Version 261.12 by Xiaoling on 2023/07/17 17:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 O modo Timestamp é projetado para LHT65N com sonda E3, ele enviará a carga útil de uplink com timestamp Unix. Com a limitação de 11 bytes (distância máxima da banda AU915/US915/AS923), o modo de carimbo de hora será falta de campo de tensão BAT, em vez disso, ele mostra o status da bateria. A carga útil é a seguinte:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)Valor|(% style="width:71px" %)Temperatura externa|(% style="width:99px" %)(((
351 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
352 )))|(% style="width:132px" %)(((
353 Estado MTD & [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
354 )))|(% style="width:54px" %)Estado & Ext|(% style="width:64px" %)(((
355 [[Carimbo Horário do Unix>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Status da bateria e umidade interna**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 269px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[15:14]|=(% style="width: 121px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)[11:0]
362 |(% style="width:67px" %)Valor|(% style="width:269px" %)Estado MTD
363 00 b): Ultra baixo ( MTD <= 2,50v)
364 01 b): Baixo (2,50v <=MTD <= 2,55v)
365 10 b): OK (2,55v <= MTD <=2,65v)
366 11 b): Bom (MTD >= 2,65v)|(% style="width:121px" %)(((
367 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
368 )))
369
370 * ** Status e byte externo**
371
372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
373 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
374 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)Sinalizador Nenhum-ACK|(% style="width:146px" %)Mensagem de Enquete FLAG|(% style="width:109px" %)Sincronizar hora OK|(% style="width:143px" %)Solicitação de Horário Unix |(% style="width:106px" %)Ext: 0b(1001)
375
376
377 * **Bandeira da mensagem da enquete:  **1: Esta mensagem é uma resposta da mensagem da enquete, 0: significa que esta é uma ligação uplink normal.
378 * **Tempo de sincronização OK:  **1: Definir tempo ok, 0: N/A. Após o envio da solicitação SYNC, LHT65N definirá este bit como 0 até obter o carimbo de hora do servidor de aplicativos.
379 * **Unix Time Request:  **1: Request server downlink Unix time, 0: N/A. Neste modo, o LHT65N definirá este bit para 1 a cada 10 dias para solicitar um tempo SYNC. (AT+SYNCMOD para definir isto)
380
381
382
383
384 ==== 2.4.6.3 Ext~=6, Sensor ADC (use com cabo E2) ====
385
386
387 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
388
389 be used to power the external ADC sensor; user can control the power on time for this
390
391 (% style="color:blue" %)**sensor by setting:**
392
393 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
394
395 **For example:**
396
397 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
398
399
400 Or use **downlink command A2** to set the same.
401
402 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
403
404 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
405
406 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
407
408
409 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
410
411 [[image:image-20220628150714-4.png||_mstalt="431054"]]
412
413
414 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
415
416
417 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
418
419 [[image:image-20220628151005-5.png||_mstalt="429546"]]
420
421
422 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
423
424 [[image:image-20220628151056-6.png||_mstalt="431873"]]
425
426
427 3) Within range
428
429 [[image:image-20220628151143-7.png||_mstalt="431210"]]
430
431
432
433 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
434
435 [[image:image-20230717151328-8.png]]
436
437 (% style="display:none" %) (%%)
438
439
440
441 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
442
443 [[image:image-20220906102307-7.png||_mstalt="430443"]]
444
445
446 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
447
448 The external cable NE2 can be use for MOD4 and MOD8
449
450
451
452 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
453
454
455
456 [[image:image-20230717151245-7.png]]
457
458 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
459
460 [[image:SHT31.png]]
461
462
463
464 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
465
466
467 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
468
469
470 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
471
472 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
473
474 In Open State, the power consumption is the same as if there is no probe
475
476 In Close state, the power consumption will be 3uA higher than normal.
477
478 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
479
480
481 Ext=4,Interrupt Sensor:
482
483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
484 |(% style="width:101px" %)(((
485 **AT+EXT=4,1**
486 )))|(% style="width:395px" %)(((
487 **Sent uplink packet in both rising and falling interrupt**
488 )))
489 |(% style="width:101px" %)(((
490 **AT+EXT=4,2**
491 )))|(% style="width:395px" %)(((
492 **Sent uplink packet only in falling interrupt**
493 )))
494 |(% style="width:101px" %)(((
495 **AT+EXT=4,3**
496 )))|(% style="width:395px" %)(((
497 **Sent uplink packet only in rising interrupt**
498 )))
499
500 Trigger by falling edge:
501
502 [[image:image-20220906101145-2.png||_mstalt="428324"]]
503
504
505 Trigger by raising edge:
506
507 [[image:image-20220906101145-3.png||_mstalt="428688"]]
508
509
510
511 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
512
513
514 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
515
516
517 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
518
519 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
520
521
522 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
523
524 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
525
526
527 Ext=8, Counting Sensor ( 4 bytes):
528
529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
530 |(% style="width:131px" %)(((
531 **AT+EXT=8,0**
532 )))|(% style="width:195px" %)(((
533 **Count at falling interrupt**
534 )))
535 |(% style="width:131px" %)(((
536 **AT+EXT=8,1**
537 )))|(% style="width:195px" %)(((
538 **Count at rising interrupt**
539 )))
540 |(% style="width:131px" %)(((
541 **AT+SETCNT=60**
542 )))|(% style="width:195px" %)(((
543 **Sent current count to 60**
544 )))
545
546 [[image:image-20220906101320-6.png||_mstalt="428064"]]
547
548
549 (% style="color:blue" %)**A2 downlink Command:**
550
551 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
552
553 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
554
555 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
556
557 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
558
559 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
560
561
562 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
563
564
565 (((
566 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
567 )))
568
569 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
570 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
571 **Size(bytes)**
572 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
573 **2**
574 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
575 **2**
576 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
577 **2**
578 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
579 **1**
580 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
581 **4**
582 )))
583 |(% style="width:110px" %)(((
584 **Value**
585 )))|(% style="width:71px" %)(((
586 External temperature
587 )))|(% style="width:99px" %)(((
588 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
589 )))|(% style="width:132px" %)(((
590 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
591 )))|(% style="width:54px" %)(((
592 Status & Ext
593 )))|(% style="width:64px" %)(((
594 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
595 )))
596
597 * **Battery status & Built-in Humidity**
598
599 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
600 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
601 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
602 BAT Status
603 00(b): Ultra Low ( BAT <= 2.50v)
604 01(b): Low  (2.50v <=BAT <= 2.55v)
605 10(b): OK   (2.55v <= BAT <=2.65v)
606 11(b): Good   (BAT >= 2.65v)
607 )))|(% style="width:132px" %)(((
608 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
609 )))
610
611 * **Status & Ext Byte**
612
613 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
614 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
615 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
616
617 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
618 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
619 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
620
621
622 == 2.5 Show data on Datacake ==
623
624
625 (((
626 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
627 )))
628
629
630 (((
631 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
632 )))
633
634 (((
635 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
636 )))
637
638
639 (((
640 Add Datacake:
641 )))
642
643
644 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
645
646
647
648 Select default key as Access Key:
649
650
651 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
652
653
654 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
655
656
657 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
658
659
660 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
661
662
663 == 2.6 Datalog Feature ==
664
665
666 (((
667 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
668 )))
669
670
671 === 2.6.1 Ways to get datalog via LoRaWAN ===
672
673
674 There are two methods:
675
676 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
677
678
679 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
680
681
682 (% style="color:red" %)**Note for method 2:**
683
684 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
685 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
686
687 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
688
689
690 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
691
692
693 === 2.6.2 Unix TimeStamp ===
694
695
696 LHT65N uses Unix TimeStamp format based on
697
698
699 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
700
701
702
703 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
704
705 Below is the converter example
706
707 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
708
709
710 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
711
712
713 === 2.6.3 Set Device Time ===
714
715
716 (((
717 (% style="color:blue" %)**There are two ways to set device's time:**
718 )))
719
720 (((
721 **1.  Through LoRaWAN MAC Command (Default settings)**
722 )))
723
724 (((
725 User need to set SYNCMOD=1 to enable sync time via MAC command.
726 )))
727
728 (((
729 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
730 )))
731
732 (((
733 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
734 )))
735
736
737 (((
738 **2. Manually Set Time**
739 )))
740
741 (((
742 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
743 )))
744
745
746 === 2.6.4 Poll sensor value ===
747
748
749 User can poll sensor value based on timestamps from the server. Below is the downlink command.
750
751 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
752 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
753 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
754
755 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
756
757 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
758
759 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
760
761 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
762
763
764 === 2.6.5 Datalog Uplink payload ===
765
766
767 The Datalog poll reply uplink will use below payload format.
768
769 **Retrieval data payload:**
770
771 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
772 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
773 **Size(bytes)**
774 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
775 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
776
777 **Poll message flag & Ext:**
778
779 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
780
781 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
782
783 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
784
785 * Poll Message Flag is set to 1.
786
787 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
788
789 For example, in US915 band, the max payload for different DR is:
790
791 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
792
793 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
794
795 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
796
797 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
798
799 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
800
801
802 **Example:**
803
804 If LHT65N has below data inside Flash:
805
806 [[image:image-20230426171833-4.png]]
807
808
809 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
810
811 Where : Start time: 60065F97 = time 21/1/19 04:27:03
812
813 Stop time: 60066DA7= time 21/1/19 05:27:03
814
815
816 **LHT65N will uplink this payload.**
817
818 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
819
820
821 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
822
823 Where the first 11 bytes is for the first entry:
824
825 7FFF089801464160065F97
826
827 Ext sensor data=0x7FFF/100=327.67
828
829 Temp=0x088E/100=22.00
830
831 Hum=0x014B/10=32.6
832
833 poll message flag & Ext=0x41,means reply data,Ext=1
834
835 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
836
837
838 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
839
840
841 (((
842 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
843 )))
844
845 (((
846 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
847
848
849 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
850
851
852 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
853
854 (((
855 (% class="box infomessage" %)
856 (((
857 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
858
859 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
860
861 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
862
863 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
864
865 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
866
867 **AT+LEDALARM=1** :       Enable LED visual Alarm.
868 )))
869 )))
870
871 (% style="color:#4f81bd" %)**Downlink Command:**
872
873 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
874
875 AT+CITEMP=1 : A60001
876
877 AT+ARTEMP=1,60  :  A70001003C
878
879 AT+ARTEMP=-16,60 :  A7FFF0003C
880
881 AT+LEDALARM=1  :  3601
882
883
884 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
885
886 Total bytes: 8 bytes
887
888 **Example: **AA0100010001003C
889
890 WMOD=01
891
892 CITEMP=0001
893
894 TEMPlow=0001
895
896 TEMPhigh=003C
897
898
899 **DS18B20 and TMP117 Threshold Alarm**
900
901 **~ AT+WMOD=1,60,-10,20**
902
903 (% style="color:#4f81bd" %)**Downlink Command:**
904
905 **Example: **A5013CFC180014
906
907 MOD=01
908
909 CITEMP=3C(S)
910
911 TEMPlow=FC18
912
913 TEMPhigh=0014
914
915
916 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
917
918 **AT+WMOD=2,60,5** 
919
920 (% style="color:#4f81bd" %)**Downlink Command:**
921
922 **Example: **A5023C05
923
924 MOD=02
925
926 CITEMP=3C(S)
927
928 temperature fluctuation=05
929
930
931 **Sampling multiple times and uplink together**
932
933 **AT+WMOD=3,1,60,20,-16,32,1**   
934
935 Explain:
936
937 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
938 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
939 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
940 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
941 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
942 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
943
944 (% style="color:#4f81bd" %)**Downlink Command:**
945
946 **Example: **A50301003C14FFF0002001
947
948 MOD=03
949
950 TEMP=DS18B20
951
952 CITEMP=003C(S)
953
954 Total number of acquisitions=14
955
956 TEMPlow=FFF0
957
958 TEMPhigh=0020
959
960 ARTEMP=01
961
962
963 **Uplink payload( Fport=3)**
964
965 **Example: CBEA**01**0992**//0A41//**09C4**
966
967 BatV=CBEA
968
969 TEMP=DS18B20
970
971 Temp1=0992  ~/~/ 24.50℃
972
973 Temp2=0A41  ~/~/ 26.25℃
974
975 Temp3=09C4  ~/~/ 25.00℃
976
977 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
978
979 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
980 )))
981
982
983 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
984
985
986 (% class="box infomessage" %)
987 (((
988 (((
989 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
990 )))
991
992 (((
993 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
994 )))
995
996 (((
997 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
998 )))
999
1000 (((
1001 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1002 )))
1003
1004 (((
1005 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1006 )))
1007 )))
1008
1009 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1010
1011 Total bytes: 8 bytes
1012
1013 **Example:**AA0100010001003C
1014
1015 WMOD=01
1016
1017 CITEMP=0001
1018
1019 TEMPlow=0001
1020
1021 TEMPhigh=003C
1022
1023
1024 == 2.8 LED Indicator ==
1025
1026
1027 The LHT65 has a triple color LED which for easy showing different stage .
1028
1029 While user press ACT button, the LED will work as per LED status with ACT button.
1030
1031 In a normal working state:
1032
1033 * For each uplink, the BLUE LED or RED LED will blink once.
1034 BLUE LED when external sensor is connected.
1035 * RED LED when external sensor is not connected
1036 * For each success downlink, the PURPLE LED will blink once
1037
1038
1039 == 2.9 installation ==
1040
1041
1042 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1043
1044
1045 = 3. Sensors and Accessories =
1046
1047 == 3.1 E2 Extension Cable ==
1048
1049
1050 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1051
1052
1053 **1m long breakout cable for LHT65N. Features:**
1054
1055 * (((
1056 Use for AT Command, works for both LHT52/LHT65N
1057 )))
1058 * (((
1059 Update firmware for LHT65N, works for both LHT52/LHT65N
1060 )))
1061 * (((
1062 Supports ADC mode to monitor external ADC
1063 )))
1064 * (((
1065 Supports Interrupt mode
1066 )))
1067 * (((
1068 Exposed All pins from the LHT65N Type-C connector.
1069
1070
1071
1072 )))
1073
1074 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1075
1076
1077 == 3.2 E3 Temperature Probe ==
1078
1079
1080 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1081
1082
1083 Temperature sensor with 2 meters cable long
1084
1085 * Resolution: 0.0625 °C
1086 * ±0.5°C accuracy from -10°C to +85°C
1087 * ±2°C accuracy from -55°C to +125°C
1088 * Operating Range: -40 ~~ 125 °C
1089 * Working voltage 2.35v ~~ 5v
1090
1091 == 3.3 E31F Temperature Probe ==
1092
1093
1094 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1095
1096
1097 Temperature sensor with 1 meters cable long
1098
1099
1100 **Built-in Temperature Sensor:**
1101
1102 * Resolution: 0.01 °C
1103 * Accuracy Tolerance : Typ ±0.3 °C
1104 * Long Term Drift: < 0.02 °C/yr
1105 * Operating Range: -40 ~~ 80 °C
1106
1107 **Built-in Humidity Sensor:**
1108
1109 * Resolution: 0.04 % RH
1110 * Accuracy Tolerance : Typ ±3 % RH
1111 * Long Term Drift: < 0.02 °C/yr
1112 * Operating Range: 0 ~~ 96 % RH
1113
1114 **External Temperature Sensor :**
1115
1116 * Resolution: 0.01 °C
1117 * Accuracy Tolerance : Typical ±0.3 °C
1118 * Long Term Drift: < 0.02 °C/yr
1119 * Operating Range: -40 ~~ 125 °C
1120
1121 **External Humidity Sensor :**
1122
1123 * Resolution: 0.04 % RH
1124 * Accuracy Tolerance : Typ ±3 % RH
1125 * Long Term Drift: < 0.02 °C/yr
1126 * Operating Range: 0 ~~ 96 % RH
1127
1128
1129 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1130
1131
1132 (((
1133 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1134 )))
1135
1136 * (((
1137 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1138 )))
1139
1140 * (((
1141 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1142 )))
1143
1144 (((
1145 There are two kinds of commands to configure LHT65N, they are:
1146 )))
1147
1148 * (((
1149 (% style="color:#4f81bd" %)**General Commands**.
1150 )))
1151
1152 (((
1153 These commands are to configure:
1154 )))
1155
1156 1. (((
1157 General system settings like: uplink interval.
1158 )))
1159 1. (((
1160 LoRaWAN protocol & radio-related commands.
1161 )))
1162
1163 (((
1164 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1165 )))
1166
1167 * (((
1168 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1169 )))
1170
1171 (((
1172 These commands are only valid for LHT65N, as below:
1173 )))
1174
1175
1176 == 4.1 Set Transmit Interval Time ==
1177
1178
1179 Feature: Change LoRaWAN End Node Transmit Interval.
1180
1181
1182 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1183
1184 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1185 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1186 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1187 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1188
1189 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1190
1191 Format: Command Code (0x01) followed by 3 bytes time value.
1192
1193 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1194
1195 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1196
1197 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1198
1199
1200 == 4.2 Set External Sensor Mode ==
1201
1202
1203 Feature: Change External Sensor Mode.
1204
1205 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1206
1207 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1208 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1209 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1210 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1211 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1212
1213 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1214
1215 Total bytes: 2 ~~ 5 bytes
1216
1217 **Example:**
1218
1219 * 0xA201: Set external sensor type to E1
1220
1221 * 0xA209: Same as AT+EXT=9
1222
1223 * 0xA20702003c: Same as AT+SETCNT=60
1224
1225
1226 == 4.3 Enable/Disable uplink Temperature probe ID ==
1227
1228
1229 (((
1230 Feature: If PID is enabled, device will send the temperature probe ID on:
1231 )))
1232
1233 * (((
1234 First Packet after OTAA Join
1235 )))
1236 * (((
1237 Every 24 hours since the first packet.
1238 )))
1239
1240 (((
1241 PID is default set to disable (0)
1242
1243
1244 )))
1245
1246 (% style="color:#4f81bd" %)**AT Command:**
1247
1248 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1249 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1250 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1251
1252 (% style="color:#4f81bd" %)**Downlink Command:**
1253
1254 * **0xA800**  **~-~->** AT+PID=0
1255 * **0xA801**     **~-~->** AT+PID=1
1256
1257
1258 == 4.4 Set Password ==
1259
1260
1261 Feature: Set device password, max 9 digits
1262
1263 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1264
1265 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1266 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1267 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1268 123456
1269
1270 OK
1271 )))
1272 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1273
1274 (% style="color:#4f81bd" %)**Downlink Command:**
1275
1276 No downlink command for this feature.
1277
1278
1279 == 4.5 Quit AT Command ==
1280
1281
1282 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1283
1284 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1285
1286 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1287 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1288 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1289
1290 (% style="color:#4f81bd" %)**Downlink Command:**
1291
1292 No downlink command for this feature.
1293
1294
1295 == 4.6 Set to sleep mode ==
1296
1297
1298 Feature: Set device to sleep mode
1299
1300 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1301 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1302
1303 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1304
1305 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1306 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1307 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1308 Clear all stored sensor data…
1309
1310 OK
1311 )))
1312
1313 (% style="color:#4f81bd" %)**Downlink Command:**
1314
1315 * There is no downlink command to set to Sleep mode.
1316
1317
1318 == 4.7 Set system time ==
1319
1320
1321 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1322
1323 (% style="color:#4f81bd" %)**AT Command:**
1324
1325 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1326 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1327 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1328 OK
1329
1330 Set System time to 2021-01-20 00:59:12
1331 )))
1332
1333 (% style="color:#4f81bd" %)**Downlink Command:**
1334
1335 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1336
1337
1338 == 4.8 Set Time Sync Mode ==
1339
1340
1341 (((
1342 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1343 )))
1344
1345 (((
1346 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1347 )))
1348
1349 (% style="color:#4f81bd" %)**AT Command:**
1350
1351 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1352 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1353 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1354
1355 (% style="color:#4f81bd" %)**Downlink Command:**
1356
1357 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1358 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1359
1360
1361 == 4.9 Set Time Sync Interval ==
1362
1363
1364 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1365
1366 (% style="color:#4f81bd" %)**AT Command:**
1367
1368 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1369 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1370 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1371
1372 (% style="color:#4f81bd" %)**Downlink Command:**
1373
1374 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1375
1376
1377 == 4.10 Print data entries base on page. ==
1378
1379
1380 Feature: Print the sector data from start page to stop page (max is 416 pages).
1381
1382 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1383
1384 [[image:image-20230426164330-2.png]]
1385
1386 (% style="color:#4f81bd" %)**Downlink Command:**
1387
1388 No downlink commands for feature
1389
1390
1391 == 4.11 Print last few data entries. ==
1392
1393
1394 Feature: Print the last few data entries
1395
1396 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1397
1398 [[image:image-20230426164932-3.png]]
1399
1400 (% style="color:#4f81bd" %)**Downlink Command:**
1401
1402 No downlink commands for feature
1403
1404
1405 == 4.12 Clear Flash Record ==
1406
1407
1408 Feature: Clear flash storage for data log feature.
1409
1410 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1411
1412 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1413 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1414 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1415 Clear all stored sensor data…
1416
1417 OK
1418 )))
1419
1420 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1421
1422 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1423
1424
1425 == 4.13 Auto Send None-ACK messages ==
1426
1427
1428 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1429
1430 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1431
1432 The default factory setting is 0
1433
1434 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1435 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1436 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1437
1438 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1439
1440 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1441
1442
1443 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1444
1445
1446 Feature: Set internal and external temperature sensor alarms.
1447
1448 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1449 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1450 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1451
1452 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1453
1454 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1455
1456 0): Cancel
1457
1458 1): Threshold alarm
1459
1460 2): Fluctuation alarm
1461
1462
1463 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1464
1465 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1466
1467
1468 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1469
1470 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1471
1472 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1473
1474
1475 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1476
1477 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1478
1479 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1480
1481
1482 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1483
1484 0xA5 00 ~-~- AT+WMOD=0.
1485
1486 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1487
1488 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1489
1490 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1491
1492 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1493
1494
1495 = 5. Battery & How to replace =
1496
1497 == 5.1 Battery Type ==
1498
1499
1500 (((
1501 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1502 )))
1503
1504 (((
1505 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1506
1507
1508 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1509 )))
1510
1511 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1512
1513
1514 == 5.2 Replace Battery ==
1515
1516
1517 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1518
1519 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1520
1521
1522 == 5.3 Battery Life Analyze ==
1523
1524
1525 (((
1526 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1527 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1528 )))
1529
1530
1531 (((
1532 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1533 )))
1534
1535
1536 = 6. FAQ =
1537
1538 == 6.1 How to use AT Command? ==
1539
1540
1541 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1542
1543 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1544
1545
1546 **Connection:**
1547
1548 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1549 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1550 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1551
1552 (((
1553 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1554
1555 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1556 )))
1557
1558
1559 Input password and ATZ to activate LHT65N,As shown below:
1560
1561 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1562
1563
1564 AT Command List is as below:
1565
1566 AT+<CMD>? :  Help on <CMD>
1567
1568 AT+<CMD> :  Run <CMD>
1569
1570 AT+<CMD>=<value> :  Set the value
1571
1572 AT+<CMD>=? :  Get the value
1573
1574 AT+DEBUG:  Set more info output
1575
1576 ATZ:  Trig a reset of the MCU
1577
1578 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1579
1580 AT+DEUI:  Get or Set the Device EUI
1581
1582 AT+DADDR:  Get or Set the Device Address
1583
1584 AT+APPKEY:  Get or Set the Application Key
1585
1586 AT+NWKSKEY:  Get or Set the Network Session Key
1587
1588 AT+APPSKEY:  Get or Set the Application Session Key
1589
1590 AT+APPEUI:  Get or Set the Application EUI
1591
1592 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1593
1594 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1595
1596 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1597
1598 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1599
1600 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1601
1602 AT+RX2FQ:  Get or Set the Rx2 window frequency
1603
1604 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1605
1606 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1607
1608 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1609
1610 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1611
1612 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1613
1614 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1615
1616 AT+NWKID:  Get or Set the Network ID
1617
1618 AT+FCU:  Get or Set the Frame Counter Uplink
1619
1620 AT+FCD:  Get or Set the Frame Counter Downlink
1621
1622 AT+CLASS:  Get or Set the Device Class
1623
1624 AT+JOIN:  Join network
1625
1626 AT+NJS:  Get the join status
1627
1628 AT+SENDB:  Send hexadecimal data along with the application port
1629
1630 AT+SEND:  Send text data along with the application port
1631
1632 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1633
1634 AT+RECV:  Print last received data in raw format
1635
1636 AT+VER:  Get current image version and Frequency Band
1637
1638 AT+CFM:  Get or Set the confirmation mode (0-1)
1639
1640 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1641
1642 AT+SNR:  Get the SNR of the last received packet
1643
1644 AT+RSSI:  Get the RSSI of the last received packet
1645
1646 AT+TDC:  Get or set the application data transmission interval in ms
1647
1648 AT+PORT:  Get or set the application port
1649
1650 AT+DISAT:  Disable AT commands
1651
1652 AT+PWORD: Set password, max 9 digits
1653
1654 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1655
1656 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1657
1658 AT+PDTA:  Print the sector data from start page to stop page
1659
1660 AT+PLDTA:  Print the last few sets of data
1661
1662 AT+CLRDTA:  Clear the storage, record position back to 1st
1663
1664 AT+SLEEP:  Set sleep mode
1665
1666 AT+EXT:  Get or Set external sensor model
1667
1668 AT+BAT:  Get the current battery voltage in mV
1669
1670 AT+CFG:  Print all configurations
1671
1672 AT+WMOD:  Get or Set Work Mode
1673
1674 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1675
1676 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1677
1678 AT+SETCNT:  Set the count at present
1679
1680 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1681
1682 AT+RPL:  Get or set response level
1683
1684 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1685
1686 AT+LEAPSEC:  Get or Set Leap Second
1687
1688 AT+SYNCMOD:  Get or Set time synchronization method
1689
1690 AT+SYNCTDC:  Get or set time synchronization interval in day
1691
1692 AT+PID:  Get or set the PID
1693
1694
1695 == 6.2 Where to use AT commands and Downlink commands ==
1696
1697
1698 **AT commands: **
1699
1700 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1701
1702
1703 **Downlink commands:**
1704
1705
1706 (% style="color:blue" %)**TTN:**
1707
1708 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1709
1710
1711
1712 (% style="color:blue" %)**Helium: **
1713
1714 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1715
1716
1717
1718 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1719
1720
1721 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1722
1723
1724 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1725
1726
1727
1728 (% style="color:blue" %)**Aws:**
1729
1730 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1731
1732
1733 == 6.3 How to change the uplink interval? ==
1734
1735
1736 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1737
1738
1739 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1740
1741
1742 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1743
1744 [[image:1655802313617-381.png||_mstalt="293917"]]
1745
1746
1747 (((
1748 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1749 )))
1750
1751
1752 Input password and ATZ to activate LHT65N, As shown below:
1753
1754 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1755
1756
1757 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1758
1759
1760 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1761
1762
1763 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1764
1765 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1766
1767
1768
1769 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1770
1771 First connect the four lines;(% style="display:none" %)
1772
1773 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1774
1775
1776 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1777
1778 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1779
1780
1781
1782 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1783
1784 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1785
1786
1787 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1788
1789
1790 When this interface appears, it indicates that the download has been completed.
1791
1792 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1793
1794
1795 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1796
1797
1798 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1799
1800
1801 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1802
1803
1804 **UART Port of LHT65N:**
1805
1806 * (% class="mark" %)**PB0: RXD**
1807 * (% class="mark" %)**PB1: TXD**
1808 * (% class="mark" %)**GND**
1809
1810 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1811
1812
1813 (((
1814 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1815 )))
1816
1817
1818 Input password and ATZ to activate LHT65N,As shown below:
1819
1820 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1821
1822
1823 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1824
1825
1826 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1827
1828
1829 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1830
1831 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1832
1833
1834
1835 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1836
1837 First connect the four lines;
1838
1839 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1840
1841 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1842
1843
1844
1845 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1846
1847 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1848
1849
1850 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1851
1852
1853 When this interface appears, it indicates that the download has been completed.
1854
1855 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1856
1857
1858 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1859
1860
1861 == 6.8 Why can't I see the datalog information ==
1862
1863
1864 ~1. The time is not aligned, and the correct query command is not used.
1865
1866 2. Decoder error, did not parse the datalog data, the data was filtered.
1867
1868
1869 = 7. Order Info =
1870
1871
1872 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1873
1874 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1875
1876 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1877 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1878 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1879 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1880 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1881 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1882 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1883 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1884
1885 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1886
1887 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1888
1889
1890 = 8. Packing Info =
1891
1892
1893 **Package Includes**:
1894
1895 * LHT65N Temperature & Humidity Sensor x 1
1896 * Optional external sensor
1897
1898 **Dimension and weight**:
1899
1900 * Device Size:  10 x 10 x 3.5 mm
1901 * Device Weight: 120.5g
1902
1903
1904 = 9. Reference material =
1905
1906
1907 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1908
1909
1910 = 10. FCC Warning =
1911
1912
1913 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1914
1915 (1) This device may not cause harmful interference;
1916
1917 (2) this device must accept any interference received, including interference that may cause undesired operation.