Version 252.21 by Xiaoling on 2023/06/19 17:19

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46 == 1.2 Features ==
47
48
49 * LoRaWAN v1.0.3 Class A protocol
50 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
51 * AT Commands to change parameters
52 * Remote configure parameters via LoRaWAN Downlink
53 * Firmware upgradeable via program port
54 * Built-in 2400mAh battery for up to 10 years of use.
55 * Built-in Temperature & Humidity sensor
56 * Optional External Sensors
57 * Tri-color LED to indicate working status
58 * Datalog feature (Max 3328 records)
59
60 == 1.3 Specification ==
61
62
63 (% style="color:#037691" %)**Built-in Temperature Sensor:**
64
65 * Resolution: 0.01 °C
66 * Accuracy Tolerance : Typ ±0.3 °C
67 * Long Term Drift: < 0.02 °C/yr
68 * Operating Range: -40 ~~ 85 °C
69
70 (% style="color:#037691" %)**Built-in Humidity Sensor:**
71
72 * Resolution: 0.04 %RH
73 * Accuracy Tolerance : Typ ±3 %RH
74 * Long Term Drift: < 0.02 °C/yr
75 * Operating Range: 0 ~~ 96 %RH
76
77 (% style="color:#037691" %)**External Temperature Sensor:**
78
79 * Resolution: 0.0625 °C
80 * ±0.5°C accuracy from -10°C to +85°C
81 * ±2°C accuracy from -55°C to +125°C
82 * Operating Range: -55 °C ~~ 125 °C
83
84 = 2. Connect LHT65N to IoT Server =
85
86 == 2.1 How does LHT65N work? ==
87
88
89 (((
90 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
91 )))
92
93 (((
94 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
95 )))
96
97
98 == 2.2 How to Activate LHT65N? ==
99
100
101 (((
102 The LHT65N has two working modes:
103 )))
104
105 * (((
106 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
107 )))
108 * (((
109 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
110 )))
111
112 (((
113 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
114 )))
115
116
117 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
118
119 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
120 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
122 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
123 )))
124 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
125 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
126 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
127 )))
128 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
129
130 == 2.3 Example to join LoRaWAN network ==
131
132
133 (% class="wikigeneratedid" %)
134 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
135
136
137 (% class="wikigeneratedid" %)
138 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
139
140
141 (((
142 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
143 )))
144
145
146 === 2.3.1 Step 1: Create Device n TTN ===
147
148
149 (((
150 Create a device in TTN V3 with the OTAA keys from LHT65N.
151 )))
152
153 (((
154 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
155 )))
156
157 [[image:image-20230426083319-1.png||height="258" width="556"]]
158
159 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
160
161 Add APP EUI in the application.
162
163
164 [[image:image-20220522232916-3.png||_mstalt="430495"]]
165
166
167 [[image:image-20220522232932-4.png||_mstalt="430157"]]
168
169
170 [[image:image-20220522232954-5.png||_mstalt="431847"]]
171
172
173
174 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
175
176
177 [[image:image-20220522233026-6.png||_mstalt="429403"]]
178
179
180 Input APP EUI,  APP KEY and DEV EUI:
181
182
183 [[image:image-20220522233118-7.png||_mstalt="430430"]]
184
185
186 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
187
188
189 (((
190 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
191 )))
192
193 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
194
195
196 == 2.4 Uplink Payload (Fport~=2) ==
197
198
199 (((
200 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
201 )))
202
203 (((
204 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
205 )))
206
207 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
208 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
209 **Size(bytes)**
210 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
213 **2**
214 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
215 **2**
216 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
217 **1**
218 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
219 **4**
220 )))
221 |(% style="width:97px" %)(((
222 **Value**
223 )))|(% style="width:39px" %)(((
224 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
225 )))|(% style="width:100px" %)(((
226 (((
227 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
228 )))
229 )))|(% style="width:77px" %)(((
230 (((
231 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
232 )))
233 )))|(% style="width:47px" %)(((
234 [[Ext>>||anchor="H2.4.5Ext23"]] #
235 )))|(% style="width:51px" %)(((
236 [[Ext value>>||anchor="H2.4.6Extvalue"]]
237 )))
238
239 * The First 6 bytes: has fix meanings for every LHT65N.
240
241 * The 7th byte (EXT #): defines the external sensor model.
242
243 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
244
245 === 2.4.1 Decoder in TTN V3 ===
246
247
248 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
249
250 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
251
252
253 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
254
255
256 === 2.4.2 BAT-Battery Info ===
257
258
259 These two bytes of BAT include the battery state and the actually voltage.
260
261 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
262 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
263 **Bit(bit)**
264 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
265 |(% style="width:66px" %)(((
266 **Value**
267 )))|(% style="width:250px" %)(((
268 BAT Status
269 00(b): Ultra Low ( BAT <= 2.50v)
270 01(b): Low (2.50v <=BAT <= 2.55v)
271 10(b): OK (2.55v <= BAT <=2.65v)
272 11(b): Good (BAT >= 2.65v)
273 )))|(% style="width:152px" %)Actually BAT voltage
274
275 **(b)stands for binary**
276
277
278 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
279
280
281 Check the battery voltage for LHT65N.
282
283 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
284
285 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
286
287 === 2.4.3 Built-in Temperature ===
288
289
290 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
291
292 * Temperature:  0x0ABB/100=27.47℃
293
294 [[image:image-20220522235639-3.png||_mstalt="432120"]]
295
296 * Temperature:  (0xF5C6-65536)/100=-26.18℃(% style="display:none" %)
297
298 === 2.4.4 Built-in Humidity ===
299
300
301 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
302
303 * Humidity:    0x025C/10=60.4%(% style="display:none" %)
304
305 === 2.4.5 Ext # ===
306
307
308 Bytes for External Sensor:
309
310 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
311 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # **Value|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)External Sensor Type
312 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
313 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
314
315 === 2.4.6 Ext value ===
316
317 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
318
319
320 [[image:image-20220522235639-5.png||_mstalt="432848"]]
321
322
323 * DS18B20 temp=0x0ADD/100=27.81℃
324
325 The last 2 bytes of data are meaningless
326
327
328
329 [[image:image-20220522235639-6.png||_mstalt="433212"]]
330
331
332 * External temperature= (0xF54F-65536)/100=-27.37℃
333
334 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
335
336 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
337
338 The last 2 bytes of data are meaningless
339
340 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
341
342
343
344 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
345
346
347 (((
348 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
349 )))
350
351
352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
353 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
354 **Size(bytes)**
355 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
356 **2**
357 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
358 **2**
359 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
360 **2**
361 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
362 **1**
363 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
364 **4**
365 )))
366 |(% style="width:110px" %)(((
367 **Value**
368 )))|(% style="width:71px" %)(((
369 External temperature
370 )))|(% style="width:99px" %)(((
371 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
372 )))|(% style="width:132px" %)(((
373 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
374 )))|(% style="width:54px" %)(((
375 Status & Ext
376 )))|(% style="width:64px" %)(((
377 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
378 )))
379
380 * **Battery status & Built-in Humidity**
381
382 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
383 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
384 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
385 BAT Status
386 00(b): Ultra Low ( BAT <= 2.50v)
387 01(b): Low  (2.50v <=BAT <= 2.55v)
388 10(b): OK   (2.55v <= BAT <=2.65v)
389 11(b): Good   (BAT >= 2.65v)
390 )))|(% style="width:132px" %)(((
391 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
392 )))
393
394 * **Status & Ext Byte**
395
396 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
397 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
398 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
399
400 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
401 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
402 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
403
404 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
405
406
407 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
408
409 be used to power the external ADC sensor; user can control the power on time for this
410
411 (% style="color:blue" %)**sensor by setting:**
412
413 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
414
415 **For example:**
416
417 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
418
419
420 Or use **downlink command A2** to set the same.
421
422 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
423
424 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
425
426 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
427
428
429 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
430
431 [[image:image-20220628150714-4.png||_mstalt="431054"]]
432
433
434 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
435
436
437 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
438
439 [[image:image-20220628151005-5.png||_mstalt="429546"]]
440
441
442 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
443
444 [[image:image-20220628151056-6.png||_mstalt="431873"]]
445
446
447 3) Within range
448
449 [[image:image-20220628151143-7.png||_mstalt="431210"]]
450
451
452
453 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
454
455
456 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
457
458
459 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
460
461 [[image:image-20220906102307-7.png||_mstalt="430443"]]
462
463
464 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
465
466 The external cable NE2 can be use for MOD4 and MOD8
467
468
469
470 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
471
472
473 [[image:65N-E31F.jpg||height="454" width="459"]]
474
475
476 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
477
478 [[image:SHT31.png]]
479
480
481
482 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
483
484
485 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
486
487
488 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
489
490 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
491
492 In Open State, the power consumption is the same as if there is no probe
493
494 In Close state, the power consumption will be 3uA higher than normal.
495
496 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
497
498
499 Ext=4,Interrupt Sensor:
500
501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
502 |(% style="width:101px" %)(((
503 **AT+EXT=4,1**
504 )))|(% style="width:395px" %)(((
505 **Sent uplink packet in both rising and falling interrupt**
506 )))
507 |(% style="width:101px" %)(((
508 **AT+EXT=4,2**
509 )))|(% style="width:395px" %)(((
510 **Sent uplink packet only in falling interrupt**
511 )))
512 |(% style="width:101px" %)(((
513 **AT+EXT=4,3**
514 )))|(% style="width:395px" %)(((
515 **Sent uplink packet only in rising interrupt**
516 )))
517
518 Trigger by falling edge:
519
520 [[image:image-20220906101145-2.png||_mstalt="428324"]]
521
522
523 Trigger by raising edge:
524
525 [[image:image-20220906101145-3.png||_mstalt="428688"]]
526
527
528
529 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
530
531
532 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
533
534
535 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
536
537 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
538
539
540 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
541
542 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
543
544
545 Ext=8, Counting Sensor ( 4 bytes):
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
548 |(% style="width:131px" %)(((
549 **AT+EXT=8,0**
550 )))|(% style="width:195px" %)(((
551 **Count at falling interrupt**
552 )))
553 |(% style="width:131px" %)(((
554 **AT+EXT=8,1**
555 )))|(% style="width:195px" %)(((
556 **Count at rising interrupt**
557 )))
558 |(% style="width:131px" %)(((
559 **AT+SETCNT=60**
560 )))|(% style="width:195px" %)(((
561 **Sent current count to 60**
562 )))
563
564 [[image:image-20220906101320-6.png||_mstalt="428064"]]
565
566
567 (% style="color:blue" %)**A2 downlink Command:**
568
569 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
570
571 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
572
573 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
574
575 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
576
577 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
578
579
580 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
581
582
583 (((
584 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
585 )))
586
587
588 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
589 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
590 **Size(bytes)**
591 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
592 **2**
593 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
594 **2**
595 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
596 **2**
597 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
598 **1**
599 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
600 **4**
601 )))
602 |(% style="width:110px" %)(((
603 **Value**
604 )))|(% style="width:71px" %)(((
605 External temperature
606 )))|(% style="width:99px" %)(((
607 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
608 )))|(% style="width:132px" %)(((
609 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
610 )))|(% style="width:54px" %)(((
611 Status & Ext
612 )))|(% style="width:64px" %)(((
613 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
614 )))
615
616 * **Battery status & Built-in Humidity**
617
618 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
619 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
620 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
621 BAT Status
622 00(b): Ultra Low ( BAT <= 2.50v)
623 01(b): Low  (2.50v <=BAT <= 2.55v)
624 10(b): OK   (2.55v <= BAT <=2.65v)
625 11(b): Good   (BAT >= 2.65v)
626 )))|(% style="width:132px" %)(((
627 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
628 )))
629
630 * **Status & Ext Byte**
631
632 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
633 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
634 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
635
636 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
637 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
638 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
639
640 == 2.5 Show data on Datacake ==
641
642
643 (((
644 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
645 )))
646
647
648 (((
649 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
650 )))
651
652 (((
653 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
654 )))
655
656
657 (((
658 Add Datacake:
659 )))
660
661
662 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
663
664
665
666 Select default key as Access Key:
667
668
669 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
670
671
672 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
673
674
675 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
676
677
678 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
679
680
681 == 2.6 Datalog Feature ==
682
683
684 (((
685 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
686 )))
687
688
689 === 2.6.1 Ways to get datalog via LoRaWAN ===
690
691
692 There are two methods:
693
694 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
695
696
697 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
698
699
700 (% style="color:red" %)**Note for method 2:**
701
702 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
703 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
704
705 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
706
707
708 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
709
710
711 === 2.6.2 Unix TimeStamp ===
712
713
714 LHT65N uses Unix TimeStamp format based on
715
716
717 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
718
719
720
721 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
722
723 Below is the converter example
724
725 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
726
727
728 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
729
730
731 === 2.6.3 Set Device Time ===
732
733
734 (((
735 (% style="color:blue" %)**There are two ways to set device's time:**
736 )))
737
738 (((
739 **1.  Through LoRaWAN MAC Command (Default settings)**
740 )))
741
742 (((
743 User need to set SYNCMOD=1 to enable sync time via MAC command.
744 )))
745
746 (((
747 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
748 )))
749
750 (((
751 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
752 )))
753
754
755 (((
756 **2. Manually Set Time**
757 )))
758
759 (((
760 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
761 )))
762
763
764 === 2.6.4 Poll sensor value ===
765
766
767 User can poll sensor value based on timestamps from the server. Below is the downlink command.
768
769 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
770 |(% style="width:58px;background-color:#D9E2F3;color:#0070C0" %)**1byte**|(% style="width:128px;background-color:#D9E2F3;color:#0070C0" %)**4bytes**|(% style="width:123px;background-color:#D9E2F3;color:#0070C0" %)**4bytes**|(% style="width:116px;background-color:#D9E2F3;color:#0070C0" %)**1byte**
771 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
772
773 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
774
775 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
776
777 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
778
779 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
780
781
782 === 2.6.5 Datalog Uplink payload ===
783
784
785 The Datalog poll reply uplink will use below payload format.
786
787 **Retrieval data payload:**
788
789 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
790 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
791 **Size(bytes)**
792 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
793 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
794
795 **Poll message flag & Ext:**
796
797 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
798
799 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
800
801 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
802
803 * Poll Message Flag is set to 1.
804
805 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
806
807 For example, in US915 band, the max payload for different DR is:
808
809 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
810
811 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
812
813 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
814
815 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
816
817 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
818
819
820 **Example:**
821
822 If LHT65N has below data inside Flash:
823
824 [[image:image-20230426171833-4.png]]
825
826
827 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
828
829 Where : Start time: 60065F97 = time 21/1/19 04:27:03
830
831 Stop time: 60066DA7= time 21/1/19 05:27:03
832
833
834 **LHT65N will uplink this payload.**
835
836 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
837
838
839 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
840
841 Where the first 11 bytes is for the first entry:
842
843 7FFF089801464160065F97
844
845 Ext sensor data=0x7FFF/100=327.67
846
847 Temp=0x088E/100=22.00
848
849 Hum=0x014B/10=32.6
850
851 poll message flag & Ext=0x41,means reply data,Ext=1
852
853 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
854
855
856 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
857
858
859 (((
860 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
861 )))
862
863 (((
864 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
865
866
867 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
868
869
870 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
871
872 (((
873 (% class="box infomessage" %)
874 (((
875 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
876
877 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
878
879 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
880
881 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
882
883 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
884
885 **AT+LEDALARM=1** :       Enable LED visual Alarm.
886 )))
887 )))
888
889 (% style="color:#4f81bd" %)**Downlink Command:**
890
891 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
892
893 AT+CITEMP=1 : A60001
894
895 AT+ARTEMP=1,60  :  A70001003C
896
897 AT+ARTEMP=-16,60 :  A7FFF0003C
898
899 AT+LEDALARM=1  :  3601
900
901
902 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
903
904 Total bytes: 8 bytes
905
906 **Example: **AA0100010001003C
907
908 WMOD=01
909
910 CITEMP=0001
911
912 TEMPlow=0001
913
914 TEMPhigh=003C
915
916
917 **DS18B20 and TMP117 Threshold Alarm**
918
919 **~ AT+WMOD=1,60,-10,20**
920
921 (% style="color:#4f81bd" %)**Downlink Command:**
922
923 **Example: **A5013CFC180014
924
925 MOD=01
926
927 CITEMP=3C(S)
928
929 TEMPlow=FC18
930
931 TEMPhigh=0014
932
933
934 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
935
936 **AT+WMOD=2,60,5** 
937
938 (% style="color:#4f81bd" %)**Downlink Command:**
939
940 **Example: **A5023C05
941
942 MOD=02
943
944 CITEMP=3C(S)
945
946 temperature fluctuation=05
947
948
949 **Sampling multiple times and uplink together**
950
951 **AT+WMOD=3,1,60,20,-16,32,1**   
952
953 Explain:
954
955 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
956 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
957 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
958 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
959 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
960 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
961
962 (% style="color:#4f81bd" %)**Downlink Command:**
963
964 **Example: **A50301003C14FFF0002001
965
966 MOD=03
967
968 TEMP=DS18B20
969
970 CITEMP=003C(S)
971
972 Total number of acquisitions=14
973
974 TEMPlow=FFF0
975
976 TEMPhigh=0020
977
978 ARTEMP=01
979
980
981 **Uplink payload( Fport=3)**
982
983 **Example: CBEA**01**0992**//0A41//**09C4**
984
985 BatV=CBEA
986
987 TEMP=DS18B20
988
989 Temp1=0992  ~/~/ 24.50℃
990
991 Temp2=0A41  ~/~/ 26.25℃
992
993 Temp3=09C4  ~/~/ 25.00℃
994
995 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
996
997 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
998 )))
999
1000
1001 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1002
1003
1004 (% class="box infomessage" %)
1005 (((
1006 (((
1007 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1008 )))
1009
1010 (((
1011 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1012 )))
1013
1014 (((
1015 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1016 )))
1017
1018 (((
1019 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1020 )))
1021
1022 (((
1023 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1024 )))
1025 )))
1026
1027 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1028
1029 Total bytes: 8 bytes
1030
1031 **Example:**AA0100010001003C
1032
1033 WMOD=01
1034
1035 CITEMP=0001
1036
1037 TEMPlow=0001
1038
1039 TEMPhigh=003C
1040
1041
1042 == 2.8 LED Indicator ==
1043
1044
1045 The LHT65 has a triple color LED which for easy showing different stage .
1046
1047 While user press ACT button, the LED will work as per LED status with ACT button.
1048
1049 In a normal working state:
1050
1051 * For each uplink, the BLUE LED or RED LED will blink once.
1052 BLUE LED when external sensor is connected.
1053 * RED LED when external sensor is not connected
1054 * For each success downlink, the PURPLE LED will blink once
1055
1056 == 2.9 installation ==
1057
1058
1059 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1060
1061
1062 = 3. Sensors and Accessories =
1063
1064 == 3.1 E2 Extension Cable ==
1065
1066
1067 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1068
1069
1070 **1m long breakout cable for LHT65N. Features:**
1071
1072 * (((
1073 Use for AT Command, works for both LHT52/LHT65N
1074 )))
1075 * (((
1076 Update firmware for LHT65N, works for both LHT52/LHT65N
1077 )))
1078 * (((
1079 Supports ADC mode to monitor external ADC
1080 )))
1081 * (((
1082 Supports Interrupt mode
1083 )))
1084 * (((
1085 Exposed All pins from the LHT65N Type-C connector.
1086
1087
1088
1089 )))
1090
1091 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1092
1093
1094 == 3.2 E3 Temperature Probe ==
1095
1096
1097 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1098
1099
1100 Temperature sensor with 2 meters cable long
1101
1102 * Resolution: 0.0625 °C
1103 * ±0.5°C accuracy from -10°C to +85°C
1104 * ±2°C accuracy from -55°C to +125°C
1105 * Operating Range: -40 ~~ 125 °C
1106 * Working voltage 2.35v ~~ 5v
1107
1108 == 3.3 E31F Temperature Probe ==
1109
1110
1111 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1112
1113
1114 Temperature sensor with 1 meters cable long
1115
1116 **Built-in Temperature Sensor:**
1117
1118 * Resolution: 0.01 °C
1119 * Accuracy Tolerance : Typ ±0.3 °C
1120 * Long Term Drift: < 0.02 °C/yr
1121 * Operating Range: -40 ~~ 80 °C
1122
1123 **Built-in Humidity Sensor:**
1124
1125 * Resolution: 0.04 % RH
1126 * Accuracy Tolerance : Typ ±3 % RH
1127 * Long Term Drift: < 0.02 °C/yr
1128 * Operating Range: 0 ~~ 96 % RH
1129
1130 **External Temperature Sensor :**
1131
1132 * Resolution: 0.01 °C
1133 * Accuracy Tolerance : Typical ±0.3 °C
1134 * Long Term Drift: < 0.02 °C/yr
1135 * Operating Range: -40 ~~ 125 °C
1136
1137 **External Humidity Sensor :**
1138
1139 * Resolution: 0.04 % RH
1140 * Accuracy Tolerance : Typ ±3 % RH
1141 * Long Term Drift: < 0.02 °C/yr
1142 * Operating Range: 0 ~~ 96 % RH
1143
1144 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1145
1146
1147 (((
1148 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1149 )))
1150
1151 * (((
1152 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1153 )))
1154
1155 * (((
1156 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1157 )))
1158
1159 (((
1160 There are two kinds of commands to configure LHT65N, they are:
1161 )))
1162
1163 * (((
1164 (% style="color:#4f81bd" %)**General Commands**.
1165 )))
1166
1167 (((
1168 These commands are to configure:
1169 )))
1170
1171 1. (((
1172 General system settings like: uplink interval.
1173 )))
1174 1. (((
1175 LoRaWAN protocol & radio-related commands.
1176 )))
1177
1178 (((
1179 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1180 )))
1181
1182 * (((
1183 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1184 )))
1185
1186 (((
1187 These commands are only valid for LHT65N, as below:
1188 )))
1189
1190
1191 == 4.1 Set Transmit Interval Time ==
1192
1193
1194 Feature: Change LoRaWAN End Node Transmit Interval.
1195
1196
1197 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1198
1199 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1200 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1201 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1202 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1203
1204 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1205
1206 Format: Command Code (0x01) followed by 3 bytes time value.
1207
1208 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1209
1210 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1211
1212 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1213
1214
1215
1216
1217 == 4.2 Set External Sensor Mode ==
1218
1219
1220 Feature: Change External Sensor Mode.
1221
1222
1223 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1224
1225
1226 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1227 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1228 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1229 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1230 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1231
1232 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1233
1234 Total bytes: 2 ~~ 5 bytes
1235
1236 **Example:**
1237
1238 * 0xA201: Set external sensor type to E1
1239
1240 * 0xA209: Same as AT+EXT=9
1241
1242 * 0xA20702003c: Same as AT+SETCNT=60
1243
1244
1245
1246
1247 == 4.3 Enable/Disable uplink Temperature probe ID ==
1248
1249
1250 (((
1251 Feature: If PID is enabled, device will send the temperature probe ID on:
1252 )))
1253
1254 * (((
1255 First Packet after OTAA Join
1256 )))
1257 * (((
1258 Every 24 hours since the first packet.
1259 )))
1260
1261 (((
1262 PID is default set to disable (0)
1263
1264
1265 )))
1266
1267 (% style="color:#4f81bd" %)**AT Command:**
1268
1269 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1270 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1271 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1272
1273 (% style="color:#4f81bd" %)**Downlink Command:**
1274
1275 * **0xA800**  **~-~->** AT+PID=0
1276 * **0xA801**     **~-~->** AT+PID=1
1277
1278
1279
1280
1281 == 4.4 Set Password ==
1282
1283
1284 Feature: Set device password, max 9 digits
1285
1286 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1287
1288 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1289 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1290 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1291 123456
1292
1293 OK
1294 )))
1295 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1296
1297 (% style="color:#4f81bd" %)**Downlink Command:**
1298
1299 No downlink command for this feature.
1300
1301
1302 == 4.5 Quit AT Command ==
1303
1304
1305 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1306
1307 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1308
1309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1310 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1311 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1312
1313 (% style="color:#4f81bd" %)**Downlink Command:**
1314
1315 No downlink command for this feature.
1316
1317
1318 == 4.6 Set to sleep mode ==
1319
1320
1321 Feature: Set device to sleep mode
1322
1323 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1324 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1325
1326 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1327
1328 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1329 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1330 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1331 Clear all stored sensor data…
1332
1333 OK
1334 )))
1335
1336 (% style="color:#4f81bd" %)**Downlink Command:**
1337
1338 * There is no downlink command to set to Sleep mode.
1339
1340
1341
1342
1343 == 4.7 Set system time ==
1344
1345
1346 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1347
1348 (% style="color:#4f81bd" %)**AT Command:**
1349
1350 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1351 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1352 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1353 OK
1354
1355 Set System time to 2021-01-20 00:59:12
1356 )))
1357
1358 (% style="color:#4f81bd" %)**Downlink Command:**
1359
1360 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1361
1362
1363 == 4.8 Set Time Sync Mode ==
1364
1365
1366 (((
1367 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1368 )))
1369
1370 (((
1371 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1372 )))
1373
1374 (% style="color:#4f81bd" %)**AT Command:**
1375
1376 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1377 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1378 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1379
1380 (% style="color:#4f81bd" %)**Downlink Command:**
1381
1382 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1383 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1384
1385
1386 == 4.9 Set Time Sync Interval ==
1387
1388
1389 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1390
1391 (% style="color:#4f81bd" %)**AT Command:**
1392
1393 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1394 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1395 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1396
1397 (% style="color:#4f81bd" %)**Downlink Command:**
1398
1399 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1400
1401
1402 == 4.10 Print data entries base on page. ==
1403
1404
1405 Feature: Print the sector data from start page to stop page (max is 416 pages).
1406
1407 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1408
1409 [[image:image-20230426164330-2.png]]
1410
1411
1412 (% style="color:#4f81bd" %)**Downlink Command:**
1413
1414 No downlink commands for feature
1415
1416
1417 == 4.11 Print last few data entries. ==
1418
1419
1420 Feature: Print the last few data entries
1421
1422 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1423
1424 [[image:image-20230426164932-3.png]]
1425
1426
1427 (% style="color:#4f81bd" %)**Downlink Command:**
1428
1429 No downlink commands for feature
1430
1431
1432 == 4.12 Clear Flash Record ==
1433
1434
1435 Feature: Clear flash storage for data log feature.
1436
1437
1438 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1439
1440
1441 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1442 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1443 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1444 Clear all stored sensor data…
1445
1446 OK
1447 )))
1448
1449 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1450
1451 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1452
1453
1454
1455
1456 == 4.13 Auto Send None-ACK messages ==
1457
1458
1459 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1460
1461 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1462
1463 The default factory setting is 0
1464
1465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1466 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1467 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1468
1469 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1470
1471 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1472
1473
1474
1475
1476 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1477
1478
1479 Feature: Set internal and external temperature sensor alarms.
1480
1481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1482 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1483 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1484
1485 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1486
1487 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1488
1489 0): Cancel
1490
1491 1): Threshold alarm
1492
1493 2): Fluctuation alarm
1494
1495
1496 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1497
1498 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1499
1500
1501 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1502
1503 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1504
1505 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1506
1507
1508 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1509
1510 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1511
1512 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1513
1514
1515 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1516
1517 0xA5 00 ~-~- AT+WMOD=0.
1518
1519 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1520
1521 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1522
1523 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1524
1525 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1526
1527
1528 = 5. Battery & How to replace =
1529
1530 == 5.1 Battery Type ==
1531
1532
1533 (((
1534 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1535 )))
1536
1537 (((
1538 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1539
1540
1541 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1542 )))
1543
1544 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1545
1546
1547 == 5.2 Replace Battery ==
1548
1549
1550 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1551
1552 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1553
1554
1555 == 5.3 Battery Life Analyze ==
1556
1557
1558 (((
1559 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1560 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1561 )))
1562
1563
1564 (((
1565 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1566 )))
1567
1568
1569 = 6. FAQ =
1570
1571 == 6.1 How to use AT Command? ==
1572
1573
1574 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1575
1576 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1577
1578
1579 **Connection:**
1580
1581 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1582 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1583 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1584
1585 (((
1586 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1587 )))
1588
1589
1590 Input password and ATZ to activate LHT65N,As shown below:
1591
1592 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1593
1594
1595 AT Command List is as below:
1596
1597 AT+<CMD>? :  Help on <CMD>
1598
1599 AT+<CMD> :  Run <CMD>
1600
1601 AT+<CMD>=<value> :  Set the value
1602
1603 AT+<CMD>=? :  Get the value
1604
1605 AT+DEBUG:  Set more info output
1606
1607 ATZ:  Trig a reset of the MCU
1608
1609 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1610
1611 AT+DEUI:  Get or Set the Device EUI
1612
1613 AT+DADDR:  Get or Set the Device Address
1614
1615 AT+APPKEY:  Get or Set the Application Key
1616
1617 AT+NWKSKEY:  Get or Set the Network Session Key
1618
1619 AT+APPSKEY:  Get or Set the Application Session Key
1620
1621 AT+APPEUI:  Get or Set the Application EUI
1622
1623 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1624
1625 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1626
1627 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1628
1629 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1630
1631 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1632
1633 AT+RX2FQ:  Get or Set the Rx2 window frequency
1634
1635 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1636
1637 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1638
1639 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1640
1641 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1642
1643 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1644
1645 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1646
1647 AT+NWKID:  Get or Set the Network ID
1648
1649 AT+FCU:  Get or Set the Frame Counter Uplink
1650
1651 AT+FCD:  Get or Set the Frame Counter Downlink
1652
1653 AT+CLASS:  Get or Set the Device Class
1654
1655 AT+JOIN:  Join network
1656
1657 AT+NJS:  Get the join status
1658
1659 AT+SENDB:  Send hexadecimal data along with the application port
1660
1661 AT+SEND:  Send text data along with the application port
1662
1663 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1664
1665 AT+RECV:  Print last received data in raw format
1666
1667 AT+VER:  Get current image version and Frequency Band
1668
1669 AT+CFM:  Get or Set the confirmation mode (0-1)
1670
1671 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1672
1673 AT+SNR:  Get the SNR of the last received packet
1674
1675 AT+RSSI:  Get the RSSI of the last received packet
1676
1677 AT+TDC:  Get or set the application data transmission interval in ms
1678
1679 AT+PORT:  Get or set the application port
1680
1681 AT+DISAT:  Disable AT commands
1682
1683 AT+PWORD: Set password, max 9 digits
1684
1685 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1686
1687 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1688
1689 AT+PDTA:  Print the sector data from start page to stop page
1690
1691 AT+PLDTA:  Print the last few sets of data
1692
1693 AT+CLRDTA:  Clear the storage, record position back to 1st
1694
1695 AT+SLEEP:  Set sleep mode
1696
1697 AT+EXT:  Get or Set external sensor model
1698
1699 AT+BAT:  Get the current battery voltage in mV
1700
1701 AT+CFG:  Print all configurations
1702
1703 AT+WMOD:  Get or Set Work Mode
1704
1705 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1706
1707 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1708
1709 AT+SETCNT:  Set the count at present
1710
1711 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1712
1713 AT+RPL:  Get or set response level
1714
1715 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1716
1717 AT+LEAPSEC:  Get or Set Leap Second
1718
1719 AT+SYNCMOD:  Get or Set time synchronization method
1720
1721 AT+SYNCTDC:  Get or set time synchronization interval in day
1722
1723 AT+PID:  Get or set the PID
1724
1725
1726 == 6.2 Where to use AT commands and Downlink commands ==
1727
1728
1729 **AT commands: **
1730
1731 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1732
1733
1734 **Downlink commands:**
1735
1736
1737 (% style="color:blue" %)**TTN:**
1738
1739 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1740
1741
1742
1743 (% style="color:blue" %)**Helium: **
1744
1745 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1746
1747
1748
1749 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1750
1751
1752 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1753
1754
1755 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1756
1757
1758
1759 (% style="color:blue" %)**Aws:**
1760
1761 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1762
1763
1764 == 6.3 How to change the uplink interval? ==
1765
1766
1767 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1768
1769
1770 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1771
1772
1773 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1774
1775 [[image:1655802313617-381.png||_mstalt="293917"]]
1776
1777
1778 (((
1779 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1780 )))
1781
1782
1783 Input password and ATZ to activate LHT65N, As shown below:
1784
1785 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1786
1787
1788 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1789
1790
1791 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1792
1793
1794 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1795
1796 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1797
1798
1799
1800 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1801
1802 First connect the four lines;(% style="display:none" %)
1803
1804 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1805
1806
1807 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1808
1809 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1810
1811
1812
1813 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1814
1815 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1816
1817
1818 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1819
1820
1821 When this interface appears, it indicates that the download has been completed.
1822
1823 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1824
1825
1826 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1827
1828
1829 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1830
1831
1832 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1833
1834
1835 **UART Port of LHT65N:**
1836
1837 * (% class="mark" %)**PB0: RXD**
1838 * (% class="mark" %)**PB1: TXD**
1839 * (% class="mark" %)**GND**
1840
1841 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1842
1843
1844 (((
1845 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1846 )))
1847
1848
1849 Input password and ATZ to activate LHT65N,As shown below:
1850
1851 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1852
1853
1854 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1855
1856
1857 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1858
1859
1860 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1861
1862 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1863
1864
1865
1866 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1867
1868 First connect the four lines;
1869
1870 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1871
1872 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1873
1874
1875
1876 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1877
1878 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1879
1880
1881 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1882
1883
1884 When this interface appears, it indicates that the download has been completed.
1885
1886 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1887
1888
1889 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1890
1891
1892 == 6.8 Why can't I see the datalog information ==
1893
1894
1895 ~1. The time is not aligned, and the correct query command is not used.
1896
1897 2. Decoder error, did not parse the datalog data, the data was filtered.
1898
1899
1900 = 7. Order Info =
1901
1902
1903 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1904
1905 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1906
1907 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1908 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1909 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1910 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1911 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1912 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1913 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1914 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1915
1916 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1917
1918 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1919
1920 = 8. Packing Info =
1921
1922
1923 **Package Includes**:
1924
1925 * LHT65N Temperature & Humidity Sensor x 1
1926 * Optional external sensor
1927
1928 **Dimension and weight**:
1929
1930 * Device Size:  10 x 10 x 3.5 mm
1931 * Device Weight: 120.5g
1932
1933 = 9. Reference material =
1934
1935
1936 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1937
1938 = 10. FCC Warning =
1939
1940
1941 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1942
1943 (1) This device may not cause harmful interference;
1944
1945 (2) this device must accept any interference received, including interference that may cause undesired operation.