Version 261.14 by Xiaoling on 2023/07/17 18:02

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 O modo Timestamp é projetado para LHT65N com sonda E3, ele enviará a carga útil de uplink com timestamp Unix. Com a limitação de 11 bytes (distância máxima da banda AU915/US915/AS923), o modo de carimbo de hora será falta de campo de tensão BAT, em vez disso, ele mostra o status da bateria. A carga útil é a seguinte:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)Valor|(% style="width:71px" %)Temperatura externa|(% style="width:99px" %)(((
351 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
352 )))|(% style="width:132px" %)(((
353 Estado MTD & [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
354 )))|(% style="width:54px" %)Estado & Ext|(% style="width:64px" %)(((
355 [[Carimbo Horário do Unix>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Status da bateria e umidade interna**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 269px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[15:14]|=(% style="width: 121px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[11:0]
362 |(% style="width:67px" %)Valor|(% style="width:269px" %)Estado MTD
363 00 b): Ultra baixo ( MTD <= 2,50v)
364 01 b): Baixo (2,50v <=MTD <= 2,55v)
365 10 b): OK (2,55v <= MTD <=2,65v)
366 11 b): Bom (MTD >= 2,65v)|(% style="width:121px" %)(((
367 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
368 )))
369
370 * ** Status e byte externo**
371
372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
373 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
374 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)Sinalizador Nenhum-ACK|(% style="width:146px" %)Mensagem de Enquete FLAG|(% style="width:109px" %)Sincronizar hora OK|(% style="width:143px" %)Solicitação de Horário Unix |(% style="width:106px" %)Ext: 0b(1001)
375
376
377 * **Bandeira da mensagem da enquete:  **1: Esta mensagem é uma resposta da mensagem da enquete, 0: significa que esta é uma ligação uplink normal.
378 * **Tempo de sincronização OK:  **1: Definir tempo ok, 0: N/A. Após o envio da solicitação SYNC, LHT65N definirá este bit como 0 até obter o carimbo de hora do servidor de aplicativos.
379 * **Unix Time Request:  **1: Request server downlink Unix time, 0: N/A. Neste modo, o LHT65N definirá este bit para 1 a cada 10 dias para solicitar um tempo SYNC. (AT+SYNCMOD para definir isto)
380
381
382
383
384 ==== 2.4.6.3 Ext~=6, Sensor ADC (use com cabo E2) ====
385
386
387 Neste modo, o usuário pode conectar sensor ADC externo para verificar o valor ADC. O 3V3_OUT pode ser usado para alimentar o sensor ADC externo; o usuário pode controlar o poder no tempo para isso.
388
389 (% style="color:blue" %)**sensor configurando:**
390
391 **AT+EXT=6, **timeout Tempo para ligar este sensor, de 0 ~~ 65535ms
392
393 **Por exemplo:**
394
395 AT+EXT=6.1000 alimentará este sensor por 1000ms antes de amostrar o valor ADC.
396
397
398 Ou use o comando downlink A2 para definir o mesmo.
399 A faixa de medição do nó é de apenas cerca de 0.1V a 1.1V A resolução da tensão é de cerca de 0.24mv.
400 Quando a tensão de saída medida do sensor não está dentro da faixa de 0,1V e 1,1V, o terminal de tensão de saída do sensor deve ser dividido O exemplo na figura a seguir é reduzir a tensão de saída do sensor por três vezes Se for necessário reduzir mais vezes, calcule de acordo com a fórmula na figura e conecte a resistência correspondente em série.
401
402 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
403
404
405 Quando o pino ADC_IN1 é conectado ao GND ou suspenso, o valor de ADC é 0
406
407 [[image:image-20220628150714-4.png||_mstalt="431054"]]
408
409
410 Quando a tensão coletada por ADC_IN1 for menor do que a faixa mínima, a faixa mínima será usada como saída; Da mesma forma, quando a tensão coletada é maior do que a faixa máxima, a faixa máxima será usada como saída.
411
412
413 1) A faixa mínima é de cerca de 0.1V. Cada chip tem calibração interna, assim que este valor está perto de 0.1V
414
415 [[image:image-20220628151005-5.png||_mstalt="429546"]]
416
417
418 2) A faixa máxima é de cerca de 1.1V. Cada chip tem calibração interna, assim que este valor está perto de 1.1v
419
420 [[image:image-20220628151056-6.png||_mstalt="431873"]]
421
422
423 3) Dentro do alcance
424
425 [[image:image-20220628151143-7.png||_mstalt="431210"]]
426
427
428
429 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (desde Firmware v1.3)(% style="display:none" %) (%%) ====
430
431 [[image:image-20230717151328-8.png]]
432
433 (% style="display:none" %) (%%)
434
435
436
437 (% style="color:blue" %)**Ext=2, Sensor de temperatura (TMP117):**
438
439 [[image:image-20220906102307-7.png||_mstalt="430443"]]
440
441
442 (% style="color:blue" %)**Modo de Interrupção e Modo de Contagem:**(% style="color:blue; display:none" %)** **
443
444 O cabo externo NE2 pode ser usado para MOD4 e MOD8
445
446
447
448 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (desde Firmware v1.4.1) ====
449
450
451
452 [[image:image-20230717151245-7.png]]
453
454 (% style="color:blue" %)**Ext=11, sensor de temperatura e umidade (SHT31):**
455
456 [[image:SHT31.png]]
457
458
459
460 ==== 2.4.6.6 Ext~=4 Interrupt Mode (Desde Firmware v1.3) ====
461
462
463 (% style="color:red" %)**Nota: Neste modo, a saída de 3.3v estará sempre ligada. LHT65N enviará um uplink quando houver um gatilho.**
464
465
466 (% style="color:blue" %)**O modo de interrupção pode ser usado para conectar-se a sensores externos de interrupção, tais como:**
467
468 (% style="color:#037691" %)**Caso 1: sensor de porta.** (%%)3.3v Out para tal sensor é apenas detectar Abrir / Fechar.
469
470 No estado aberto, o consumo de energia é o mesmo que se não houver nenhuma sonda
471
472 No estado Close, o consumo de energia será 3uA maior do que o normal.
473
474 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
475
476
477 Ext=4, Sensor de Interrupção:
478
479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
480 |(% style="width:101px" %)(((
481 **AT+EXT=4,1**
482 )))|(% style="width:395px" %)Pacote de uplink enviado na interrupção ascendente e caindo
483 |(% style="width:101px" %)(((
484 **AT+EXT=4,2**
485 )))|(% style="width:395px" %)Enviou um pacote de ligação ascendente apenas na interrupção em queda
486 |(% style="width:101px" %)(((
487 **AT+EXT=4,3**
488 )))|(% style="width:395px" %)Enviou o pacote de uplink apenas na interrupção crescente
489
490 Acionador pela borda de queda:
491
492 [[image:image-20220906101145-2.png||_mstalt="428324"]]
493
494
495 Trigger by raise edge:
496
497 [[image:image-20220906101145-3.png||_mstalt="428688"]]
498
499
500
501 ==== 2.4.6.7 Ext~=8 Modo de contagem (desde Firmware v1.3) ====
502
503
504 (% style="color:red" %)**Nota: Neste modo, a saída de 3,3 V estará sempre ligada. O LHT65N contará para cada interrupção e uplink periodicamente.**
505
506
507 (% style="color:blue" %)**Caso 1: Sensor de fluxo de baixo consumo de energia, esse sensor de fluxo tem saída de pulso e o consumo de energia no nível uA e pode ser alimentado
508 por LHT65N.**
509
510 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
511
512
513 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
514
515 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
516
517
518 Ext=8, Counting Sensor ( 4 bytes):
519
520 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
521 |(% style="width:131px" %)(((
522 **AT+EXT=8,0**
523 )))|(% style="width:195px" %)(((
524 **Count at falling interrupt**
525 )))
526 |(% style="width:131px" %)(((
527 **AT+EXT=8,1**
528 )))|(% style="width:195px" %)(((
529 **Count at rising interrupt**
530 )))
531 |(% style="width:131px" %)(((
532 **AT+SETCNT=60**
533 )))|(% style="width:195px" %)(((
534 **Sent current count to 60**
535 )))
536
537 [[image:image-20220906101320-6.png||_mstalt="428064"]]
538
539
540 (% style="color:blue" %)**A2 downlink Command:**
541
542 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
543
544 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
545
546 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
547
548 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
549
550 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
551
552
553 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
554
555
556 (((
557 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
558 )))
559
560 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
561 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
562 **Size(bytes)**
563 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
564 **2**
565 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
566 **2**
567 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
568 **2**
569 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
570 **1**
571 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
572 **4**
573 )))
574 |(% style="width:110px" %)(((
575 **Value**
576 )))|(% style="width:71px" %)(((
577 External temperature
578 )))|(% style="width:99px" %)(((
579 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
580 )))|(% style="width:132px" %)(((
581 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
582 )))|(% style="width:54px" %)(((
583 Status & Ext
584 )))|(% style="width:64px" %)(((
585 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
586 )))
587
588 * **Battery status & Built-in Humidity**
589
590 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
591 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
592 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
593 BAT Status
594 00(b): Ultra Low ( BAT <= 2.50v)
595 01(b): Low  (2.50v <=BAT <= 2.55v)
596 10(b): OK   (2.55v <= BAT <=2.65v)
597 11(b): Good   (BAT >= 2.65v)
598 )))|(% style="width:132px" %)(((
599 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
600 )))
601
602 * **Status & Ext Byte**
603
604 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
605 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
606 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
607
608 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
609 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
610 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
611
612
613 == 2.5 Show data on Datacake ==
614
615
616 (((
617 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
618 )))
619
620
621 (((
622 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
623 )))
624
625 (((
626 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
627 )))
628
629
630 (((
631 Add Datacake:
632 )))
633
634
635 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
636
637
638
639 Select default key as Access Key:
640
641
642 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
643
644
645 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
646
647
648 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
649
650
651 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
652
653
654 == 2.6 Datalog Feature ==
655
656
657 (((
658 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
659 )))
660
661
662 === 2.6.1 Ways to get datalog via LoRaWAN ===
663
664
665 There are two methods:
666
667 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
668
669
670 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
671
672
673 (% style="color:red" %)**Note for method 2:**
674
675 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
676 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
677
678 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
679
680
681 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
682
683
684 === 2.6.2 Unix TimeStamp ===
685
686
687 LHT65N uses Unix TimeStamp format based on
688
689
690 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
691
692
693
694 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
695
696 Below is the converter example
697
698 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
699
700
701 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
702
703
704 === 2.6.3 Set Device Time ===
705
706
707 (((
708 (% style="color:blue" %)**There are two ways to set device's time:**
709 )))
710
711 (((
712 **1.  Through LoRaWAN MAC Command (Default settings)**
713 )))
714
715 (((
716 User need to set SYNCMOD=1 to enable sync time via MAC command.
717 )))
718
719 (((
720 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
721 )))
722
723 (((
724 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
725 )))
726
727
728 (((
729 **2. Manually Set Time**
730 )))
731
732 (((
733 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
734 )))
735
736
737 === 2.6.4 Poll sensor value ===
738
739
740 User can poll sensor value based on timestamps from the server. Below is the downlink command.
741
742 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
743 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
744 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
745
746 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
747
748 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
749
750 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
751
752 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
753
754
755 === 2.6.5 Datalog Uplink payload ===
756
757
758 The Datalog poll reply uplink will use below payload format.
759
760 **Retrieval data payload:**
761
762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
763 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
764 **Size(bytes)**
765 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
766 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
767
768 **Poll message flag & Ext:**
769
770 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
771
772 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
773
774 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
775
776 * Poll Message Flag is set to 1.
777
778 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
779
780 For example, in US915 band, the max payload for different DR is:
781
782 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
783
784 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
785
786 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
787
788 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
789
790 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
791
792
793 **Example:**
794
795 If LHT65N has below data inside Flash:
796
797 [[image:image-20230426171833-4.png]]
798
799
800 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
801
802 Where : Start time: 60065F97 = time 21/1/19 04:27:03
803
804 Stop time: 60066DA7= time 21/1/19 05:27:03
805
806
807 **LHT65N will uplink this payload.**
808
809 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
810
811
812 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
813
814 Where the first 11 bytes is for the first entry:
815
816 7FFF089801464160065F97
817
818 Ext sensor data=0x7FFF/100=327.67
819
820 Temp=0x088E/100=22.00
821
822 Hum=0x014B/10=32.6
823
824 poll message flag & Ext=0x41,means reply data,Ext=1
825
826 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
827
828
829 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
830
831
832 (((
833 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
834 )))
835
836 (((
837 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
838
839
840 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
841
842
843 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
844
845 (((
846 (% class="box infomessage" %)
847 (((
848 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
849
850 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
851
852 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
853
854 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
855
856 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
857
858 **AT+LEDALARM=1** :       Enable LED visual Alarm.
859 )))
860 )))
861
862 (% style="color:#4f81bd" %)**Downlink Command:**
863
864 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
865
866 AT+CITEMP=1 : A60001
867
868 AT+ARTEMP=1,60  :  A70001003C
869
870 AT+ARTEMP=-16,60 :  A7FFF0003C
871
872 AT+LEDALARM=1  :  3601
873
874
875 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
876
877 Total bytes: 8 bytes
878
879 **Example: **AA0100010001003C
880
881 WMOD=01
882
883 CITEMP=0001
884
885 TEMPlow=0001
886
887 TEMPhigh=003C
888
889
890 **DS18B20 and TMP117 Threshold Alarm**
891
892 **~ AT+WMOD=1,60,-10,20**
893
894 (% style="color:#4f81bd" %)**Downlink Command:**
895
896 **Example: **A5013CFC180014
897
898 MOD=01
899
900 CITEMP=3C(S)
901
902 TEMPlow=FC18
903
904 TEMPhigh=0014
905
906
907 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
908
909 **AT+WMOD=2,60,5** 
910
911 (% style="color:#4f81bd" %)**Downlink Command:**
912
913 **Example: **A5023C05
914
915 MOD=02
916
917 CITEMP=3C(S)
918
919 temperature fluctuation=05
920
921
922 **Sampling multiple times and uplink together**
923
924 **AT+WMOD=3,1,60,20,-16,32,1**   
925
926 Explain:
927
928 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
929 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
930 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
931 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
932 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
933 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
934
935 (% style="color:#4f81bd" %)**Downlink Command:**
936
937 **Example: **A50301003C14FFF0002001
938
939 MOD=03
940
941 TEMP=DS18B20
942
943 CITEMP=003C(S)
944
945 Total number of acquisitions=14
946
947 TEMPlow=FFF0
948
949 TEMPhigh=0020
950
951 ARTEMP=01
952
953
954 **Uplink payload( Fport=3)**
955
956 **Example: CBEA**01**0992**//0A41//**09C4**
957
958 BatV=CBEA
959
960 TEMP=DS18B20
961
962 Temp1=0992  ~/~/ 24.50℃
963
964 Temp2=0A41  ~/~/ 26.25℃
965
966 Temp3=09C4  ~/~/ 25.00℃
967
968 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
969
970 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
971 )))
972
973
974 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
975
976
977 (% class="box infomessage" %)
978 (((
979 (((
980 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
981 )))
982
983 (((
984 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
985 )))
986
987 (((
988 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
989 )))
990
991 (((
992 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
993 )))
994
995 (((
996 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
997 )))
998 )))
999
1000 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1001
1002 Total bytes: 8 bytes
1003
1004 **Example:**AA0100010001003C
1005
1006 WMOD=01
1007
1008 CITEMP=0001
1009
1010 TEMPlow=0001
1011
1012 TEMPhigh=003C
1013
1014
1015 == 2.8 LED Indicator ==
1016
1017
1018 The LHT65 has a triple color LED which for easy showing different stage .
1019
1020 While user press ACT button, the LED will work as per LED status with ACT button.
1021
1022 In a normal working state:
1023
1024 * For each uplink, the BLUE LED or RED LED will blink once.
1025 BLUE LED when external sensor is connected.
1026 * RED LED when external sensor is not connected
1027 * For each success downlink, the PURPLE LED will blink once
1028
1029
1030 == 2.9 installation ==
1031
1032
1033 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1034
1035
1036 = 3. Sensors and Accessories =
1037
1038 == 3.1 E2 Extension Cable ==
1039
1040
1041 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1042
1043
1044 **1m long breakout cable for LHT65N. Features:**
1045
1046 * (((
1047 Use for AT Command, works for both LHT52/LHT65N
1048 )))
1049 * (((
1050 Update firmware for LHT65N, works for both LHT52/LHT65N
1051 )))
1052 * (((
1053 Supports ADC mode to monitor external ADC
1054 )))
1055 * (((
1056 Supports Interrupt mode
1057 )))
1058 * (((
1059 Exposed All pins from the LHT65N Type-C connector.
1060
1061
1062
1063 )))
1064
1065 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1066
1067
1068 == 3.2 E3 Temperature Probe ==
1069
1070
1071 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1072
1073
1074 Temperature sensor with 2 meters cable long
1075
1076 * Resolution: 0.0625 °C
1077 * ±0.5°C accuracy from -10°C to +85°C
1078 * ±2°C accuracy from -55°C to +125°C
1079 * Operating Range: -40 ~~ 125 °C
1080 * Working voltage 2.35v ~~ 5v
1081
1082 == 3.3 E31F Temperature Probe ==
1083
1084
1085 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1086
1087
1088 Temperature sensor with 1 meters cable long
1089
1090
1091 **Built-in Temperature Sensor:**
1092
1093 * Resolution: 0.01 °C
1094 * Accuracy Tolerance : Typ ±0.3 °C
1095 * Long Term Drift: < 0.02 °C/yr
1096 * Operating Range: -40 ~~ 80 °C
1097
1098 **Built-in Humidity Sensor:**
1099
1100 * Resolution: 0.04 % RH
1101 * Accuracy Tolerance : Typ ±3 % RH
1102 * Long Term Drift: < 0.02 °C/yr
1103 * Operating Range: 0 ~~ 96 % RH
1104
1105 **External Temperature Sensor :**
1106
1107 * Resolution: 0.01 °C
1108 * Accuracy Tolerance : Typical ±0.3 °C
1109 * Long Term Drift: < 0.02 °C/yr
1110 * Operating Range: -40 ~~ 125 °C
1111
1112 **External Humidity Sensor :**
1113
1114 * Resolution: 0.04 % RH
1115 * Accuracy Tolerance : Typ ±3 % RH
1116 * Long Term Drift: < 0.02 °C/yr
1117 * Operating Range: 0 ~~ 96 % RH
1118
1119
1120 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1121
1122
1123 (((
1124 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1125 )))
1126
1127 * (((
1128 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1129 )))
1130
1131 * (((
1132 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1133 )))
1134
1135 (((
1136 There are two kinds of commands to configure LHT65N, they are:
1137 )))
1138
1139 * (((
1140 (% style="color:#4f81bd" %)**General Commands**.
1141 )))
1142
1143 (((
1144 These commands are to configure:
1145 )))
1146
1147 1. (((
1148 General system settings like: uplink interval.
1149 )))
1150 1. (((
1151 LoRaWAN protocol & radio-related commands.
1152 )))
1153
1154 (((
1155 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1156 )))
1157
1158 * (((
1159 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1160 )))
1161
1162 (((
1163 These commands are only valid for LHT65N, as below:
1164 )))
1165
1166
1167 == 4.1 Set Transmit Interval Time ==
1168
1169
1170 Feature: Change LoRaWAN End Node Transmit Interval.
1171
1172
1173 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1174
1175 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1176 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1177 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1178 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1179
1180 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1181
1182 Format: Command Code (0x01) followed by 3 bytes time value.
1183
1184 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1185
1186 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1187
1188 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1189
1190
1191 == 4.2 Set External Sensor Mode ==
1192
1193
1194 Feature: Change External Sensor Mode.
1195
1196 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1197
1198 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1199 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1200 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1201 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1202 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1203
1204 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1205
1206 Total bytes: 2 ~~ 5 bytes
1207
1208 **Example:**
1209
1210 * 0xA201: Set external sensor type to E1
1211
1212 * 0xA209: Same as AT+EXT=9
1213
1214 * 0xA20702003c: Same as AT+SETCNT=60
1215
1216
1217 == 4.3 Enable/Disable uplink Temperature probe ID ==
1218
1219
1220 (((
1221 Feature: If PID is enabled, device will send the temperature probe ID on:
1222 )))
1223
1224 * (((
1225 First Packet after OTAA Join
1226 )))
1227 * (((
1228 Every 24 hours since the first packet.
1229 )))
1230
1231 (((
1232 PID is default set to disable (0)
1233
1234
1235 )))
1236
1237 (% style="color:#4f81bd" %)**AT Command:**
1238
1239 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1240 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1241 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1242
1243 (% style="color:#4f81bd" %)**Downlink Command:**
1244
1245 * **0xA800**  **~-~->** AT+PID=0
1246 * **0xA801**     **~-~->** AT+PID=1
1247
1248
1249 == 4.4 Set Password ==
1250
1251
1252 Feature: Set device password, max 9 digits
1253
1254 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1255
1256 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1257 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1258 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1259 123456
1260
1261 OK
1262 )))
1263 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1264
1265 (% style="color:#4f81bd" %)**Downlink Command:**
1266
1267 No downlink command for this feature.
1268
1269
1270 == 4.5 Quit AT Command ==
1271
1272
1273 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1274
1275 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1276
1277 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1278 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1279 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1280
1281 (% style="color:#4f81bd" %)**Downlink Command:**
1282
1283 No downlink command for this feature.
1284
1285
1286 == 4.6 Set to sleep mode ==
1287
1288
1289 Feature: Set device to sleep mode
1290
1291 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1292 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1293
1294 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1295
1296 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1297 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1298 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1299 Clear all stored sensor data…
1300
1301 OK
1302 )))
1303
1304 (% style="color:#4f81bd" %)**Downlink Command:**
1305
1306 * There is no downlink command to set to Sleep mode.
1307
1308
1309 == 4.7 Set system time ==
1310
1311
1312 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1313
1314 (% style="color:#4f81bd" %)**AT Command:**
1315
1316 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1317 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1318 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1319 OK
1320
1321 Set System time to 2021-01-20 00:59:12
1322 )))
1323
1324 (% style="color:#4f81bd" %)**Downlink Command:**
1325
1326 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1327
1328
1329 == 4.8 Set Time Sync Mode ==
1330
1331
1332 (((
1333 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1334 )))
1335
1336 (((
1337 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1338 )))
1339
1340 (% style="color:#4f81bd" %)**AT Command:**
1341
1342 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1343 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1344 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1345
1346 (% style="color:#4f81bd" %)**Downlink Command:**
1347
1348 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1349 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1350
1351
1352 == 4.9 Set Time Sync Interval ==
1353
1354
1355 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1356
1357 (% style="color:#4f81bd" %)**AT Command:**
1358
1359 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1360 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1361 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1362
1363 (% style="color:#4f81bd" %)**Downlink Command:**
1364
1365 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1366
1367
1368 == 4.10 Print data entries base on page. ==
1369
1370
1371 Feature: Print the sector data from start page to stop page (max is 416 pages).
1372
1373 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1374
1375 [[image:image-20230426164330-2.png]]
1376
1377 (% style="color:#4f81bd" %)**Downlink Command:**
1378
1379 No downlink commands for feature
1380
1381
1382 == 4.11 Print last few data entries. ==
1383
1384
1385 Feature: Print the last few data entries
1386
1387 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1388
1389 [[image:image-20230426164932-3.png]]
1390
1391 (% style="color:#4f81bd" %)**Downlink Command:**
1392
1393 No downlink commands for feature
1394
1395
1396 == 4.12 Clear Flash Record ==
1397
1398
1399 Feature: Clear flash storage for data log feature.
1400
1401 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1402
1403 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1404 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1405 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1406 Clear all stored sensor data…
1407
1408 OK
1409 )))
1410
1411 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1412
1413 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1414
1415
1416 == 4.13 Auto Send None-ACK messages ==
1417
1418
1419 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1420
1421 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1422
1423 The default factory setting is 0
1424
1425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1426 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1427 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1428
1429 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1430
1431 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1432
1433
1434 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1435
1436
1437 Feature: Set internal and external temperature sensor alarms.
1438
1439 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1440 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1441 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1442
1443 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1444
1445 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1446
1447 0): Cancel
1448
1449 1): Threshold alarm
1450
1451 2): Fluctuation alarm
1452
1453
1454 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1455
1456 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1457
1458
1459 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1460
1461 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1462
1463 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1464
1465
1466 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1467
1468 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1469
1470 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1471
1472
1473 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1474
1475 0xA5 00 ~-~- AT+WMOD=0.
1476
1477 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1478
1479 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1480
1481 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1482
1483 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1484
1485
1486 = 5. Battery & How to replace =
1487
1488 == 5.1 Battery Type ==
1489
1490
1491 (((
1492 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1493 )))
1494
1495 (((
1496 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1497
1498
1499 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1500 )))
1501
1502 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1503
1504
1505 == 5.2 Replace Battery ==
1506
1507
1508 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1509
1510 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1511
1512
1513 == 5.3 Battery Life Analyze ==
1514
1515
1516 (((
1517 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1518 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1519 )))
1520
1521
1522 (((
1523 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1524 )))
1525
1526
1527 = 6. FAQ =
1528
1529 == 6.1 How to use AT Command? ==
1530
1531
1532 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1533
1534 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1535
1536
1537 **Connection:**
1538
1539 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1540 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1541 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1542
1543 (((
1544 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1545
1546 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1547 )))
1548
1549
1550 Input password and ATZ to activate LHT65N,As shown below:
1551
1552 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1553
1554
1555 AT Command List is as below:
1556
1557 AT+<CMD>? :  Help on <CMD>
1558
1559 AT+<CMD> :  Run <CMD>
1560
1561 AT+<CMD>=<value> :  Set the value
1562
1563 AT+<CMD>=? :  Get the value
1564
1565 AT+DEBUG:  Set more info output
1566
1567 ATZ:  Trig a reset of the MCU
1568
1569 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1570
1571 AT+DEUI:  Get or Set the Device EUI
1572
1573 AT+DADDR:  Get or Set the Device Address
1574
1575 AT+APPKEY:  Get or Set the Application Key
1576
1577 AT+NWKSKEY:  Get or Set the Network Session Key
1578
1579 AT+APPSKEY:  Get or Set the Application Session Key
1580
1581 AT+APPEUI:  Get or Set the Application EUI
1582
1583 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1584
1585 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1586
1587 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1588
1589 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1590
1591 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1592
1593 AT+RX2FQ:  Get or Set the Rx2 window frequency
1594
1595 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1596
1597 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1598
1599 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1600
1601 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1602
1603 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1604
1605 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1606
1607 AT+NWKID:  Get or Set the Network ID
1608
1609 AT+FCU:  Get or Set the Frame Counter Uplink
1610
1611 AT+FCD:  Get or Set the Frame Counter Downlink
1612
1613 AT+CLASS:  Get or Set the Device Class
1614
1615 AT+JOIN:  Join network
1616
1617 AT+NJS:  Get the join status
1618
1619 AT+SENDB:  Send hexadecimal data along with the application port
1620
1621 AT+SEND:  Send text data along with the application port
1622
1623 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1624
1625 AT+RECV:  Print last received data in raw format
1626
1627 AT+VER:  Get current image version and Frequency Band
1628
1629 AT+CFM:  Get or Set the confirmation mode (0-1)
1630
1631 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1632
1633 AT+SNR:  Get the SNR of the last received packet
1634
1635 AT+RSSI:  Get the RSSI of the last received packet
1636
1637 AT+TDC:  Get or set the application data transmission interval in ms
1638
1639 AT+PORT:  Get or set the application port
1640
1641 AT+DISAT:  Disable AT commands
1642
1643 AT+PWORD: Set password, max 9 digits
1644
1645 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1646
1647 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1648
1649 AT+PDTA:  Print the sector data from start page to stop page
1650
1651 AT+PLDTA:  Print the last few sets of data
1652
1653 AT+CLRDTA:  Clear the storage, record position back to 1st
1654
1655 AT+SLEEP:  Set sleep mode
1656
1657 AT+EXT:  Get or Set external sensor model
1658
1659 AT+BAT:  Get the current battery voltage in mV
1660
1661 AT+CFG:  Print all configurations
1662
1663 AT+WMOD:  Get or Set Work Mode
1664
1665 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1666
1667 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1668
1669 AT+SETCNT:  Set the count at present
1670
1671 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1672
1673 AT+RPL:  Get or set response level
1674
1675 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1676
1677 AT+LEAPSEC:  Get or Set Leap Second
1678
1679 AT+SYNCMOD:  Get or Set time synchronization method
1680
1681 AT+SYNCTDC:  Get or set time synchronization interval in day
1682
1683 AT+PID:  Get or set the PID
1684
1685
1686 == 6.2 Where to use AT commands and Downlink commands ==
1687
1688
1689 **AT commands: **
1690
1691 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1692
1693
1694 **Downlink commands:**
1695
1696
1697 (% style="color:blue" %)**TTN:**
1698
1699 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1700
1701
1702
1703 (% style="color:blue" %)**Helium: **
1704
1705 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1706
1707
1708
1709 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1710
1711
1712 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1713
1714
1715 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1716
1717
1718
1719 (% style="color:blue" %)**Aws:**
1720
1721 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1722
1723
1724 == 6.3 How to change the uplink interval? ==
1725
1726
1727 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1728
1729
1730 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1731
1732
1733 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1734
1735 [[image:1655802313617-381.png||_mstalt="293917"]]
1736
1737
1738 (((
1739 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1740 )))
1741
1742
1743 Input password and ATZ to activate LHT65N, As shown below:
1744
1745 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1746
1747
1748 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1749
1750
1751 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1752
1753
1754 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1755
1756 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1757
1758
1759
1760 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1761
1762 First connect the four lines;(% style="display:none" %)
1763
1764 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1765
1766
1767 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1768
1769 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1770
1771
1772
1773 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1774
1775 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1776
1777
1778 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1779
1780
1781 When this interface appears, it indicates that the download has been completed.
1782
1783 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1784
1785
1786 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1787
1788
1789 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1790
1791
1792 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1793
1794
1795 **UART Port of LHT65N:**
1796
1797 * (% class="mark" %)**PB0: RXD**
1798 * (% class="mark" %)**PB1: TXD**
1799 * (% class="mark" %)**GND**
1800
1801 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1802
1803
1804 (((
1805 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1806 )))
1807
1808
1809 Input password and ATZ to activate LHT65N,As shown below:
1810
1811 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1812
1813
1814 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1815
1816
1817 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1818
1819
1820 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1821
1822 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1823
1824
1825
1826 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1827
1828 First connect the four lines;
1829
1830 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1831
1832 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1833
1834
1835
1836 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1837
1838 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1839
1840
1841 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1842
1843
1844 When this interface appears, it indicates that the download has been completed.
1845
1846 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1847
1848
1849 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1850
1851
1852 == 6.8 Why can't I see the datalog information ==
1853
1854
1855 ~1. The time is not aligned, and the correct query command is not used.
1856
1857 2. Decoder error, did not parse the datalog data, the data was filtered.
1858
1859
1860 = 7. Order Info =
1861
1862
1863 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1864
1865 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1866
1867 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1868 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1869 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1870 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1871 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1872 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1873 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1874 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1875
1876 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1877
1878 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1879
1880
1881 = 8. Packing Info =
1882
1883
1884 **Package Includes**:
1885
1886 * LHT65N Temperature & Humidity Sensor x 1
1887 * Optional external sensor
1888
1889 **Dimension and weight**:
1890
1891 * Device Size:  10 x 10 x 3.5 mm
1892 * Device Weight: 120.5g
1893
1894
1895 = 9. Reference material =
1896
1897
1898 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1899
1900
1901 = 10. FCC Warning =
1902
1903
1904 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1905
1906 (1) This device may not cause harmful interference;
1907
1908 (2) this device must accept any interference received, including interference that may cause undesired operation.