Version 261.10 by Xiaoling on 2023/07/17 17:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **Size(bytes)**
341 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **2**
347 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **1**
349 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
350 **4**
351 )))
352 |(% style="width:110px" %)(((
353 **Value**
354 )))|(% style="width:71px" %)(((
355 External temperature
356 )))|(% style="width:99px" %)(((
357 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
358 )))|(% style="width:132px" %)(((
359 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
360 )))|(% style="width:54px" %)(((
361 Status & Ext
362 )))|(% style="width:64px" %)(((
363 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
364 )))
365
366 * **Battery status & Built-in Humidity**
367
368 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
369 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
370 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
371 BAT Status
372 00(b): Ultra Low ( BAT <= 2.50v)
373 01(b): Low  (2.50v <=BAT <= 2.55v)
374 10(b): OK   (2.55v <= BAT <=2.65v)
375 11(b): Good   (BAT >= 2.65v)
376 )))|(% style="width:132px" %)(((
377 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
378 )))
379
380 * **Status & Ext Byte**
381
382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
383 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
384 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
385
386 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
387 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
388 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
389
390
391 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
392
393
394 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
395
396 be used to power the external ADC sensor; user can control the power on time for this
397
398 (% style="color:blue" %)**sensor by setting:**
399
400 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
401
402 **For example:**
403
404 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
405
406
407 Or use **downlink command A2** to set the same.
408
409 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
410
411 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
412
413 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
414
415
416 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
417
418 [[image:image-20220628150714-4.png||_mstalt="431054"]]
419
420
421 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
422
423
424 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
425
426 [[image:image-20220628151005-5.png||_mstalt="429546"]]
427
428
429 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
430
431 [[image:image-20220628151056-6.png||_mstalt="431873"]]
432
433
434 3) Within range
435
436 [[image:image-20220628151143-7.png||_mstalt="431210"]]
437
438
439
440 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
441
442 [[image:image-20230717151328-8.png]]
443
444 (% style="display:none" %) (%%)
445
446
447
448 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
449
450 [[image:image-20220906102307-7.png||_mstalt="430443"]]
451
452
453 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
454
455 The external cable NE2 can be use for MOD4 and MOD8
456
457
458
459 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
460
461
462
463 [[image:image-20230717151245-7.png]]
464
465 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
466
467 [[image:SHT31.png]]
468
469
470
471 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
472
473
474 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
475
476
477 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
478
479 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
480
481 In Open State, the power consumption is the same as if there is no probe
482
483 In Close state, the power consumption will be 3uA higher than normal.
484
485 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
486
487
488 Ext=4,Interrupt Sensor:
489
490 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
491 |(% style="width:101px" %)(((
492 **AT+EXT=4,1**
493 )))|(% style="width:395px" %)(((
494 **Sent uplink packet in both rising and falling interrupt**
495 )))
496 |(% style="width:101px" %)(((
497 **AT+EXT=4,2**
498 )))|(% style="width:395px" %)(((
499 **Sent uplink packet only in falling interrupt**
500 )))
501 |(% style="width:101px" %)(((
502 **AT+EXT=4,3**
503 )))|(% style="width:395px" %)(((
504 **Sent uplink packet only in rising interrupt**
505 )))
506
507 Trigger by falling edge:
508
509 [[image:image-20220906101145-2.png||_mstalt="428324"]]
510
511
512 Trigger by raising edge:
513
514 [[image:image-20220906101145-3.png||_mstalt="428688"]]
515
516
517
518 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
519
520
521 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
522
523
524 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
525
526 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
527
528
529 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
530
531 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
532
533
534 Ext=8, Counting Sensor ( 4 bytes):
535
536 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
537 |(% style="width:131px" %)(((
538 **AT+EXT=8,0**
539 )))|(% style="width:195px" %)(((
540 **Count at falling interrupt**
541 )))
542 |(% style="width:131px" %)(((
543 **AT+EXT=8,1**
544 )))|(% style="width:195px" %)(((
545 **Count at rising interrupt**
546 )))
547 |(% style="width:131px" %)(((
548 **AT+SETCNT=60**
549 )))|(% style="width:195px" %)(((
550 **Sent current count to 60**
551 )))
552
553 [[image:image-20220906101320-6.png||_mstalt="428064"]]
554
555
556 (% style="color:blue" %)**A2 downlink Command:**
557
558 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
559
560 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
561
562 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
563
564 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
565
566 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
567
568
569 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
570
571
572 (((
573 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
574 )))
575
576 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
577 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
578 **Size(bytes)**
579 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
580 **2**
581 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
582 **2**
583 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
584 **2**
585 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
586 **1**
587 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
588 **4**
589 )))
590 |(% style="width:110px" %)(((
591 **Value**
592 )))|(% style="width:71px" %)(((
593 External temperature
594 )))|(% style="width:99px" %)(((
595 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
596 )))|(% style="width:132px" %)(((
597 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
598 )))|(% style="width:54px" %)(((
599 Status & Ext
600 )))|(% style="width:64px" %)(((
601 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
602 )))
603
604 * **Battery status & Built-in Humidity**
605
606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
607 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
608 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
609 BAT Status
610 00(b): Ultra Low ( BAT <= 2.50v)
611 01(b): Low  (2.50v <=BAT <= 2.55v)
612 10(b): OK   (2.55v <= BAT <=2.65v)
613 11(b): Good   (BAT >= 2.65v)
614 )))|(% style="width:132px" %)(((
615 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
616 )))
617
618 * **Status & Ext Byte**
619
620 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
621 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
622 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
623
624 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
625 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
626 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
627
628
629 == 2.5 Show data on Datacake ==
630
631
632 (((
633 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
634 )))
635
636
637 (((
638 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
639 )))
640
641 (((
642 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
643 )))
644
645
646 (((
647 Add Datacake:
648 )))
649
650
651 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
652
653
654
655 Select default key as Access Key:
656
657
658 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
659
660
661 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
662
663
664 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
665
666
667 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
668
669
670 == 2.6 Datalog Feature ==
671
672
673 (((
674 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
675 )))
676
677
678 === 2.6.1 Ways to get datalog via LoRaWAN ===
679
680
681 There are two methods:
682
683 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
684
685
686 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
687
688
689 (% style="color:red" %)**Note for method 2:**
690
691 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
692 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
693
694 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
695
696
697 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
698
699
700 === 2.6.2 Unix TimeStamp ===
701
702
703 LHT65N uses Unix TimeStamp format based on
704
705
706 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
707
708
709
710 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
711
712 Below is the converter example
713
714 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
715
716
717 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
718
719
720 === 2.6.3 Set Device Time ===
721
722
723 (((
724 (% style="color:blue" %)**There are two ways to set device's time:**
725 )))
726
727 (((
728 **1.  Through LoRaWAN MAC Command (Default settings)**
729 )))
730
731 (((
732 User need to set SYNCMOD=1 to enable sync time via MAC command.
733 )))
734
735 (((
736 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
737 )))
738
739 (((
740 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
741 )))
742
743
744 (((
745 **2. Manually Set Time**
746 )))
747
748 (((
749 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
750 )))
751
752
753 === 2.6.4 Poll sensor value ===
754
755
756 User can poll sensor value based on timestamps from the server. Below is the downlink command.
757
758 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
759 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
760 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
761
762 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
763
764 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
765
766 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
767
768 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
769
770
771 === 2.6.5 Datalog Uplink payload ===
772
773
774 The Datalog poll reply uplink will use below payload format.
775
776 **Retrieval data payload:**
777
778 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
779 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
780 **Size(bytes)**
781 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
782 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
783
784 **Poll message flag & Ext:**
785
786 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
787
788 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
789
790 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
791
792 * Poll Message Flag is set to 1.
793
794 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
795
796 For example, in US915 band, the max payload for different DR is:
797
798 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
799
800 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
801
802 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
803
804 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
805
806 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
807
808
809 **Example:**
810
811 If LHT65N has below data inside Flash:
812
813 [[image:image-20230426171833-4.png]]
814
815
816 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
817
818 Where : Start time: 60065F97 = time 21/1/19 04:27:03
819
820 Stop time: 60066DA7= time 21/1/19 05:27:03
821
822
823 **LHT65N will uplink this payload.**
824
825 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
826
827
828 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
829
830 Where the first 11 bytes is for the first entry:
831
832 7FFF089801464160065F97
833
834 Ext sensor data=0x7FFF/100=327.67
835
836 Temp=0x088E/100=22.00
837
838 Hum=0x014B/10=32.6
839
840 poll message flag & Ext=0x41,means reply data,Ext=1
841
842 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
843
844
845 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
846
847
848 (((
849 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
850 )))
851
852 (((
853 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
854
855
856 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
857
858
859 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
860
861 (((
862 (% class="box infomessage" %)
863 (((
864 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
865
866 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
867
868 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
869
870 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
871
872 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
873
874 **AT+LEDALARM=1** :       Enable LED visual Alarm.
875 )))
876 )))
877
878 (% style="color:#4f81bd" %)**Downlink Command:**
879
880 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
881
882 AT+CITEMP=1 : A60001
883
884 AT+ARTEMP=1,60  :  A70001003C
885
886 AT+ARTEMP=-16,60 :  A7FFF0003C
887
888 AT+LEDALARM=1  :  3601
889
890
891 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
892
893 Total bytes: 8 bytes
894
895 **Example: **AA0100010001003C
896
897 WMOD=01
898
899 CITEMP=0001
900
901 TEMPlow=0001
902
903 TEMPhigh=003C
904
905
906 **DS18B20 and TMP117 Threshold Alarm**
907
908 **~ AT+WMOD=1,60,-10,20**
909
910 (% style="color:#4f81bd" %)**Downlink Command:**
911
912 **Example: **A5013CFC180014
913
914 MOD=01
915
916 CITEMP=3C(S)
917
918 TEMPlow=FC18
919
920 TEMPhigh=0014
921
922
923 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
924
925 **AT+WMOD=2,60,5** 
926
927 (% style="color:#4f81bd" %)**Downlink Command:**
928
929 **Example: **A5023C05
930
931 MOD=02
932
933 CITEMP=3C(S)
934
935 temperature fluctuation=05
936
937
938 **Sampling multiple times and uplink together**
939
940 **AT+WMOD=3,1,60,20,-16,32,1**   
941
942 Explain:
943
944 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
945 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
946 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
947 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
948 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
949 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
950
951 (% style="color:#4f81bd" %)**Downlink Command:**
952
953 **Example: **A50301003C14FFF0002001
954
955 MOD=03
956
957 TEMP=DS18B20
958
959 CITEMP=003C(S)
960
961 Total number of acquisitions=14
962
963 TEMPlow=FFF0
964
965 TEMPhigh=0020
966
967 ARTEMP=01
968
969
970 **Uplink payload( Fport=3)**
971
972 **Example: CBEA**01**0992**//0A41//**09C4**
973
974 BatV=CBEA
975
976 TEMP=DS18B20
977
978 Temp1=0992  ~/~/ 24.50℃
979
980 Temp2=0A41  ~/~/ 26.25℃
981
982 Temp3=09C4  ~/~/ 25.00℃
983
984 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
985
986 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
987 )))
988
989
990 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
991
992
993 (% class="box infomessage" %)
994 (((
995 (((
996 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
997 )))
998
999 (((
1000 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1001 )))
1002
1003 (((
1004 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1005 )))
1006
1007 (((
1008 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1009 )))
1010
1011 (((
1012 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1013 )))
1014 )))
1015
1016 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1017
1018 Total bytes: 8 bytes
1019
1020 **Example:**AA0100010001003C
1021
1022 WMOD=01
1023
1024 CITEMP=0001
1025
1026 TEMPlow=0001
1027
1028 TEMPhigh=003C
1029
1030
1031 == 2.8 LED Indicator ==
1032
1033
1034 The LHT65 has a triple color LED which for easy showing different stage .
1035
1036 While user press ACT button, the LED will work as per LED status with ACT button.
1037
1038 In a normal working state:
1039
1040 * For each uplink, the BLUE LED or RED LED will blink once.
1041 BLUE LED when external sensor is connected.
1042 * RED LED when external sensor is not connected
1043 * For each success downlink, the PURPLE LED will blink once
1044
1045
1046 == 2.9 installation ==
1047
1048
1049 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1050
1051
1052 = 3. Sensors and Accessories =
1053
1054 == 3.1 E2 Extension Cable ==
1055
1056
1057 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1058
1059
1060 **1m long breakout cable for LHT65N. Features:**
1061
1062 * (((
1063 Use for AT Command, works for both LHT52/LHT65N
1064 )))
1065 * (((
1066 Update firmware for LHT65N, works for both LHT52/LHT65N
1067 )))
1068 * (((
1069 Supports ADC mode to monitor external ADC
1070 )))
1071 * (((
1072 Supports Interrupt mode
1073 )))
1074 * (((
1075 Exposed All pins from the LHT65N Type-C connector.
1076
1077
1078
1079 )))
1080
1081 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1082
1083
1084 == 3.2 E3 Temperature Probe ==
1085
1086
1087 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1088
1089
1090 Temperature sensor with 2 meters cable long
1091
1092 * Resolution: 0.0625 °C
1093 * ±0.5°C accuracy from -10°C to +85°C
1094 * ±2°C accuracy from -55°C to +125°C
1095 * Operating Range: -40 ~~ 125 °C
1096 * Working voltage 2.35v ~~ 5v
1097
1098 == 3.3 E31F Temperature Probe ==
1099
1100
1101 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1102
1103
1104 Temperature sensor with 1 meters cable long
1105
1106
1107 **Built-in Temperature Sensor:**
1108
1109 * Resolution: 0.01 °C
1110 * Accuracy Tolerance : Typ ±0.3 °C
1111 * Long Term Drift: < 0.02 °C/yr
1112 * Operating Range: -40 ~~ 80 °C
1113
1114 **Built-in Humidity Sensor:**
1115
1116 * Resolution: 0.04 % RH
1117 * Accuracy Tolerance : Typ ±3 % RH
1118 * Long Term Drift: < 0.02 °C/yr
1119 * Operating Range: 0 ~~ 96 % RH
1120
1121 **External Temperature Sensor :**
1122
1123 * Resolution: 0.01 °C
1124 * Accuracy Tolerance : Typical ±0.3 °C
1125 * Long Term Drift: < 0.02 °C/yr
1126 * Operating Range: -40 ~~ 125 °C
1127
1128 **External Humidity Sensor :**
1129
1130 * Resolution: 0.04 % RH
1131 * Accuracy Tolerance : Typ ±3 % RH
1132 * Long Term Drift: < 0.02 °C/yr
1133 * Operating Range: 0 ~~ 96 % RH
1134
1135
1136 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1137
1138
1139 (((
1140 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1141 )))
1142
1143 * (((
1144 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1145 )))
1146
1147 * (((
1148 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1149 )))
1150
1151 (((
1152 There are two kinds of commands to configure LHT65N, they are:
1153 )))
1154
1155 * (((
1156 (% style="color:#4f81bd" %)**General Commands**.
1157 )))
1158
1159 (((
1160 These commands are to configure:
1161 )))
1162
1163 1. (((
1164 General system settings like: uplink interval.
1165 )))
1166 1. (((
1167 LoRaWAN protocol & radio-related commands.
1168 )))
1169
1170 (((
1171 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1172 )))
1173
1174 * (((
1175 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1176 )))
1177
1178 (((
1179 These commands are only valid for LHT65N, as below:
1180 )))
1181
1182
1183 == 4.1 Set Transmit Interval Time ==
1184
1185
1186 Feature: Change LoRaWAN End Node Transmit Interval.
1187
1188
1189 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1190
1191 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1192 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1193 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1194 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1195
1196 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1197
1198 Format: Command Code (0x01) followed by 3 bytes time value.
1199
1200 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1201
1202 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1203
1204 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1205
1206
1207 == 4.2 Set External Sensor Mode ==
1208
1209
1210 Feature: Change External Sensor Mode.
1211
1212 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1213
1214 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1215 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1216 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1217 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1218 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1219
1220 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1221
1222 Total bytes: 2 ~~ 5 bytes
1223
1224 **Example:**
1225
1226 * 0xA201: Set external sensor type to E1
1227
1228 * 0xA209: Same as AT+EXT=9
1229
1230 * 0xA20702003c: Same as AT+SETCNT=60
1231
1232
1233 == 4.3 Enable/Disable uplink Temperature probe ID ==
1234
1235
1236 (((
1237 Feature: If PID is enabled, device will send the temperature probe ID on:
1238 )))
1239
1240 * (((
1241 First Packet after OTAA Join
1242 )))
1243 * (((
1244 Every 24 hours since the first packet.
1245 )))
1246
1247 (((
1248 PID is default set to disable (0)
1249
1250
1251 )))
1252
1253 (% style="color:#4f81bd" %)**AT Command:**
1254
1255 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1256 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1257 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1258
1259 (% style="color:#4f81bd" %)**Downlink Command:**
1260
1261 * **0xA800**  **~-~->** AT+PID=0
1262 * **0xA801**     **~-~->** AT+PID=1
1263
1264
1265 == 4.4 Set Password ==
1266
1267
1268 Feature: Set device password, max 9 digits
1269
1270 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1271
1272 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1273 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1274 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1275 123456
1276
1277 OK
1278 )))
1279 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1280
1281 (% style="color:#4f81bd" %)**Downlink Command:**
1282
1283 No downlink command for this feature.
1284
1285
1286 == 4.5 Quit AT Command ==
1287
1288
1289 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1290
1291 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1292
1293 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1294 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1295 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1296
1297 (% style="color:#4f81bd" %)**Downlink Command:**
1298
1299 No downlink command for this feature.
1300
1301
1302 == 4.6 Set to sleep mode ==
1303
1304
1305 Feature: Set device to sleep mode
1306
1307 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1308 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1309
1310 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1311
1312 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1313 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1314 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1315 Clear all stored sensor data…
1316
1317 OK
1318 )))
1319
1320 (% style="color:#4f81bd" %)**Downlink Command:**
1321
1322 * There is no downlink command to set to Sleep mode.
1323
1324
1325 == 4.7 Set system time ==
1326
1327
1328 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1329
1330 (% style="color:#4f81bd" %)**AT Command:**
1331
1332 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1333 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1334 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1335 OK
1336
1337 Set System time to 2021-01-20 00:59:12
1338 )))
1339
1340 (% style="color:#4f81bd" %)**Downlink Command:**
1341
1342 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1343
1344
1345 == 4.8 Set Time Sync Mode ==
1346
1347
1348 (((
1349 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1350 )))
1351
1352 (((
1353 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1354 )))
1355
1356 (% style="color:#4f81bd" %)**AT Command:**
1357
1358 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1359 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1360 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1361
1362 (% style="color:#4f81bd" %)**Downlink Command:**
1363
1364 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1365 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1366
1367
1368 == 4.9 Set Time Sync Interval ==
1369
1370
1371 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1372
1373 (% style="color:#4f81bd" %)**AT Command:**
1374
1375 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1376 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1377 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1378
1379 (% style="color:#4f81bd" %)**Downlink Command:**
1380
1381 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1382
1383
1384 == 4.10 Print data entries base on page. ==
1385
1386
1387 Feature: Print the sector data from start page to stop page (max is 416 pages).
1388
1389 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1390
1391 [[image:image-20230426164330-2.png]]
1392
1393 (% style="color:#4f81bd" %)**Downlink Command:**
1394
1395 No downlink commands for feature
1396
1397
1398 == 4.11 Print last few data entries. ==
1399
1400
1401 Feature: Print the last few data entries
1402
1403 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1404
1405 [[image:image-20230426164932-3.png]]
1406
1407 (% style="color:#4f81bd" %)**Downlink Command:**
1408
1409 No downlink commands for feature
1410
1411
1412 == 4.12 Clear Flash Record ==
1413
1414
1415 Feature: Clear flash storage for data log feature.
1416
1417 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1418
1419 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1420 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1421 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1422 Clear all stored sensor data…
1423
1424 OK
1425 )))
1426
1427 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1428
1429 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1430
1431
1432 == 4.13 Auto Send None-ACK messages ==
1433
1434
1435 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1436
1437 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1438
1439 The default factory setting is 0
1440
1441 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1442 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1443 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1444
1445 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1446
1447 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1448
1449
1450 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1451
1452
1453 Feature: Set internal and external temperature sensor alarms.
1454
1455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1456 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1457 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1458
1459 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1460
1461 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1462
1463 0): Cancel
1464
1465 1): Threshold alarm
1466
1467 2): Fluctuation alarm
1468
1469
1470 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1471
1472 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1473
1474
1475 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1476
1477 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1478
1479 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1480
1481
1482 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1483
1484 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1485
1486 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1487
1488
1489 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1490
1491 0xA5 00 ~-~- AT+WMOD=0.
1492
1493 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1494
1495 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1496
1497 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1498
1499 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1500
1501
1502 = 5. Battery & How to replace =
1503
1504 == 5.1 Battery Type ==
1505
1506
1507 (((
1508 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1509 )))
1510
1511 (((
1512 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1513
1514
1515 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1516 )))
1517
1518 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1519
1520
1521 == 5.2 Replace Battery ==
1522
1523
1524 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1525
1526 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1527
1528
1529 == 5.3 Battery Life Analyze ==
1530
1531
1532 (((
1533 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1534 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1535 )))
1536
1537
1538 (((
1539 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1540 )))
1541
1542
1543 = 6. FAQ =
1544
1545 == 6.1 How to use AT Command? ==
1546
1547
1548 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1549
1550 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1551
1552
1553 **Connection:**
1554
1555 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1556 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1557 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1558
1559 (((
1560 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1561
1562 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1563 )))
1564
1565
1566 Input password and ATZ to activate LHT65N,As shown below:
1567
1568 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1569
1570
1571 AT Command List is as below:
1572
1573 AT+<CMD>? :  Help on <CMD>
1574
1575 AT+<CMD> :  Run <CMD>
1576
1577 AT+<CMD>=<value> :  Set the value
1578
1579 AT+<CMD>=? :  Get the value
1580
1581 AT+DEBUG:  Set more info output
1582
1583 ATZ:  Trig a reset of the MCU
1584
1585 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1586
1587 AT+DEUI:  Get or Set the Device EUI
1588
1589 AT+DADDR:  Get or Set the Device Address
1590
1591 AT+APPKEY:  Get or Set the Application Key
1592
1593 AT+NWKSKEY:  Get or Set the Network Session Key
1594
1595 AT+APPSKEY:  Get or Set the Application Session Key
1596
1597 AT+APPEUI:  Get or Set the Application EUI
1598
1599 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1600
1601 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1602
1603 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1604
1605 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1606
1607 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1608
1609 AT+RX2FQ:  Get or Set the Rx2 window frequency
1610
1611 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1612
1613 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1614
1615 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1616
1617 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1618
1619 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1620
1621 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1622
1623 AT+NWKID:  Get or Set the Network ID
1624
1625 AT+FCU:  Get or Set the Frame Counter Uplink
1626
1627 AT+FCD:  Get or Set the Frame Counter Downlink
1628
1629 AT+CLASS:  Get or Set the Device Class
1630
1631 AT+JOIN:  Join network
1632
1633 AT+NJS:  Get the join status
1634
1635 AT+SENDB:  Send hexadecimal data along with the application port
1636
1637 AT+SEND:  Send text data along with the application port
1638
1639 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1640
1641 AT+RECV:  Print last received data in raw format
1642
1643 AT+VER:  Get current image version and Frequency Band
1644
1645 AT+CFM:  Get or Set the confirmation mode (0-1)
1646
1647 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1648
1649 AT+SNR:  Get the SNR of the last received packet
1650
1651 AT+RSSI:  Get the RSSI of the last received packet
1652
1653 AT+TDC:  Get or set the application data transmission interval in ms
1654
1655 AT+PORT:  Get or set the application port
1656
1657 AT+DISAT:  Disable AT commands
1658
1659 AT+PWORD: Set password, max 9 digits
1660
1661 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1662
1663 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1664
1665 AT+PDTA:  Print the sector data from start page to stop page
1666
1667 AT+PLDTA:  Print the last few sets of data
1668
1669 AT+CLRDTA:  Clear the storage, record position back to 1st
1670
1671 AT+SLEEP:  Set sleep mode
1672
1673 AT+EXT:  Get or Set external sensor model
1674
1675 AT+BAT:  Get the current battery voltage in mV
1676
1677 AT+CFG:  Print all configurations
1678
1679 AT+WMOD:  Get or Set Work Mode
1680
1681 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1682
1683 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1684
1685 AT+SETCNT:  Set the count at present
1686
1687 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1688
1689 AT+RPL:  Get or set response level
1690
1691 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1692
1693 AT+LEAPSEC:  Get or Set Leap Second
1694
1695 AT+SYNCMOD:  Get or Set time synchronization method
1696
1697 AT+SYNCTDC:  Get or set time synchronization interval in day
1698
1699 AT+PID:  Get or set the PID
1700
1701
1702 == 6.2 Where to use AT commands and Downlink commands ==
1703
1704
1705 **AT commands: **
1706
1707 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1708
1709
1710 **Downlink commands:**
1711
1712
1713 (% style="color:blue" %)**TTN:**
1714
1715 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1716
1717
1718
1719 (% style="color:blue" %)**Helium: **
1720
1721 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1722
1723
1724
1725 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1726
1727
1728 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1729
1730
1731 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1732
1733
1734
1735 (% style="color:blue" %)**Aws:**
1736
1737 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1738
1739
1740 == 6.3 How to change the uplink interval? ==
1741
1742
1743 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1744
1745
1746 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1747
1748
1749 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1750
1751 [[image:1655802313617-381.png||_mstalt="293917"]]
1752
1753
1754 (((
1755 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1756 )))
1757
1758
1759 Input password and ATZ to activate LHT65N, As shown below:
1760
1761 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1762
1763
1764 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1765
1766
1767 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1768
1769
1770 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1771
1772 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1773
1774
1775
1776 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1777
1778 First connect the four lines;(% style="display:none" %)
1779
1780 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1781
1782
1783 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1784
1785 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1786
1787
1788
1789 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1790
1791 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1792
1793
1794 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1795
1796
1797 When this interface appears, it indicates that the download has been completed.
1798
1799 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1800
1801
1802 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1803
1804
1805 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1806
1807
1808 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1809
1810
1811 **UART Port of LHT65N:**
1812
1813 * (% class="mark" %)**PB0: RXD**
1814 * (% class="mark" %)**PB1: TXD**
1815 * (% class="mark" %)**GND**
1816
1817 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1818
1819
1820 (((
1821 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1822 )))
1823
1824
1825 Input password and ATZ to activate LHT65N,As shown below:
1826
1827 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1828
1829
1830 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1831
1832
1833 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1834
1835
1836 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1837
1838 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1839
1840
1841
1842 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1843
1844 First connect the four lines;
1845
1846 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1847
1848 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1849
1850
1851
1852 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1853
1854 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1855
1856
1857 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1858
1859
1860 When this interface appears, it indicates that the download has been completed.
1861
1862 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1863
1864
1865 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1866
1867
1868 == 6.8 Why can't I see the datalog information ==
1869
1870
1871 ~1. The time is not aligned, and the correct query command is not used.
1872
1873 2. Decoder error, did not parse the datalog data, the data was filtered.
1874
1875
1876 = 7. Order Info =
1877
1878
1879 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1880
1881 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1882
1883 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1884 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1885 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1886 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1887 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1888 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1889 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1890 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1891
1892 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1893
1894 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1895
1896
1897 = 8. Packing Info =
1898
1899
1900 **Package Includes**:
1901
1902 * LHT65N Temperature & Humidity Sensor x 1
1903 * Optional external sensor
1904
1905 **Dimension and weight**:
1906
1907 * Device Size:  10 x 10 x 3.5 mm
1908 * Device Weight: 120.5g
1909
1910
1911 = 9. Reference material =
1912
1913
1914 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1915
1916
1917 = 10. FCC Warning =
1918
1919
1920 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1921
1922 (1) This device may not cause harmful interference;
1923
1924 (2) this device must accept any interference received, including interference that may cause undesired operation.