Last modified by Xiaoling on 2023/07/18 10:12

From version 182.1
edited by Bei Jinggeng
on 2022/06/28 15:10
Change comment: Uploaded new attachment "image-20220628151005-5.png", version {1}
To version 189.8
edited by Xiaoling
on 2022/08/08 16:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220613162008-1.png||_mstalt="428142" height="579" width="379"]]
2 +[[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3 3  
4 4  
5 5  
... ... @@ -46,6 +46,7 @@
46 46  
47 47  == 1.2 Features ==
48 48  
49 +
49 49  * Wall mountable
50 50  * LoRaWAN v1.0.3 Class A protocol
51 51  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -70,6 +70,8 @@
70 70  * Long Term Drift: < 0.02 °C/yr
71 71  * Operating Range: -40 ~~ 85 °C
72 72  
74 +
75 +
73 73  **Built-in Humidity Sensor:**
74 74  
75 75  * Resolution: 0.04 %RH
... ... @@ -77,6 +77,8 @@
77 77  * Long Term Drift: < 0.02 °C/yr
78 78  * Operating Range: 0 ~~ 96 %RH
79 79  
83 +
84 +
80 80  **External Temperature Sensor:**
81 81  
82 82  * Resolution: 0.0625 °C
... ... @@ -90,6 +90,7 @@
90 90  
91 91  == 2.1 How does LHT65N work? ==
92 92  
98 +
93 93  (((
94 94  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
95 95  )))
... ... @@ -99,8 +99,10 @@
99 99  )))
100 100  
101 101  
108 +
102 102  == 2.2 How to Activate LHT65N? ==
103 103  
111 +
104 104  (((
105 105  The LHT65N has two working modes:
106 106  )))
... ... @@ -125,6 +125,7 @@
125 125  
126 126  == 2.3 Example to join LoRaWAN network ==
127 127  
136 +
128 128  (% _msthash="315240" _msttexthash="9205482" _mstvisible="1" class="wikigeneratedid" %)
129 129  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
130 130  
... ... @@ -140,6 +140,7 @@
140 140  
141 141  === 2.3.1 Step 1: Create Device n TTN ===
142 142  
152 +
143 143  (((
144 144  Create a device in TTN V3 with the OTAA keys from LHT65N.
145 145  )))
... ... @@ -164,9 +164,10 @@
164 164  [[image:image-20220522232954-5.png||_mstalt="431847" _mstvisible="3"]]
165 165  
166 166  
167 -Note: LHT65N use same payload as LHT65.
168 168  
178 +(% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
169 169  
180 +
170 170  [[image:image-20220522233026-6.png||_mstalt="429403" _mstvisible="3"]]
171 171  
172 172  
... ... @@ -180,6 +180,7 @@
180 180  
181 181  === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
182 182  
194 +
183 183  (((
184 184  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
185 185  )))
... ... @@ -191,6 +191,7 @@
191 191  
192 192  == 2.4 Uplink Payload ==
193 193  
206 +
194 194  (((
195 195  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% _mstvisible="3" style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
196 196  )))
... ... @@ -265,11 +265,13 @@
265 265  
266 266  * The First 6 bytes: has fix meanings for every LHT65N.
267 267  * The 7th byte (EXT #): defines the external sensor model.
268 -* The 8(% _msthash="734578" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) ~~ 11(% _msthash="734579" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there wont be these four bytes.)
281 +* The 8(% _msthash="734578" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) ~~ 11(% _msthash="734579" _msttexthash="21372" _mstvisible="4" %)^^th^^(%%) byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
269 269  
270 270  
284 +
271 271  === 2.4.1 Decoder in TTN V3 ===
272 272  
287 +
273 273  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
274 274  
275 275  Below is the position to put the decoder and LHT65N decoder can be download from here:
... ... @@ -285,6 +285,7 @@
285 285  
286 286  === 2.4.2 BAT-Battery Info ===
287 287  
303 +
288 288  These two bytes of BAT include the battery state and the actually voltage
289 289  
290 290  [[image:image-20220523152839-18.png||_mstalt="457613" _mstvisible="3"]]
... ... @@ -299,8 +299,10 @@
299 299  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
300 300  
301 301  
318 +
302 302  === 2.4.3 Built-in Temperature ===
303 303  
321 +
304 304  [[image:image-20220522235639-2.png||_mstalt="431756" _mstvisible="3" height="138" width="722"]]
305 305  
306 306  * Temperature:  0x0ABB/100=27.47℃
... ... @@ -310,15 +310,19 @@
310 310  * Temperature:  (0xF5C6-65536)/100=-26.18℃
311 311  
312 312  
331 +
313 313  === 2.4.4 Built-in Humidity ===
314 314  
334 +
315 315  [[image:image-20220522235639-4.png||_mstalt="432484" _mstvisible="3" height="138" width="722"]]
316 316  
317 317  * Humidity:    0x025C/10=60.4%
318 318  
319 319  
340 +
320 320  === 2.4.5 Ext # ===
321 321  
343 +
322 322  Bytes for External Sensor:
323 323  
324 324  [[image:image-20220523152822-17.png||_mstalt="454545" _mstvisible="3"]]
... ... @@ -350,6 +350,7 @@
350 350  
351 351  ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
352 352  
375 +
353 353  (((
354 354  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
355 355  )))
... ... @@ -463,15 +463,19 @@
463 463  
464 464  * (% _msthash="504956" _msttexthash="245037" _mstvisible="4" %)**Status & Ext Byte**
465 465  
466 -[[image:image-20220523152434-16.png||_mstalt="453921" _mstvisible="3"]]
489 +(% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:520px" %)
490 +|(% style="width:60px" %)**Bits**|(% style="width:90px" %)**7**|(% style="width:100px" %)**6**|(% style="width:90px" %)**5**|(% style="width:100px" %)**4**|(% style="width:60px" %)**[3:0]**
491 +|(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
467 467  
468 -* Poll Message Flag:  1: This message is a poll message reply, 0: means this is a normal uplink.
469 -* Sync time OK:  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
470 -* Unix Time Request:  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
493 +* (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
494 +* (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
495 +* (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
471 471  
472 472  
498 +
473 473  ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
474 474  
501 +
475 475  In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
476 476  
477 477  be used to power the external ADC sensor; user can control the power on time for this
... ... @@ -480,10 +480,46 @@
480 480  
481 481  AT+EXT=6,timeout  (% _msthash="506085" _msttexthash="8782189" _mstvisible="3" style="color:red" %)Time to power this sensor, from 0 ~~ 65535ms
482 482  
510 +For example:
483 483  
512 +AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
484 484  
514 +
515 +Or use **downlink command A2** to set the same.
516 +
517 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
518 +
519 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
520 +
521 +[[image:image-20220628150112-1.png||height="241" width="285"]]
522 +
523 +
524 +When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
525 +
526 +[[image:image-20220628150714-4.png]]
527 +
528 +
529 +When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
530 +
531 +1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
532 +
533 +[[image:image-20220628151005-5.png]]
534 +
535 +
536 +2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
537 +
538 +[[image:image-20220628151056-6.png]]
539 +
540 +
541 +3) Within range
542 +
543 +[[image:image-20220628151143-7.png]]
544 +
545 +
546 +
485 485  == 2.5 Show data on Datacake ==
486 486  
549 +
487 487  (((
488 488  Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
489 489  )))
... ... @@ -531,6 +531,7 @@
531 531  
532 532  == 2.6 Datalog Feature ==
533 533  
597 +
534 534  (((
535 535  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
536 536  )))
... ... @@ -539,12 +539,17 @@
539 539  
540 540  === 2.6.1 Ways to get datalog via LoRaWAN ===
541 541  
606 +
542 542  There are two methods:
543 543  
544 -1. IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specify time range.
545 -1. Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will store the sensor data, and it will send all messages after network recover.
609 +1. IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specifying time range.
610 +1. Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will store the sensor data, and it will send all messages after the network recovery.
546 546  
612 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
547 547  
614 +[[image:image-20220703111700-2.png||height="381" width="1119"]]
615 +
616 +
548 548  === 2.6.2 Unix TimeStamp ===
549 549  
550 550  
... ... @@ -567,6 +567,7 @@
567 567  
568 568  === 2.6.3 Set Device Time ===
569 569  
639 +
570 570  (((
571 571  There are two ways to set device's time:
572 572  )))
... ... @@ -584,7 +584,7 @@
584 584  )))
585 585  
586 586  (((
587 -(% style="color:red" %)Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesnt support. If server doesnt support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.
657 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
588 588  )))
589 589  
590 590  (((
... ... @@ -603,6 +603,7 @@
603 603  
604 604  === 2.6.4 Poll sensor value ===
605 605  
676 +
606 606  User can poll sensor value based on timestamps from the server. Below is the downlink command.
607 607  
608 608  [[image:image-20220523152302-15.png||_mstalt="451581" _mstvisible="3"]]
... ... @@ -620,6 +620,7 @@
620 620  
621 621  === 2.6.5 Datalog Uplink payload ===
622 622  
694 +
623 623  (% _msthash="315267" _msttexthash="2245087" _mstvisible="1" %)
624 624  The Datalog poll reply uplink will use below payload format.
625 625  
... ... @@ -626,6 +626,9 @@
626 626  (% _mstvisible="1" %)
627 627  (((
628 628  (% _mstvisible="2" %)
701 +
702 +
703 +(% _mstvisible="2" %)
629 629  (% _msthash="506080" _msttexthash="451581" _mstvisible="4" %)**Retrieval data payload**
630 630  )))
631 631  
... ... @@ -753,6 +753,7 @@
753 753  )))
754 754  )))
755 755  
831 +
756 756  (% _mstvisible="1" %)
757 757  (% _msthash="315268" _msttexthash="390390" _mstvisible="3" %)**Poll message flag & Ext**
758 758  
... ... @@ -888,7 +888,7 @@
888 888  (% _mstvisible="1" %)
889 889  (((
890 890  (% _msthash="506083" _msttexthash="737269" _mstvisible="2" style="text-align: left;" %)
891 - Stop time 60066DA7= time 21/1/19 05:27:(% _msthash="903005" _msttexthash="9672" _mstvisible="2" %)03
967 + Stop time 60066DA7= time 21/1/19 05:27:(% _msthash="903005" _msttexthash="9672" _mstvisible="2" %)03
892 892  )))
893 893  
894 894  (% _mstvisible="1" %)
... ... @@ -985,8 +985,21 @@
985 985  )))
986 986  )))
987 987  
1064 +(% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
988 988  
1066 +Total bytes: 8 bytes
989 989  
1068 +**Example:**AA0100010001003C
1069 +
1070 +WMOD=01
1071 +
1072 +CITEMP=0001
1073 +
1074 +TEMPlow=0001
1075 +
1076 +TEMPhigh=003C
1077 +
1078 +
990 990  == 2.8 LED Indicator ==
991 991  
992 992  The LHT65 has a triple color LED which for easy showing different stage .
... ... @@ -1720,7 +1720,7 @@
1720 1720  [[image:image-20220615154519-3.png||height="672" width="807"]]
1721 1721  
1722 1722  
1723 -== 6.6 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1812 +== 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1724 1724  
1725 1725  [[image:image-20220623110706-1.png]]
1726 1726  
image-20220628151056-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +8.2 KB
Content
image-20220628151143-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +7.2 KB
Content
image-20220703111533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +694.5 KB
Content
image-20220703111700-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +369.4 KB
Content