Changes for page LHT65N -- Manual do sensor de temperatura e umidade LoRaWAN
Last modified by Xiaoling on 2023/07/18 10:12
From version 189.8
edited by Xiaoling
on 2022/08/08 16:22
on 2022/08/08 16:22
Change comment:
There is no comment for this version
To version 181.1
edited by Bei Jinggeng
on 2022/06/28 15:07
on 2022/06/28 15:07
Change comment:
Uploaded new attachment "image-20220628150714-4.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220613162008-1.png||_mstalt="428142" height="5 10" width="334"]]2 +[[image:image-20220613162008-1.png||_mstalt="428142" height="579" width="379"]] 3 3 4 4 5 5 ... ... @@ -46,7 +46,6 @@ 46 46 47 47 == 1.2 Features == 48 48 49 - 50 50 * Wall mountable 51 51 * LoRaWAN v1.0.3 Class A protocol 52 52 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 ... ... @@ -71,8 +71,6 @@ 71 71 * Long Term Drift: < 0.02 °C/yr 72 72 * Operating Range: -40 ~~ 85 °C 73 73 74 - 75 - 76 76 **Built-in Humidity Sensor:** 77 77 78 78 * Resolution: 0.04 %RH ... ... @@ -80,8 +80,6 @@ 80 80 * Long Term Drift: < 0.02 °C/yr 81 81 * Operating Range: 0 ~~ 96 %RH 82 82 83 - 84 - 85 85 **External Temperature Sensor:** 86 86 87 87 * Resolution: 0.0625 °C ... ... @@ -95,7 +95,6 @@ 95 95 96 96 == 2.1 How does LHT65N work? == 97 97 98 - 99 99 ((( 100 100 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N. 101 101 ))) ... ... @@ -105,10 +105,8 @@ 105 105 ))) 106 106 107 107 108 - 109 109 == 2.2 How to Activate LHT65N? == 110 110 111 - 112 112 ((( 113 113 The LHT65N has two working modes: 114 114 ))) ... ... @@ -133,7 +133,6 @@ 133 133 134 134 == 2.3 Example to join LoRaWAN network == 135 135 136 - 137 137 (% _msthash="315240" _msttexthash="9205482" _mstvisible="1" class="wikigeneratedid" %) 138 138 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure. 139 139 ... ... @@ -149,7 +149,6 @@ 149 149 150 150 === 2.3.1 Step 1: Create Device n TTN === 151 151 152 - 153 153 ((( 154 154 Create a device in TTN V3 with the OTAA keys from LHT65N. 155 155 ))) ... ... @@ -174,10 +174,9 @@ 174 174 [[image:image-20220522232954-5.png||_mstalt="431847" _mstvisible="3"]] 175 175 176 176 167 +Note: LHT65N use same payload as LHT65. 177 177 178 -(% style="color:red" %)**Note: LHT65N use same payload as LHT65.** 179 179 180 - 181 181 [[image:image-20220522233026-6.png||_mstalt="429403" _mstvisible="3"]] 182 182 183 183 ... ... @@ -191,7 +191,6 @@ 191 191 192 192 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. === 193 193 194 - 195 195 ((( 196 196 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 197 197 ))) ... ... @@ -203,7 +203,6 @@ 203 203 204 204 == 2.4 Uplink Payload == 205 205 206 - 207 207 ((( 208 208 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% _mstvisible="3" style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default. 209 209 ))) ... ... @@ -278,13 +278,11 @@ 278 278 279 279 * The First 6 bytes: has fix meanings for every LHT65N. 280 280 * The 7th byte (EXT #): defines the external sensor model. 281 -* The 8(% _msthash="734578" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) ~~ 11(% _msthash="734579" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won 't be these four bytes.)268 +* The 8(% _msthash="734578" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) ~~ 11(% _msthash="734579" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.) 282 282 283 283 284 - 285 285 === 2.4.1 Decoder in TTN V3 === 286 286 287 - 288 288 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading. 289 289 290 290 Below is the position to put the decoder and LHT65N decoder can be download from here: ... ... @@ -300,7 +300,6 @@ 300 300 301 301 === 2.4.2 BAT-Battery Info === 302 302 303 - 304 304 These two bytes of BAT include the battery state and the actually voltage 305 305 306 306 [[image:image-20220523152839-18.png||_mstalt="457613" _mstvisible="3"]] ... ... @@ -315,10 +315,8 @@ 315 315 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV 316 316 317 317 318 - 319 319 === 2.4.3 Built-in Temperature === 320 320 321 - 322 322 [[image:image-20220522235639-2.png||_mstalt="431756" _mstvisible="3" height="138" width="722"]] 323 323 324 324 * Temperature: 0x0ABB/100=27.47℃ ... ... @@ -328,19 +328,15 @@ 328 328 * Temperature: (0xF5C6-65536)/100=-26.18℃ 329 329 330 330 331 - 332 332 === 2.4.4 Built-in Humidity === 333 333 334 - 335 335 [[image:image-20220522235639-4.png||_mstalt="432484" _mstvisible="3" height="138" width="722"]] 336 336 337 337 * Humidity: 0x025C/10=60.4% 338 338 339 339 340 - 341 341 === 2.4.5 Ext # === 342 342 343 - 344 344 Bytes for External Sensor: 345 345 346 346 [[image:image-20220523152822-17.png||_mstalt="454545" _mstvisible="3"]] ... ... @@ -372,7 +372,6 @@ 372 372 373 373 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ==== 374 374 375 - 376 376 ((( 377 377 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below: 378 378 ))) ... ... @@ -486,19 +486,15 @@ 486 486 487 487 * (% _msthash="504956" _msttexthash="245037" _mstvisible="4" %)**Status & Ext Byte** 488 488 489 -(% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:520px" %) 490 -|(% style="width:60px" %)**Bits**|(% style="width:90px" %)**7**|(% style="width:100px" %)**6**|(% style="width:90px" %)**5**|(% style="width:100px" %)**4**|(% style="width:60px" %)**[3:0]** 491 -|(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001) 466 +[[image:image-20220523152434-16.png||_mstalt="453921" _mstvisible="3"]] 492 492 493 -* (% style="color:blue" %)**Poll Message Flag**:(%%)1: This message is a poll message reply, 0: means this is a normal uplink.494 -* (% style="color:blue" %)**Sync time OK**:(%%)495 -* (% style="color:blue" %)**Unix Time Request**:(%%)1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)468 +* Poll Message Flag: 1: This message is a poll message reply, 0: means this is a normal uplink. 469 +* Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server. 470 +* Unix Time Request: 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this) 496 496 497 497 498 - 499 499 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ==== 500 500 501 - 502 502 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can 503 503 504 504 be used to power the external ADC sensor; user can control the power on time for this ... ... @@ -507,46 +507,10 @@ 507 507 508 508 AT+EXT=6,timeout (% _msthash="506085" _msttexthash="8782189" _mstvisible="3" style="color:red" %)Time to power this sensor, from 0 ~~ 65535ms 509 509 510 -For example: 511 511 512 -AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value. 513 513 514 - 515 -Or use **downlink command A2** to set the same. 516 - 517 -The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 518 - 519 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 520 - 521 -[[image:image-20220628150112-1.png||height="241" width="285"]] 522 - 523 - 524 -When ADC_IN1 pin is connected to GND or suspended, ADC value is 0 525 - 526 -[[image:image-20220628150714-4.png]] 527 - 528 - 529 -When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output. 530 - 531 -1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V 532 - 533 -[[image:image-20220628151005-5.png]] 534 - 535 - 536 -2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v 537 - 538 -[[image:image-20220628151056-6.png]] 539 - 540 - 541 -3) Within range 542 - 543 -[[image:image-20220628151143-7.png]] 544 - 545 - 546 - 547 547 == 2.5 Show data on Datacake == 548 548 549 - 550 550 ((( 551 551 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 552 552 ))) ... ... @@ -594,7 +594,6 @@ 594 594 595 595 == 2.6 Datalog Feature == 596 596 597 - 598 598 ((( 599 599 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N. 600 600 ))) ... ... @@ -603,17 +603,12 @@ 603 603 604 604 === 2.6.1 Ways to get datalog via LoRaWAN === 605 605 606 - 607 607 There are two methods: 608 608 609 -1. IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specify ingtime range.610 -1. Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will store the sensor data, and it will send all messages after thenetwork recovery.544 +1. IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specify time range. 545 +1. Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will store the sensor data, and it will send all messages after network recover. 611 611 612 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 613 613 614 -[[image:image-20220703111700-2.png||height="381" width="1119"]] 615 - 616 - 617 617 === 2.6.2 Unix TimeStamp === 618 618 619 619 ... ... @@ -636,7 +636,6 @@ 636 636 637 637 === 2.6.3 Set Device Time === 638 638 639 - 640 640 ((( 641 641 There are two ways to set device's time: 642 642 ))) ... ... @@ -654,7 +654,7 @@ 654 654 ))) 655 655 656 656 ((( 657 -(% style="color:red" %) **Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**587 +(% style="color:red" %)Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1. 658 658 ))) 659 659 660 660 ((( ... ... @@ -673,7 +673,6 @@ 673 673 674 674 === 2.6.4 Poll sensor value === 675 675 676 - 677 677 User can poll sensor value based on timestamps from the server. Below is the downlink command. 678 678 679 679 [[image:image-20220523152302-15.png||_mstalt="451581" _mstvisible="3"]] ... ... @@ -691,7 +691,6 @@ 691 691 692 692 === 2.6.5 Datalog Uplink payload === 693 693 694 - 695 695 (% _msthash="315267" _msttexthash="2245087" _mstvisible="1" %) 696 696 The Datalog poll reply uplink will use below payload format. 697 697 ... ... @@ -698,9 +698,6 @@ 698 698 (% _mstvisible="1" %) 699 699 ((( 700 700 (% _mstvisible="2" %) 701 - 702 - 703 -(% _mstvisible="2" %) 704 704 (% _msthash="506080" _msttexthash="451581" _mstvisible="4" %)**Retrieval data payload** 705 705 ))) 706 706 ... ... @@ -828,7 +828,6 @@ 828 828 ))) 829 829 ))) 830 830 831 - 832 832 (% _mstvisible="1" %) 833 833 (% _msthash="315268" _msttexthash="390390" _mstvisible="3" %)**Poll message flag & Ext** 834 834 ... ... @@ -964,7 +964,7 @@ 964 964 (% _mstvisible="1" %) 965 965 ((( 966 966 (% _msthash="506083" _msttexthash="737269" _mstvisible="2" style="text-align: left;" %) 967 - 891 + Stop time 60066DA7= time 21/1/19 05:27:(% _msthash="903005" _msttexthash="9672" _mstvisible="2" %)03 968 968 ))) 969 969 970 970 (% _mstvisible="1" %) ... ... @@ -1061,21 +1061,8 @@ 1061 1061 ))) 1062 1062 ))) 1063 1063 1064 -(% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX** 1065 1065 1066 -Total bytes: 8 bytes 1067 1067 1068 -**Example:**AA0100010001003C 1069 - 1070 -WMOD=01 1071 - 1072 -CITEMP=0001 1073 - 1074 -TEMPlow=0001 1075 - 1076 -TEMPhigh=003C 1077 - 1078 - 1079 1079 == 2.8 LED Indicator == 1080 1080 1081 1081 The LHT65 has a triple color LED which for easy showing different stage . ... ... @@ -1809,7 +1809,7 @@ 1809 1809 [[image:image-20220615154519-3.png||height="672" width="807"]] 1810 1810 1811 1811 1812 -== 6. 7How to use USB-TYPE-C to connect PC to upgrade firmware? ==1723 +== 6.6 How to use USB-TYPE-C to connect PC to upgrade firmware? == 1813 1813 1814 1814 [[image:image-20220623110706-1.png]] 1815 1815
- image-20220628151005-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.3 KB - Content
- image-20220628151056-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.2 KB - Content
- image-20220628151143-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.2 KB - Content
- image-20220703111533-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -694.5 KB - Content
- image-20220703111700-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -369.4 KB - Content