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
600
601 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
602 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
603 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
604
605
606 == 2.5 Show data on Datacake ==
607
608
609 (((
610 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
611 )))
612
613
614 (((
615 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
616 )))
617
618 (((
619 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
620 )))
621
622
623 (((
624 Add Datacake:
625 )))
626
627
628 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
629
630
631
632 Select default key as Access Key:
633
634
635 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
636
637
638 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
639
640
641 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
642
643
644 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
645
646
647 == 2.6 Datalog Feature ==
648
649
650 (((
651 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
652 )))
653
654
655 === 2.6.1 Ways to get datalog via LoRaWAN ===
656
657
658 There are two methods:
659
660 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
661
662
663 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
664
665
666 (% style="color:red" %)**Note for method 2:**
667
668 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
669 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
670
671 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
672
673
674 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
675
676
677 === 2.6.2 Unix TimeStamp ===
678
679
680 LHT65N uses Unix TimeStamp format based on
681
682
683 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
684
685
686
687 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
688
689 Below is the converter example
690
691 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
692
693
694 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
695
696
697 === 2.6.3 Set Device Time ===
698
699
700 (((
701 (% style="color:blue" %)**There are two ways to set device's time:**
702 )))
703
704 (((
705 **1.  Through LoRaWAN MAC Command (Default settings)**
706 )))
707
708 (((
709 User need to set SYNCMOD=1 to enable sync time via MAC command.
710 )))
711
712 (((
713 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
714 )))
715
716 (((
717 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
718 )))
719
720
721 (((
722 **2. Manually Set Time**
723 )))
724
725 (((
726 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
727 )))
728
729
730 === 2.6.4 Poll sensor value ===
731
732
733 User can poll sensor value based on timestamps from the server. Below is the downlink command.
734
735 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
736 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
737 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
738
739 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
740
741 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
742
743 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
744
745 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
746
747
748 === 2.6.5 Datalog Uplink payload ===
749
750
751 The Datalog poll reply uplink will use below payload format.
752
753 **Retrieval data payload:**
754
755 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
756 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
757 **Size(bytes)**
758 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
759 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
760
761 **Poll message flag & Ext:**
762
763 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
764
765 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
766
767 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
768
769 * Poll Message Flag is set to 1.
770
771 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
772
773 For example, in US915 band, the max payload for different DR is:
774
775 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
776
777 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
778
779 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
780
781 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
782
783 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
784
785
786 **Example:**
787
788 If LHT65N has below data inside Flash:
789
790 [[image:image-20230426171833-4.png]]
791
792
793 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
794
795 Where : Start time: 60065F97 = time 21/1/19 04:27:03
796
797 Stop time: 60066DA7= time 21/1/19 05:27:03
798
799
800 **LHT65N will uplink this payload.**
801
802 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
803
804
805 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
806
807 Where the first 11 bytes is for the first entry:
808
809 7FFF089801464160065F97
810
811 Ext sensor data=0x7FFF/100=327.67
812
813 Temp=0x088E/100=22.00
814
815 Hum=0x014B/10=32.6
816
817 poll message flag & Ext=0x41,means reply data,Ext=1
818
819 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
820
821
822 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
823
824
825 (((
826 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
827 )))
828
829 (((
830 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
831
832
833 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
834
835
836 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
837
838 (((
839 (% class="box infomessage" %)
840 (((
841 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
842
843 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
844
845 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
846
847 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
848
849 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
850
851 **AT+LEDALARM=1** :       Enable LED visual Alarm.
852 )))
853 )))
854
855 (% style="color:#4f81bd" %)**Downlink Command:**
856
857 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
858
859 AT+CITEMP=1 : A60001
860
861 AT+ARTEMP=1,60  :  A70001003C
862
863 AT+ARTEMP=-16,60 :  A7FFF0003C
864
865 AT+LEDALARM=1  :  3601
866
867
868 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
869
870 Total bytes: 8 bytes
871
872 **Example: **AA0100010001003C
873
874 WMOD=01
875
876 CITEMP=0001
877
878 TEMPlow=0001
879
880 TEMPhigh=003C
881
882
883 **DS18B20 and TMP117 Threshold Alarm**
884
885 **~ AT+WMOD=1,60,-10,20**
886
887 (% style="color:#4f81bd" %)**Downlink Command:**
888
889 **Example: **A5013CFC180014
890
891 MOD=01
892
893 CITEMP=3C(S)
894
895 TEMPlow=FC18
896
897 TEMPhigh=0014
898
899
900 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
901
902 **AT+WMOD=2,60,5** 
903
904 (% style="color:#4f81bd" %)**Downlink Command:**
905
906 **Example: **A5023C05
907
908 MOD=02
909
910 CITEMP=3C(S)
911
912 temperature fluctuation=05
913
914
915 **Sampling multiple times and uplink together**
916
917 **AT+WMOD=3,1,60,20,-16,32,1**   
918
919 Explain:
920
921 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
922 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
923 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
924 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
925 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
926 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
927
928 (% style="color:#4f81bd" %)**Downlink Command:**
929
930 **Example: **A50301003C14FFF0002001
931
932 MOD=03
933
934 TEMP=DS18B20
935
936 CITEMP=003C(S)
937
938 Total number of acquisitions=14
939
940 TEMPlow=FFF0
941
942 TEMPhigh=0020
943
944 ARTEMP=01
945
946
947 **Uplink payload( Fport=3)**
948
949 **Example: CBEA**01**0992**//0A41//**09C4**
950
951 BatV=CBEA
952
953 TEMP=DS18B20
954
955 Temp1=0992  ~/~/ 24.50℃
956
957 Temp2=0A41  ~/~/ 26.25℃
958
959 Temp3=09C4  ~/~/ 25.00℃
960
961 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
962
963 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
964 )))
965
966
967 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
968
969
970 (% class="box infomessage" %)
971 (((
972 (((
973 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
974 )))
975
976 (((
977 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
978 )))
979
980 (((
981 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
982 )))
983
984 (((
985 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
986 )))
987
988 (((
989 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
990 )))
991 )))
992
993 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
994
995 Total bytes: 8 bytes
996
997 **Example:**AA0100010001003C
998
999 WMOD=01
1000
1001 CITEMP=0001
1002
1003 TEMPlow=0001
1004
1005 TEMPhigh=003C
1006
1007
1008 == 2.8 LED Indicator ==
1009
1010
1011 The LHT65 has a triple color LED which for easy showing different stage .
1012
1013 While user press ACT button, the LED will work as per LED status with ACT button.
1014
1015 In a normal working state:
1016
1017 * For each uplink, the BLUE LED or RED LED will blink once.
1018 BLUE LED when external sensor is connected.
1019 * RED LED when external sensor is not connected
1020 * For each success downlink, the PURPLE LED will blink once
1021
1022
1023 == 2.9 installation ==
1024
1025
1026 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1027
1028
1029 = 3. Sensors and Accessories =
1030
1031 == 3.1 E2 Extension Cable ==
1032
1033
1034 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1035
1036
1037 **1m long breakout cable for LHT65N. Features:**
1038
1039 * (((
1040 Use for AT Command, works for both LHT52/LHT65N
1041 )))
1042 * (((
1043 Update firmware for LHT65N, works for both LHT52/LHT65N
1044 )))
1045 * (((
1046 Supports ADC mode to monitor external ADC
1047 )))
1048 * (((
1049 Supports Interrupt mode
1050 )))
1051 * (((
1052 Exposed All pins from the LHT65N Type-C connector.
1053
1054
1055
1056 )))
1057
1058 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1059
1060
1061 == 3.2 E3 Temperature Probe ==
1062
1063
1064 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1065
1066
1067 Temperature sensor with 2 meters cable long
1068
1069 * Resolution: 0.0625 °C
1070 * ±0.5°C accuracy from -10°C to +85°C
1071 * ±2°C accuracy from -55°C to +125°C
1072 * Operating Range: -40 ~~ 125 °C
1073 * Working voltage 2.35v ~~ 5v
1074
1075 == 3.3 E31F Temperature Probe ==
1076
1077
1078 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1079
1080
1081 Temperature sensor with 1 meters cable long
1082
1083
1084 **Built-in Temperature Sensor:**
1085
1086 * Resolution: 0.01 °C
1087 * Accuracy Tolerance : Typ ±0.3 °C
1088 * Long Term Drift: < 0.02 °C/yr
1089 * Operating Range: -40 ~~ 80 °C
1090
1091 **Built-in Humidity Sensor:**
1092
1093 * Resolution: 0.04 % RH
1094 * Accuracy Tolerance : Typ ±3 % RH
1095 * Long Term Drift: < 0.02 °C/yr
1096 * Operating Range: 0 ~~ 96 % RH
1097
1098 **External Temperature Sensor :**
1099
1100 * Resolution: 0.01 °C
1101 * Accuracy Tolerance : Typical ±0.3 °C
1102 * Long Term Drift: < 0.02 °C/yr
1103 * Operating Range: -40 ~~ 125 °C
1104
1105 **External Humidity Sensor :**
1106
1107 * Resolution: 0.04 % RH
1108 * Accuracy Tolerance : Typ ±3 % RH
1109 * Long Term Drift: < 0.02 °C/yr
1110 * Operating Range: 0 ~~ 96 % RH
1111
1112
1113 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1114
1115
1116 (((
1117 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1118 )))
1119
1120 * (((
1121 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1122 )))
1123
1124 * (((
1125 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1126 )))
1127
1128 (((
1129 There are two kinds of commands to configure LHT65N, they are:
1130 )))
1131
1132 * (((
1133 (% style="color:#4f81bd" %)**General Commands**.
1134 )))
1135
1136 (((
1137 These commands are to configure:
1138 )))
1139
1140 1. (((
1141 General system settings like: uplink interval.
1142 )))
1143 1. (((
1144 LoRaWAN protocol & radio-related commands.
1145 )))
1146
1147 (((
1148 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1149 )))
1150
1151 * (((
1152 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1153 )))
1154
1155 (((
1156 These commands are only valid for LHT65N, as below:
1157 )))
1158
1159
1160 == 4.1 Set Transmit Interval Time ==
1161
1162
1163 Feature: Change LoRaWAN End Node Transmit Interval.
1164
1165
1166 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1167
1168 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1169 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1170 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1171 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1172
1173 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1174
1175 Format: Command Code (0x01) followed by 3 bytes time value.
1176
1177 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1178
1179 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1180
1181 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1182
1183
1184 == 4.2 Set External Sensor Mode ==
1185
1186
1187 Feature: Change External Sensor Mode.
1188
1189 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1190
1191 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1192 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1193 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1194 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1195 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1196
1197 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1198
1199 Total bytes: 2 ~~ 5 bytes
1200
1201 **Example:**
1202
1203 * 0xA201: Set external sensor type to E1
1204
1205 * 0xA209: Same as AT+EXT=9
1206
1207 * 0xA20702003c: Same as AT+SETCNT=60
1208
1209
1210 == 4.3 Enable/Disable uplink Temperature probe ID ==
1211
1212
1213 (((
1214 Feature: If PID is enabled, device will send the temperature probe ID on:
1215 )))
1216
1217 * (((
1218 First Packet after OTAA Join
1219 )))
1220 * (((
1221 Every 24 hours since the first packet.
1222 )))
1223
1224 (((
1225 PID is default set to disable (0)
1226
1227
1228 )))
1229
1230 (% style="color:#4f81bd" %)**AT Command:**
1231
1232 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1233 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1234 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1235
1236 (% style="color:#4f81bd" %)**Downlink Command:**
1237
1238 * **0xA800**  **~-~->** AT+PID=0
1239 * **0xA801**     **~-~->** AT+PID=1
1240
1241
1242 == 4.4 Set Password ==
1243
1244
1245 Feature: Set device password, max 9 digits
1246
1247 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1248
1249 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1250 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1251 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1252 123456
1253
1254 OK
1255 )))
1256 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1257
1258 (% style="color:#4f81bd" %)**Downlink Command:**
1259
1260 No downlink command for this feature.
1261
1262
1263 == 4.5 Quit AT Command ==
1264
1265
1266 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1267
1268 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1269
1270 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1271 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1272 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1273
1274 (% style="color:#4f81bd" %)**Downlink Command:**
1275
1276 No downlink command for this feature.
1277
1278
1279 == 4.6 Set to sleep mode ==
1280
1281
1282 Feature: Set device to sleep mode
1283
1284 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1285 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1286
1287 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1288
1289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1290 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1291 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1292 Clear all stored sensor data…
1293
1294 OK
1295 )))
1296
1297 (% style="color:#4f81bd" %)**Downlink Command:**
1298
1299 * There is no downlink command to set to Sleep mode.
1300
1301
1302 == 4.7 Set system time ==
1303
1304
1305 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1306
1307 (% style="color:#4f81bd" %)**AT Command:**
1308
1309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1310 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1311 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1312 OK
1313
1314 Set System time to 2021-01-20 00:59:12
1315 )))
1316
1317 (% style="color:#4f81bd" %)**Downlink Command:**
1318
1319 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1320
1321
1322 == 4.8 Set Time Sync Mode ==
1323
1324
1325 (((
1326 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1327 )))
1328
1329 (((
1330 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1331 )))
1332
1333 (% style="color:#4f81bd" %)**AT Command:**
1334
1335 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1336 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1337 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1338
1339 (% style="color:#4f81bd" %)**Downlink Command:**
1340
1341 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1342 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1343
1344
1345 == 4.9 Set Time Sync Interval ==
1346
1347
1348 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1349
1350 (% style="color:#4f81bd" %)**AT Command:**
1351
1352 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1353 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1354 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1355
1356 (% style="color:#4f81bd" %)**Downlink Command:**
1357
1358 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1359
1360
1361 == 4.10 Print data entries base on page. ==
1362
1363
1364 Feature: Print the sector data from start page to stop page (max is 416 pages).
1365
1366 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1367
1368 [[image:image-20230426164330-2.png]]
1369
1370 (% style="color:#4f81bd" %)**Downlink Command:**
1371
1372 No downlink commands for feature
1373
1374
1375 == 4.11 Print last few data entries. ==
1376
1377
1378 Feature: Print the last few data entries
1379
1380 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1381
1382 [[image:image-20230426164932-3.png]]
1383
1384 (% style="color:#4f81bd" %)**Downlink Command:**
1385
1386 No downlink commands for feature
1387
1388
1389 == 4.12 Clear Flash Record ==
1390
1391
1392 Feature: Clear flash storage for data log feature.
1393
1394 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1395
1396 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1397 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1398 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1399 Clear all stored sensor data…
1400
1401 OK
1402 )))
1403
1404 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1405
1406 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1407
1408
1409 == 4.13 Auto Send None-ACK messages ==
1410
1411
1412 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1413
1414 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1415
1416 The default factory setting is 0
1417
1418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1419 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1420 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1421
1422 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1423
1424 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1425
1426
1427 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1428
1429
1430 Feature: Set internal and external temperature sensor alarms.
1431
1432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1433 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1434 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1435
1436 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1437
1438 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1439
1440 0): Cancel
1441
1442 1): Threshold alarm
1443
1444 2): Fluctuation alarm
1445
1446
1447 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1448
1449 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1450
1451
1452 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1453
1454 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1455
1456 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1457
1458
1459 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1460
1461 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1462
1463 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1464
1465
1466 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1467
1468 0xA5 00 ~-~- AT+WMOD=0.
1469
1470 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1471
1472 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1473
1474 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1475
1476 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1477
1478
1479 = 5. Battery & How to replace =
1480
1481 == 5.1 Battery Type ==
1482
1483
1484 (((
1485 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1486 )))
1487
1488 (((
1489 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1490
1491
1492 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1493 )))
1494
1495 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1496
1497
1498 == 5.2 Replace Battery ==
1499
1500
1501 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1502
1503 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1504
1505
1506 == 5.3 Battery Life Analyze ==
1507
1508
1509 (((
1510 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1511 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1512 )))
1513
1514
1515 (((
1516 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1517 )))
1518
1519
1520 = 6. FAQ =
1521
1522 == 6.1 How to use AT Command? ==
1523
1524
1525 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1526
1527 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1528
1529
1530 **Connection:**
1531
1532 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1533 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1534 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1535
1536 (((
1537 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1538
1539 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1540 )))
1541
1542
1543 Input password and ATZ to activate LHT65N,As shown below:
1544
1545 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1546
1547
1548 AT Command List is as below:
1549
1550 AT+<CMD>? :  Help on <CMD>
1551
1552 AT+<CMD> :  Run <CMD>
1553
1554 AT+<CMD>=<value> :  Set the value
1555
1556 AT+<CMD>=? :  Get the value
1557
1558 AT+DEBUG:  Set more info output
1559
1560 ATZ:  Trig a reset of the MCU
1561
1562 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1563
1564 AT+DEUI:  Get or Set the Device EUI
1565
1566 AT+DADDR:  Get or Set the Device Address
1567
1568 AT+APPKEY:  Get or Set the Application Key
1569
1570 AT+NWKSKEY:  Get or Set the Network Session Key
1571
1572 AT+APPSKEY:  Get or Set the Application Session Key
1573
1574 AT+APPEUI:  Get or Set the Application EUI
1575
1576 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1577
1578 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1579
1580 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1581
1582 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1583
1584 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1585
1586 AT+RX2FQ:  Get or Set the Rx2 window frequency
1587
1588 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1589
1590 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1591
1592 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1593
1594 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1595
1596 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1597
1598 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1599
1600 AT+NWKID:  Get or Set the Network ID
1601
1602 AT+FCU:  Get or Set the Frame Counter Uplink
1603
1604 AT+FCD:  Get or Set the Frame Counter Downlink
1605
1606 AT+CLASS:  Get or Set the Device Class
1607
1608 AT+JOIN:  Join network
1609
1610 AT+NJS:  Get the join status
1611
1612 AT+SENDB:  Send hexadecimal data along with the application port
1613
1614 AT+SEND:  Send text data along with the application port
1615
1616 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1617
1618 AT+RECV:  Print last received data in raw format
1619
1620 AT+VER:  Get current image version and Frequency Band
1621
1622 AT+CFM:  Get or Set the confirmation mode (0-1)
1623
1624 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1625
1626 AT+SNR:  Get the SNR of the last received packet
1627
1628 AT+RSSI:  Get the RSSI of the last received packet
1629
1630 AT+TDC:  Get or set the application data transmission interval in ms
1631
1632 AT+PORT:  Get or set the application port
1633
1634 AT+DISAT:  Disable AT commands
1635
1636 AT+PWORD: Set password, max 9 digits
1637
1638 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1639
1640 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1641
1642 AT+PDTA:  Print the sector data from start page to stop page
1643
1644 AT+PLDTA:  Print the last few sets of data
1645
1646 AT+CLRDTA:  Clear the storage, record position back to 1st
1647
1648 AT+SLEEP:  Set sleep mode
1649
1650 AT+EXT:  Get or Set external sensor model
1651
1652 AT+BAT:  Get the current battery voltage in mV
1653
1654 AT+CFG:  Print all configurations
1655
1656 AT+WMOD:  Get or Set Work Mode
1657
1658 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1659
1660 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1661
1662 AT+SETCNT:  Set the count at present
1663
1664 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1665
1666 AT+RPL:  Get or set response level
1667
1668 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1669
1670 AT+LEAPSEC:  Get or Set Leap Second
1671
1672 AT+SYNCMOD:  Get or Set time synchronization method
1673
1674 AT+SYNCTDC:  Get or set time synchronization interval in day
1675
1676 AT+PID:  Get or set the PID
1677
1678
1679 == 6.2 Where to use AT commands and Downlink commands ==
1680
1681
1682 **AT commands: **
1683
1684 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1685
1686
1687 **Downlink commands:**
1688
1689
1690 (% style="color:blue" %)**TTN:**
1691
1692 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1693
1694
1695
1696 (% style="color:blue" %)**Helium: **
1697
1698 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1699
1700
1701
1702 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1703
1704
1705 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1706
1707
1708 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1709
1710
1711
1712 (% style="color:blue" %)**Aws:**
1713
1714 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1715
1716
1717 == 6.3 How to change the uplink interval? ==
1718
1719
1720 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1721
1722
1723 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1724
1725
1726 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1727
1728 [[image:1655802313617-381.png||_mstalt="293917"]]
1729
1730
1731 (((
1732 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1733 )))
1734
1735
1736 Input password and ATZ to activate LHT65N, As shown below:
1737
1738 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1739
1740
1741 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1742
1743
1744 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1745
1746
1747 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1748
1749 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1750
1751
1752
1753 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1754
1755 First connect the four lines;(% style="display:none" %)
1756
1757 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1758
1759
1760 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1761
1762 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1763
1764
1765
1766 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1767
1768 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1769
1770
1771 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1772
1773
1774 When this interface appears, it indicates that the download has been completed.
1775
1776 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1777
1778
1779 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1780
1781
1782 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1783
1784
1785 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1786
1787
1788 **UART Port of LHT65N:**
1789
1790 * (% class="mark" %)**PB0: RXD**
1791 * (% class="mark" %)**PB1: TXD**
1792 * (% class="mark" %)**GND**
1793
1794 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1795
1796
1797 (((
1798 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1799 )))
1800
1801
1802 Input password and ATZ to activate LHT65N,As shown below:
1803
1804 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1805
1806
1807 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1808
1809
1810 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1811
1812
1813 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1814
1815 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1816
1817
1818
1819 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1820
1821 First connect the four lines;
1822
1823 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1824
1825 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1826
1827
1828
1829 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1830
1831 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1832
1833
1834 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1835
1836
1837 When this interface appears, it indicates that the download has been completed.
1838
1839 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1840
1841
1842 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1843
1844
1845 == 6.8 Why can't I see the datalog information ==
1846
1847
1848 ~1. The time is not aligned, and the correct query command is not used.
1849
1850 2. Decoder error, did not parse the datalog data, the data was filtered.
1851
1852
1853 = 7. Order Info =
1854
1855
1856 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1857
1858 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1859
1860 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1861 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1862 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1863 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1864 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1865 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1866 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1867 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1868
1869 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1870
1871 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1872
1873
1874 = 8. Packing Info =
1875
1876
1877 **Package Includes**:
1878
1879 * LHT65N Temperature & Humidity Sensor x 1
1880 * Optional external sensor
1881
1882 **Dimension and weight**:
1883
1884 * Device Size:  10 x 10 x 3.5 mm
1885 * Device Weight: 120.5g
1886
1887
1888 = 9. Reference material =
1889
1890
1891 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1892
1893
1894 = 10. FCC Warning =
1895
1896
1897 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1898
1899 (1) This device may not cause harmful interference;
1900
1901 (2) this device must accept any interference received, including interference that may cause undesired operation.