Version 261.13 by Xiaoling on 2023/07/17 17:59

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 O modo Timestamp é projetado para LHT65N com sonda E3, ele enviará a carga útil de uplink com timestamp Unix. Com a limitação de 11 bytes (distância máxima da banda AU915/US915/AS923), o modo de carimbo de hora será falta de campo de tensão BAT, em vez disso, ele mostra o status da bateria. A carga útil é a seguinte:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)Valor|(% style="width:71px" %)Temperatura externa|(% style="width:99px" %)(((
351 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
352 )))|(% style="width:132px" %)(((
353 Estado MTD & [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
354 )))|(% style="width:54px" %)Estado & Ext|(% style="width:64px" %)(((
355 [[Carimbo Horário do Unix>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Status da bateria e umidade interna**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 269px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[15:14]|=(% style="width: 121px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[11:0]
362 |(% style="width:67px" %)Valor|(% style="width:269px" %)Estado MTD
363 00 b): Ultra baixo ( MTD <= 2,50v)
364 01 b): Baixo (2,50v <=MTD <= 2,55v)
365 10 b): OK (2,55v <= MTD <=2,65v)
366 11 b): Bom (MTD >= 2,65v)|(% style="width:121px" %)(((
367 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
368 )))
369
370 * ** Status e byte externo**
371
372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
373 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
374 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)Sinalizador Nenhum-ACK|(% style="width:146px" %)Mensagem de Enquete FLAG|(% style="width:109px" %)Sincronizar hora OK|(% style="width:143px" %)Solicitação de Horário Unix |(% style="width:106px" %)Ext: 0b(1001)
375
376
377 * **Bandeira da mensagem da enquete:  **1: Esta mensagem é uma resposta da mensagem da enquete, 0: significa que esta é uma ligação uplink normal.
378 * **Tempo de sincronização OK:  **1: Definir tempo ok, 0: N/A. Após o envio da solicitação SYNC, LHT65N definirá este bit como 0 até obter o carimbo de hora do servidor de aplicativos.
379 * **Unix Time Request:  **1: Request server downlink Unix time, 0: N/A. Neste modo, o LHT65N definirá este bit para 1 a cada 10 dias para solicitar um tempo SYNC. (AT+SYNCMOD para definir isto)
380
381
382
383
384 ==== 2.4.6.3 Ext~=6, Sensor ADC (use com cabo E2) ====
385
386
387 Neste modo, o usuário pode conectar sensor ADC externo para verificar o valor ADC. O 3V3_OUT pode ser usado para alimentar o sensor ADC externo; o usuário pode controlar o poder no tempo para isso.
388
389 (% style="color:blue" %)**sensor configurando:**
390
391 **AT+EXT=6, **timeout Tempo para ligar este sensor, de 0 ~~ 65535ms
392
393 **Por exemplo:**
394
395 AT+EXT=6.1000 alimentará este sensor por 1000ms antes de amostrar o valor ADC.
396
397
398 Ou use o comando downlink A2 para definir o mesmo.
399 A faixa de medição do nó é de apenas cerca de 0.1V a 1.1V A resolução da tensão é de cerca de 0.24mv.
400 Quando a tensão de saída medida do sensor não está dentro da faixa de 0,1V e 1,1V, o terminal de tensão de saída do sensor deve ser dividido O exemplo na figura a seguir é reduzir a tensão de saída do sensor por três vezes Se for necessário reduzir mais vezes, calcule de acordo com a fórmula na figura e conecte a resistência correspondente em série.
401
402 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
403
404
405 Quando o pino ADC_IN1 é conectado ao GND ou suspenso, o valor de ADC é 0
406
407 [[image:image-20220628150714-4.png||_mstalt="431054"]]
408
409
410 Quando a tensão coletada por ADC_IN1 for menor do que a faixa mínima, a faixa mínima será usada como saída; Da mesma forma, quando a tensão coletada é maior do que a faixa máxima, a faixa máxima será usada como saída.
411
412
413 1) A faixa mínima é de cerca de 0.1V. Cada chip tem calibração interna, assim que este valor está perto de 0.1V
414
415 [[image:image-20220628151005-5.png||_mstalt="429546"]]
416
417
418 2) A faixa máxima é de cerca de 1.1V. Cada chip tem calibração interna, assim que este valor está perto de 1.1v
419
420 [[image:image-20220628151056-6.png||_mstalt="431873"]]
421
422
423 3) Dentro do alcance
424
425 [[image:image-20220628151143-7.png||_mstalt="431210"]]
426
427
428
429 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (desde Firmware v1.3)(% style="display:none" %) (%%) ====
430
431 [[image:image-20230717151328-8.png]]
432
433 (% style="display:none" %) (%%)
434
435
436
437 (% style="color:blue" %)**Ext=2, Sensor de temperatura (TMP117):**
438
439 [[image:image-20220906102307-7.png||_mstalt="430443"]]
440
441
442 (% style="color:blue" %)**Modo de Interrupção e Modo de Contagem:**(% style="color:blue; display:none" %)** **
443
444 O cabo externo NE2 pode ser usado para MOD4 e MOD8
445
446
447
448 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (desde Firmware v1.4.1) ====
449
450
451
452 [[image:image-20230717151245-7.png]]
453
454 (% style="color:blue" %)**Ext=11, sensor de temperatura e umidade (SHT31):**
455
456 [[image:SHT31.png]]
457
458
459
460 ==== 2.4.6.6 Ext~=4 Interrupt Mode (Desde Firmware v1.3) ====
461
462
463 (% style="color:red" %)**Nota: Neste modo, a saída de 3.3v estará sempre ligada. LHT65N enviará um uplink quando houver um gatilho.**
464
465
466 (% style="color:blue" %)**O modo de interrupção pode ser usado para conectar-se a sensores externos de interrupção, tais como:**
467
468 (% style="color:#037691" %)**Caso 1: sensor de porta.** (%%)3.3v Out para tal sensor é apenas detectar Abrir / Fechar.
469
470 No estado aberto, o consumo de energia é o mesmo que se não houver nenhuma sonda
471
472 No estado Close, o consumo de energia será 3uA maior do que o normal.
473
474 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
475
476
477 Ext=4, Sensor de Interrupção:
478
479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
480 |(% style="width:101px" %)(((
481 **AT+EXT=4,1**
482 )))|(% style="width:395px" %)Pacote de uplink enviado na interrupção ascendente e caindo
483 |(% style="width:101px" %)(((
484 **AT+EXT=4,2**
485 )))|(% style="width:395px" %)Enviou um pacote de ligação ascendente apenas na interrupção em queda
486 |(% style="width:101px" %)(((
487 **AT+EXT=4,3**
488 )))|(% style="width:395px" %)Enviou o pacote de uplink apenas na interrupção crescente
489
490 Trigger by falling edge:
491
492 [[image:image-20220906101145-2.png||_mstalt="428324"]]
493
494
495 Trigger by raising edge:
496
497 [[image:image-20220906101145-3.png||_mstalt="428688"]]
498
499
500
501 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
502
503
504 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
505
506
507 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
508
509 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
510
511
512 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
513
514 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
515
516
517 Ext=8, Counting Sensor ( 4 bytes):
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
520 |(% style="width:131px" %)(((
521 **AT+EXT=8,0**
522 )))|(% style="width:195px" %)(((
523 **Count at falling interrupt**
524 )))
525 |(% style="width:131px" %)(((
526 **AT+EXT=8,1**
527 )))|(% style="width:195px" %)(((
528 **Count at rising interrupt**
529 )))
530 |(% style="width:131px" %)(((
531 **AT+SETCNT=60**
532 )))|(% style="width:195px" %)(((
533 **Sent current count to 60**
534 )))
535
536 [[image:image-20220906101320-6.png||_mstalt="428064"]]
537
538
539 (% style="color:blue" %)**A2 downlink Command:**
540
541 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
542
543 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
544
545 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
546
547 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
548
549 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
550
551
552 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
553
554
555 (((
556 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
557 )))
558
559 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
560 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
561 **Size(bytes)**
562 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
563 **2**
564 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
565 **2**
566 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
567 **2**
568 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
569 **1**
570 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
571 **4**
572 )))
573 |(% style="width:110px" %)(((
574 **Value**
575 )))|(% style="width:71px" %)(((
576 External temperature
577 )))|(% style="width:99px" %)(((
578 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
579 )))|(% style="width:132px" %)(((
580 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
581 )))|(% style="width:54px" %)(((
582 Status & Ext
583 )))|(% style="width:64px" %)(((
584 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
585 )))
586
587 * **Battery status & Built-in Humidity**
588
589 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
590 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
591 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
592 BAT Status
593 00(b): Ultra Low ( BAT <= 2.50v)
594 01(b): Low  (2.50v <=BAT <= 2.55v)
595 10(b): OK   (2.55v <= BAT <=2.65v)
596 11(b): Good   (BAT >= 2.65v)
597 )))|(% style="width:132px" %)(((
598 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
599 )))
600
601 * **Status & Ext Byte**
602
603 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
604 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
605 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
606
607 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
608 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
609 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
610
611
612 == 2.5 Show data on Datacake ==
613
614
615 (((
616 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
617 )))
618
619
620 (((
621 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
622 )))
623
624 (((
625 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
626 )))
627
628
629 (((
630 Add Datacake:
631 )))
632
633
634 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
635
636
637
638 Select default key as Access Key:
639
640
641 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
642
643
644 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
645
646
647 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
648
649
650 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
651
652
653 == 2.6 Datalog Feature ==
654
655
656 (((
657 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
658 )))
659
660
661 === 2.6.1 Ways to get datalog via LoRaWAN ===
662
663
664 There are two methods:
665
666 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
667
668
669 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
670
671
672 (% style="color:red" %)**Note for method 2:**
673
674 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
675 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
676
677 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
678
679
680 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
681
682
683 === 2.6.2 Unix TimeStamp ===
684
685
686 LHT65N uses Unix TimeStamp format based on
687
688
689 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
690
691
692
693 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
694
695 Below is the converter example
696
697 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
698
699
700 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
701
702
703 === 2.6.3 Set Device Time ===
704
705
706 (((
707 (% style="color:blue" %)**There are two ways to set device's time:**
708 )))
709
710 (((
711 **1.  Through LoRaWAN MAC Command (Default settings)**
712 )))
713
714 (((
715 User need to set SYNCMOD=1 to enable sync time via MAC command.
716 )))
717
718 (((
719 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
720 )))
721
722 (((
723 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
724 )))
725
726
727 (((
728 **2. Manually Set Time**
729 )))
730
731 (((
732 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
733 )))
734
735
736 === 2.6.4 Poll sensor value ===
737
738
739 User can poll sensor value based on timestamps from the server. Below is the downlink command.
740
741 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
742 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
743 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
744
745 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
746
747 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
748
749 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
750
751 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
752
753
754 === 2.6.5 Datalog Uplink payload ===
755
756
757 The Datalog poll reply uplink will use below payload format.
758
759 **Retrieval data payload:**
760
761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
762 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
763 **Size(bytes)**
764 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
765 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
766
767 **Poll message flag & Ext:**
768
769 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
770
771 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
772
773 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
774
775 * Poll Message Flag is set to 1.
776
777 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
778
779 For example, in US915 band, the max payload for different DR is:
780
781 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
782
783 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
784
785 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
786
787 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
788
789 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
790
791
792 **Example:**
793
794 If LHT65N has below data inside Flash:
795
796 [[image:image-20230426171833-4.png]]
797
798
799 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
800
801 Where : Start time: 60065F97 = time 21/1/19 04:27:03
802
803 Stop time: 60066DA7= time 21/1/19 05:27:03
804
805
806 **LHT65N will uplink this payload.**
807
808 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
809
810
811 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
812
813 Where the first 11 bytes is for the first entry:
814
815 7FFF089801464160065F97
816
817 Ext sensor data=0x7FFF/100=327.67
818
819 Temp=0x088E/100=22.00
820
821 Hum=0x014B/10=32.6
822
823 poll message flag & Ext=0x41,means reply data,Ext=1
824
825 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
826
827
828 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
829
830
831 (((
832 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
833 )))
834
835 (((
836 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
837
838
839 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
840
841
842 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
843
844 (((
845 (% class="box infomessage" %)
846 (((
847 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
848
849 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
850
851 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
852
853 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
854
855 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
856
857 **AT+LEDALARM=1** :       Enable LED visual Alarm.
858 )))
859 )))
860
861 (% style="color:#4f81bd" %)**Downlink Command:**
862
863 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
864
865 AT+CITEMP=1 : A60001
866
867 AT+ARTEMP=1,60  :  A70001003C
868
869 AT+ARTEMP=-16,60 :  A7FFF0003C
870
871 AT+LEDALARM=1  :  3601
872
873
874 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
875
876 Total bytes: 8 bytes
877
878 **Example: **AA0100010001003C
879
880 WMOD=01
881
882 CITEMP=0001
883
884 TEMPlow=0001
885
886 TEMPhigh=003C
887
888
889 **DS18B20 and TMP117 Threshold Alarm**
890
891 **~ AT+WMOD=1,60,-10,20**
892
893 (% style="color:#4f81bd" %)**Downlink Command:**
894
895 **Example: **A5013CFC180014
896
897 MOD=01
898
899 CITEMP=3C(S)
900
901 TEMPlow=FC18
902
903 TEMPhigh=0014
904
905
906 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
907
908 **AT+WMOD=2,60,5** 
909
910 (% style="color:#4f81bd" %)**Downlink Command:**
911
912 **Example: **A5023C05
913
914 MOD=02
915
916 CITEMP=3C(S)
917
918 temperature fluctuation=05
919
920
921 **Sampling multiple times and uplink together**
922
923 **AT+WMOD=3,1,60,20,-16,32,1**   
924
925 Explain:
926
927 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
928 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
929 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
930 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
931 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
932 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
933
934 (% style="color:#4f81bd" %)**Downlink Command:**
935
936 **Example: **A50301003C14FFF0002001
937
938 MOD=03
939
940 TEMP=DS18B20
941
942 CITEMP=003C(S)
943
944 Total number of acquisitions=14
945
946 TEMPlow=FFF0
947
948 TEMPhigh=0020
949
950 ARTEMP=01
951
952
953 **Uplink payload( Fport=3)**
954
955 **Example: CBEA**01**0992**//0A41//**09C4**
956
957 BatV=CBEA
958
959 TEMP=DS18B20
960
961 Temp1=0992  ~/~/ 24.50℃
962
963 Temp2=0A41  ~/~/ 26.25℃
964
965 Temp3=09C4  ~/~/ 25.00℃
966
967 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
968
969 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
970 )))
971
972
973 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
974
975
976 (% class="box infomessage" %)
977 (((
978 (((
979 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
980 )))
981
982 (((
983 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
984 )))
985
986 (((
987 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
988 )))
989
990 (((
991 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
992 )))
993
994 (((
995 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
996 )))
997 )))
998
999 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1000
1001 Total bytes: 8 bytes
1002
1003 **Example:**AA0100010001003C
1004
1005 WMOD=01
1006
1007 CITEMP=0001
1008
1009 TEMPlow=0001
1010
1011 TEMPhigh=003C
1012
1013
1014 == 2.8 LED Indicator ==
1015
1016
1017 The LHT65 has a triple color LED which for easy showing different stage .
1018
1019 While user press ACT button, the LED will work as per LED status with ACT button.
1020
1021 In a normal working state:
1022
1023 * For each uplink, the BLUE LED or RED LED will blink once.
1024 BLUE LED when external sensor is connected.
1025 * RED LED when external sensor is not connected
1026 * For each success downlink, the PURPLE LED will blink once
1027
1028
1029 == 2.9 installation ==
1030
1031
1032 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1033
1034
1035 = 3. Sensors and Accessories =
1036
1037 == 3.1 E2 Extension Cable ==
1038
1039
1040 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1041
1042
1043 **1m long breakout cable for LHT65N. Features:**
1044
1045 * (((
1046 Use for AT Command, works for both LHT52/LHT65N
1047 )))
1048 * (((
1049 Update firmware for LHT65N, works for both LHT52/LHT65N
1050 )))
1051 * (((
1052 Supports ADC mode to monitor external ADC
1053 )))
1054 * (((
1055 Supports Interrupt mode
1056 )))
1057 * (((
1058 Exposed All pins from the LHT65N Type-C connector.
1059
1060
1061
1062 )))
1063
1064 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1065
1066
1067 == 3.2 E3 Temperature Probe ==
1068
1069
1070 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1071
1072
1073 Temperature sensor with 2 meters cable long
1074
1075 * Resolution: 0.0625 °C
1076 * ±0.5°C accuracy from -10°C to +85°C
1077 * ±2°C accuracy from -55°C to +125°C
1078 * Operating Range: -40 ~~ 125 °C
1079 * Working voltage 2.35v ~~ 5v
1080
1081 == 3.3 E31F Temperature Probe ==
1082
1083
1084 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1085
1086
1087 Temperature sensor with 1 meters cable long
1088
1089
1090 **Built-in Temperature Sensor:**
1091
1092 * Resolution: 0.01 °C
1093 * Accuracy Tolerance : Typ ±0.3 °C
1094 * Long Term Drift: < 0.02 °C/yr
1095 * Operating Range: -40 ~~ 80 °C
1096
1097 **Built-in Humidity Sensor:**
1098
1099 * Resolution: 0.04 % RH
1100 * Accuracy Tolerance : Typ ±3 % RH
1101 * Long Term Drift: < 0.02 °C/yr
1102 * Operating Range: 0 ~~ 96 % RH
1103
1104 **External Temperature Sensor :**
1105
1106 * Resolution: 0.01 °C
1107 * Accuracy Tolerance : Typical ±0.3 °C
1108 * Long Term Drift: < 0.02 °C/yr
1109 * Operating Range: -40 ~~ 125 °C
1110
1111 **External Humidity Sensor :**
1112
1113 * Resolution: 0.04 % RH
1114 * Accuracy Tolerance : Typ ±3 % RH
1115 * Long Term Drift: < 0.02 °C/yr
1116 * Operating Range: 0 ~~ 96 % RH
1117
1118
1119 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1120
1121
1122 (((
1123 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1124 )))
1125
1126 * (((
1127 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1128 )))
1129
1130 * (((
1131 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1132 )))
1133
1134 (((
1135 There are two kinds of commands to configure LHT65N, they are:
1136 )))
1137
1138 * (((
1139 (% style="color:#4f81bd" %)**General Commands**.
1140 )))
1141
1142 (((
1143 These commands are to configure:
1144 )))
1145
1146 1. (((
1147 General system settings like: uplink interval.
1148 )))
1149 1. (((
1150 LoRaWAN protocol & radio-related commands.
1151 )))
1152
1153 (((
1154 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1155 )))
1156
1157 * (((
1158 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1159 )))
1160
1161 (((
1162 These commands are only valid for LHT65N, as below:
1163 )))
1164
1165
1166 == 4.1 Set Transmit Interval Time ==
1167
1168
1169 Feature: Change LoRaWAN End Node Transmit Interval.
1170
1171
1172 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1173
1174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1175 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1176 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1177 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1178
1179 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1180
1181 Format: Command Code (0x01) followed by 3 bytes time value.
1182
1183 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1184
1185 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1186
1187 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1188
1189
1190 == 4.2 Set External Sensor Mode ==
1191
1192
1193 Feature: Change External Sensor Mode.
1194
1195 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1196
1197 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1198 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1199 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1200 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1201 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1202
1203 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1204
1205 Total bytes: 2 ~~ 5 bytes
1206
1207 **Example:**
1208
1209 * 0xA201: Set external sensor type to E1
1210
1211 * 0xA209: Same as AT+EXT=9
1212
1213 * 0xA20702003c: Same as AT+SETCNT=60
1214
1215
1216 == 4.3 Enable/Disable uplink Temperature probe ID ==
1217
1218
1219 (((
1220 Feature: If PID is enabled, device will send the temperature probe ID on:
1221 )))
1222
1223 * (((
1224 First Packet after OTAA Join
1225 )))
1226 * (((
1227 Every 24 hours since the first packet.
1228 )))
1229
1230 (((
1231 PID is default set to disable (0)
1232
1233
1234 )))
1235
1236 (% style="color:#4f81bd" %)**AT Command:**
1237
1238 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1239 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1240 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1241
1242 (% style="color:#4f81bd" %)**Downlink Command:**
1243
1244 * **0xA800**  **~-~->** AT+PID=0
1245 * **0xA801**     **~-~->** AT+PID=1
1246
1247
1248 == 4.4 Set Password ==
1249
1250
1251 Feature: Set device password, max 9 digits
1252
1253 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1254
1255 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1256 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1257 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1258 123456
1259
1260 OK
1261 )))
1262 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1263
1264 (% style="color:#4f81bd" %)**Downlink Command:**
1265
1266 No downlink command for this feature.
1267
1268
1269 == 4.5 Quit AT Command ==
1270
1271
1272 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1273
1274 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1275
1276 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1277 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1278 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1279
1280 (% style="color:#4f81bd" %)**Downlink Command:**
1281
1282 No downlink command for this feature.
1283
1284
1285 == 4.6 Set to sleep mode ==
1286
1287
1288 Feature: Set device to sleep mode
1289
1290 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1291 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1292
1293 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1294
1295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1296 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1297 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1298 Clear all stored sensor data…
1299
1300 OK
1301 )))
1302
1303 (% style="color:#4f81bd" %)**Downlink Command:**
1304
1305 * There is no downlink command to set to Sleep mode.
1306
1307
1308 == 4.7 Set system time ==
1309
1310
1311 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1312
1313 (% style="color:#4f81bd" %)**AT Command:**
1314
1315 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1316 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1317 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1318 OK
1319
1320 Set System time to 2021-01-20 00:59:12
1321 )))
1322
1323 (% style="color:#4f81bd" %)**Downlink Command:**
1324
1325 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1326
1327
1328 == 4.8 Set Time Sync Mode ==
1329
1330
1331 (((
1332 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1333 )))
1334
1335 (((
1336 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1337 )))
1338
1339 (% style="color:#4f81bd" %)**AT Command:**
1340
1341 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1342 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1343 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1344
1345 (% style="color:#4f81bd" %)**Downlink Command:**
1346
1347 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1348 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1349
1350
1351 == 4.9 Set Time Sync Interval ==
1352
1353
1354 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1355
1356 (% style="color:#4f81bd" %)**AT Command:**
1357
1358 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1359 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1360 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1361
1362 (% style="color:#4f81bd" %)**Downlink Command:**
1363
1364 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1365
1366
1367 == 4.10 Print data entries base on page. ==
1368
1369
1370 Feature: Print the sector data from start page to stop page (max is 416 pages).
1371
1372 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1373
1374 [[image:image-20230426164330-2.png]]
1375
1376 (% style="color:#4f81bd" %)**Downlink Command:**
1377
1378 No downlink commands for feature
1379
1380
1381 == 4.11 Print last few data entries. ==
1382
1383
1384 Feature: Print the last few data entries
1385
1386 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1387
1388 [[image:image-20230426164932-3.png]]
1389
1390 (% style="color:#4f81bd" %)**Downlink Command:**
1391
1392 No downlink commands for feature
1393
1394
1395 == 4.12 Clear Flash Record ==
1396
1397
1398 Feature: Clear flash storage for data log feature.
1399
1400 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1401
1402 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1403 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1404 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1405 Clear all stored sensor data…
1406
1407 OK
1408 )))
1409
1410 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1411
1412 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1413
1414
1415 == 4.13 Auto Send None-ACK messages ==
1416
1417
1418 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1419
1420 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1421
1422 The default factory setting is 0
1423
1424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1425 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1426 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1427
1428 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1429
1430 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1431
1432
1433 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1434
1435
1436 Feature: Set internal and external temperature sensor alarms.
1437
1438 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1439 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1440 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1441
1442 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1443
1444 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1445
1446 0): Cancel
1447
1448 1): Threshold alarm
1449
1450 2): Fluctuation alarm
1451
1452
1453 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1454
1455 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1456
1457
1458 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1459
1460 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1461
1462 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1463
1464
1465 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1466
1467 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1468
1469 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1470
1471
1472 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1473
1474 0xA5 00 ~-~- AT+WMOD=0.
1475
1476 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1477
1478 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1479
1480 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1481
1482 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1483
1484
1485 = 5. Battery & How to replace =
1486
1487 == 5.1 Battery Type ==
1488
1489
1490 (((
1491 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1492 )))
1493
1494 (((
1495 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1496
1497
1498 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1499 )))
1500
1501 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1502
1503
1504 == 5.2 Replace Battery ==
1505
1506
1507 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1508
1509 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1510
1511
1512 == 5.3 Battery Life Analyze ==
1513
1514
1515 (((
1516 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1517 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1518 )))
1519
1520
1521 (((
1522 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1523 )))
1524
1525
1526 = 6. FAQ =
1527
1528 == 6.1 How to use AT Command? ==
1529
1530
1531 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1532
1533 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1534
1535
1536 **Connection:**
1537
1538 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1539 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1540 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1541
1542 (((
1543 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1544
1545 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1546 )))
1547
1548
1549 Input password and ATZ to activate LHT65N,As shown below:
1550
1551 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1552
1553
1554 AT Command List is as below:
1555
1556 AT+<CMD>? :  Help on <CMD>
1557
1558 AT+<CMD> :  Run <CMD>
1559
1560 AT+<CMD>=<value> :  Set the value
1561
1562 AT+<CMD>=? :  Get the value
1563
1564 AT+DEBUG:  Set more info output
1565
1566 ATZ:  Trig a reset of the MCU
1567
1568 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1569
1570 AT+DEUI:  Get or Set the Device EUI
1571
1572 AT+DADDR:  Get or Set the Device Address
1573
1574 AT+APPKEY:  Get or Set the Application Key
1575
1576 AT+NWKSKEY:  Get or Set the Network Session Key
1577
1578 AT+APPSKEY:  Get or Set the Application Session Key
1579
1580 AT+APPEUI:  Get or Set the Application EUI
1581
1582 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1583
1584 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1585
1586 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1587
1588 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1589
1590 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1591
1592 AT+RX2FQ:  Get or Set the Rx2 window frequency
1593
1594 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1595
1596 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1597
1598 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1599
1600 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1601
1602 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1603
1604 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1605
1606 AT+NWKID:  Get or Set the Network ID
1607
1608 AT+FCU:  Get or Set the Frame Counter Uplink
1609
1610 AT+FCD:  Get or Set the Frame Counter Downlink
1611
1612 AT+CLASS:  Get or Set the Device Class
1613
1614 AT+JOIN:  Join network
1615
1616 AT+NJS:  Get the join status
1617
1618 AT+SENDB:  Send hexadecimal data along with the application port
1619
1620 AT+SEND:  Send text data along with the application port
1621
1622 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1623
1624 AT+RECV:  Print last received data in raw format
1625
1626 AT+VER:  Get current image version and Frequency Band
1627
1628 AT+CFM:  Get or Set the confirmation mode (0-1)
1629
1630 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1631
1632 AT+SNR:  Get the SNR of the last received packet
1633
1634 AT+RSSI:  Get the RSSI of the last received packet
1635
1636 AT+TDC:  Get or set the application data transmission interval in ms
1637
1638 AT+PORT:  Get or set the application port
1639
1640 AT+DISAT:  Disable AT commands
1641
1642 AT+PWORD: Set password, max 9 digits
1643
1644 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1645
1646 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1647
1648 AT+PDTA:  Print the sector data from start page to stop page
1649
1650 AT+PLDTA:  Print the last few sets of data
1651
1652 AT+CLRDTA:  Clear the storage, record position back to 1st
1653
1654 AT+SLEEP:  Set sleep mode
1655
1656 AT+EXT:  Get or Set external sensor model
1657
1658 AT+BAT:  Get the current battery voltage in mV
1659
1660 AT+CFG:  Print all configurations
1661
1662 AT+WMOD:  Get or Set Work Mode
1663
1664 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1665
1666 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1667
1668 AT+SETCNT:  Set the count at present
1669
1670 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1671
1672 AT+RPL:  Get or set response level
1673
1674 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1675
1676 AT+LEAPSEC:  Get or Set Leap Second
1677
1678 AT+SYNCMOD:  Get or Set time synchronization method
1679
1680 AT+SYNCTDC:  Get or set time synchronization interval in day
1681
1682 AT+PID:  Get or set the PID
1683
1684
1685 == 6.2 Where to use AT commands and Downlink commands ==
1686
1687
1688 **AT commands: **
1689
1690 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1691
1692
1693 **Downlink commands:**
1694
1695
1696 (% style="color:blue" %)**TTN:**
1697
1698 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1699
1700
1701
1702 (% style="color:blue" %)**Helium: **
1703
1704 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1705
1706
1707
1708 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1709
1710
1711 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1712
1713
1714 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1715
1716
1717
1718 (% style="color:blue" %)**Aws:**
1719
1720 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1721
1722
1723 == 6.3 How to change the uplink interval? ==
1724
1725
1726 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1727
1728
1729 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1730
1731
1732 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1733
1734 [[image:1655802313617-381.png||_mstalt="293917"]]
1735
1736
1737 (((
1738 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1739 )))
1740
1741
1742 Input password and ATZ to activate LHT65N, As shown below:
1743
1744 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1745
1746
1747 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1748
1749
1750 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1751
1752
1753 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1754
1755 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1756
1757
1758
1759 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1760
1761 First connect the four lines;(% style="display:none" %)
1762
1763 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1764
1765
1766 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1767
1768 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1769
1770
1771
1772 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1773
1774 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1775
1776
1777 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1778
1779
1780 When this interface appears, it indicates that the download has been completed.
1781
1782 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1783
1784
1785 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1786
1787
1788 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1789
1790
1791 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1792
1793
1794 **UART Port of LHT65N:**
1795
1796 * (% class="mark" %)**PB0: RXD**
1797 * (% class="mark" %)**PB1: TXD**
1798 * (% class="mark" %)**GND**
1799
1800 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1801
1802
1803 (((
1804 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1805 )))
1806
1807
1808 Input password and ATZ to activate LHT65N,As shown below:
1809
1810 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1811
1812
1813 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1814
1815
1816 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1817
1818
1819 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1820
1821 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1822
1823
1824
1825 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1826
1827 First connect the four lines;
1828
1829 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1830
1831 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1832
1833
1834
1835 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1836
1837 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1838
1839
1840 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1841
1842
1843 When this interface appears, it indicates that the download has been completed.
1844
1845 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1846
1847
1848 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1849
1850
1851 == 6.8 Why can't I see the datalog information ==
1852
1853
1854 ~1. The time is not aligned, and the correct query command is not used.
1855
1856 2. Decoder error, did not parse the datalog data, the data was filtered.
1857
1858
1859 = 7. Order Info =
1860
1861
1862 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1863
1864 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1865
1866 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1867 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1868 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1869 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1870 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1871 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1872 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1873 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1874
1875 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1876
1877 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1878
1879
1880 = 8. Packing Info =
1881
1882
1883 **Package Includes**:
1884
1885 * LHT65N Temperature & Humidity Sensor x 1
1886 * Optional external sensor
1887
1888 **Dimension and weight**:
1889
1890 * Device Size:  10 x 10 x 3.5 mm
1891 * Device Weight: 120.5g
1892
1893
1894 = 9. Reference material =
1895
1896
1897 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1898
1899
1900 = 10. FCC Warning =
1901
1902
1903 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1904
1905 (1) This device may not cause harmful interference;
1906
1907 (2) this device must accept any interference received, including interference that may cause undesired operation.