<
From version < 56.5 >
edited by Xiaoling
on 2022/05/23 11:59
To version < 55.1 >
edited by Xiaoling
on 2022/05/23 11:22
>
Change comment: Uploaded new attachment "image-20220523112300-2.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -1,47 +1,33 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220523115324-1.jpeg||height="500" width="500"]]
3 -
4 -
5 -**LHT65N LoRaWAN Temperature & Humidity Sensor Manual**
6 -
7 -
8 -
9 -**Table of Contents:**
10 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
11 11  {{toc/}}
3 +{{/box}}
12 12  
5 +(% class="wikigeneratedid" %)
6 += =
13 13  
14 -
8 +(% class="wikigeneratedid" %)
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is LHT65N Temperature & Humidity Sensor ==
11 +== 1.1 Overview ==
18 18  
19 -(((
20 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.**
21 -)))
13 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
22 22  
23 -(((
15 +
16 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
17 +
24 24  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 -)))
26 26  
27 -(((
28 28  LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
29 -)))
30 30  
31 -(((
32 32  LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 -)))
34 34  
35 -(((
36 -LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 -)))
24 +LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
38 38  
39 -(((
40 40  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 -)))
42 42  
43 -== 1.2 Features ==
44 44  
29 +== Features: ==
30 +
45 45  * Wall mountable
46 46  * LoRaWAN v1.0.3 Class A protocol
47 47  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -54,91 +54,55 @@
54 54  * Tri-color LED to indicate working status
55 55  * Datalog feature
56 56  
57 -== 1.3 Specification ==
43 +== Specification: ==
58 58  
59 -(((
60 60  **Built-in Temperature Sensor:**
61 -)))
62 62  
63 -* (((
64 -Resolution: 0.01 °C
65 -)))
66 -* (((
67 -Accuracy Tolerance : Typ ±0.3 °C
68 -)))
69 -* (((
70 -Long Term Drift: < 0.02 °C/yr
71 -)))
72 -* (((
73 -Operating Range: -40 ~~ 85 °C
74 -)))
47 +* Resolution: 0.01 °C
48 +* Accuracy Tolerance : Typ ±0.3 °C
49 +* Long Term Drift: < 0.02 °C/yr
50 +* Operating Range: -40 ~~ 85 °C
75 75  
76 -(((
77 77  **Built-in Humidity Sensor:**
78 -)))
79 79  
80 -* (((
81 -Resolution: 0.04 %RH
82 -)))
83 -* (((
84 -Accuracy Tolerance : Typ ±3 %RH
85 -)))
86 -* (((
87 -Long Term Drift: < 0.02 °C/yr
88 -)))
89 -* (((
90 -Operating Range: 0 ~~ 96 %RH
91 -)))
54 +* Resolution: 0.04 %RH
55 +* Accuracy Tolerance : Typ ±3 %RH
56 +* Long Term Drift: < 0.02 °C/yr
57 +* Operating Range: 0 ~~ 96 %RH
92 92  
93 -(((
94 94  **External Temperature Sensor:**
95 -)))
96 96  
97 -* (((
98 -Resolution: 0.0625 °C
99 -)))
100 -* (((
101 -±0.5°C accuracy from -10°C to +85°C
102 -)))
103 -* (((
104 -±2°C accuracy from -55°C to +125°C
105 -)))
106 -* (((
107 -Operating Range: -55 °C ~~ 125 °C
108 -)))
61 +* Resolution: 0.0625 °C
62 +* ±0.5°C accuracy from -10°C to +85°C
63 +* ±2°C accuracy from -55°C to +125°C
64 +* Operating Range: -55 °C ~~ 125 °C
109 109  
110 -= 2. Connect LHT65N to IoT Server =
66 += Connect LHT65N to IoT Server =
111 111  
112 -== 2.1 How does LHT65N work? ==
68 +== How does LHT65N work? ==
113 113  
114 -(((
115 115  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
116 -)))
117 117  
118 -(((
119 119  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
120 -)))
121 121  
122 -== 2.2 How to Activate LHT65N? ==
123 123  
75 +== How to Activate LHT65N? ==
76 +
124 124  The LHT65N has two working modes:
125 125  
126 126  * **Deep Sleep Mode**: LHT65N doesn’t have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
127 127  * **Working Mode**: In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65 will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
128 128  
129 -(((
130 130  The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
131 -)))
132 132  
133 133  [[image:image-20220515123819-1.png||height="379" width="317"]]
134 134  
135 -(% border="1" %)
136 136  |**Behavior on ACT**|**Function**|**Action**
137 137  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
138 138  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
139 139  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
140 140  
141 -== 2.3 Example to join LoRaWAN network ==
91 +== Example to join LoRaWAN network ==
142 142  
143 143  (% class="wikigeneratedid" %)
144 144  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -149,7 +149,7 @@
149 149  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
150 150  
151 151  
152 -=== 2.3.1 Step 1: Create Device n TTN ===
102 +=== **Step 1**: Create Device n TTN ===
153 153  
154 154  Create a device in TTN V3 with the OTAA keys from LHT65N.
155 155  
... ... @@ -179,7 +179,7 @@
179 179  [[image:image-20220522233118-7.png]]
180 180  
181 181  
182 -=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
132 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
183 183  
184 184  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
185 185  
... ... @@ -186,7 +186,7 @@
186 186  [[image:image-20220522233300-8.png]]
187 187  
188 188  
189 -== 2.4 Uplink Payload ==
139 +== Uplink Payload: ==
190 190  
191 191  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
192 192  
... ... @@ -193,7 +193,7 @@
193 193  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
194 194  
195 195  
196 -(% border="1" style="width:572px" %)
146 +(% style="width:572px" %)
197 197  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
198 198  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
199 199  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -209,7 +209,7 @@
209 209  * The 7th byte (EXT #): defines the external sensor model.
210 210  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
211 211  
212 -=== 2.4.1 Decoder in TTN V3 ===
162 +=== Decoder in TTN V3 ===
213 213  
214 214  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
215 215  
... ... @@ -220,7 +220,7 @@
220 220  [[image:image-20220522234118-10.png]]
221 221  
222 222  
223 -=== 2.4.2 BAT-Battery Info ===
173 +=== BAT-Battery Info ===
224 224  
225 225  These two bytes of BAT include the battery state and the actually voltage
226 226  
... ... @@ -245,7 +245,7 @@
245 245  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
246 246  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
247 247  
248 -=== 2.4.3 Built-in Temperature ===
198 +=== Built-in Temperature ===
249 249  
250 250  [[image:image-20220522235639-2.png]]
251 251  
... ... @@ -255,13 +255,13 @@
255 255  
256 256  * Temperature:  (0xF5C6-65536)/100=-26.18℃
257 257  
258 -=== 2.4.4 Built-in Humidity ===
208 +=== Built-in Humidity ===
259 259  
260 260  [[image:image-20220522235639-4.png]]
261 261  
262 262  * Humidity:    0x025C/10=60.4%
263 263  
264 -=== 2.4.5 Ext # ===
214 +=== Ext # ===
265 265  
266 266  Bytes for External Sensor:
267 267  
... ... @@ -270,16 +270,19 @@
270 270  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
271 271  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
272 272  
273 -=== 2.4.6 Ext value ===
223 +=== Ext value ===
274 274  
275 -==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
225 +==== Ext~=1, E3 Temperature Sensor ====
276 276  
277 277  [[image:image-20220522235639-5.png]]
278 278  
229 +
279 279  * DS18B20 temp=0x0ADD/100=27.81℃
280 280  
281 281  The last 2 bytes of data are meaningless
282 282  
234 +
235 +
283 283  [[image:image-20220522235639-6.png]]
284 284  
285 285  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -286,15 +286,16 @@
286 286  
287 287  The last 2 bytes of data are meaningless
288 288  
242 +
289 289  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
290 290  
291 291  
292 -==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
246 +==== Ext~=9, E3 sensor with Unix Timestamp ====
293 293  
294 294  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
295 295  
296 296  
297 -(% border="1" style="width:697px" %)
251 +(% style="width:697px" %)
298 298  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
299 299  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
300 300  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -312,9 +312,9 @@
312 312  [[Time Stamp>>path:#Unix_Time_Stamp]]
313 313  )))
314 314  
315 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
269 +* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
316 316  
317 -(% border="1" style="width:587px" %)
271 +(% style="width:587px" %)
318 318  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
319 319  |Value|(% style="width:280px" %)(((
320 320  BAT Status
... ... @@ -334,7 +334,7 @@
334 334  
335 335  * **Status & Ext Byte**
336 336  
337 -(% border="1" style="width:732px" %)
291 +(% style="width:732px" %)
338 338  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
339 339  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
340 340  Ext:
... ... @@ -346,10 +346,11 @@
346 346  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
347 347  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
348 348  
349 -== 2.5 Show data on Datacake ==
303 +== Show data on Datacake ==
350 350  
351 351  Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
352 352  
307 +
353 353  **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
354 354  
355 355  **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
... ... @@ -374,11 +374,11 @@
374 374  [[image:image-20220523000825-10.png||height="432" width="762"]]
375 375  
376 376  
377 -== 2.6 Datalog Feature ==
332 +== Datalog Feature ==
378 378  
379 379  This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
380 380  
381 -=== 2.6.1 Unix TimeStamp ===
336 +=== Unix TimeStamp ===
382 382  
383 383  LHT65N uses Unix TimeStamp format based on
384 384  
... ... @@ -389,12 +389,12 @@
389 389  
390 390  Below is the converter example
391 391  
392 -[[image:image-20220523001219-12.png||height="302" width="730"]]
347 +[[image:image-20220523001219-12.png||height="353" width="853"]]
393 393  
394 394  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
395 395  
396 396  
397 -=== 2.6.2 Set Device Time ===
352 +=== Set Device Time ===
398 398  
399 399  There are two ways to set device’s time:
400 400  
... ... @@ -412,12 +412,12 @@
412 412  User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
413 413  
414 414  
415 -=== 2.6.3 Poll sensor value ===
370 +=== Poll sensor value ===
416 416  
417 417  User can poll sensor value based on timestamps from the server. Below is the downlink command.
418 418  
419 419  
420 -(% border="1" style="width:454px" %)
375 +(% style="width:454px" %)
421 421  |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
422 422  |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
423 423  
... ... @@ -431,7 +431,7 @@
431 431  Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
432 432  
433 433  
434 -=== 2.6.4 Datalog Uplink payload ===
389 +=== Datalog Uplink payload ===
435 435  
436 436  The Datalog poll reply uplink will use below payload format.
437 437  
... ... @@ -438,7 +438,6 @@
438 438  
439 439  Retrieval data payload
440 440  
441 -(% border="1" %)
442 442  |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
443 443  |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
444 444  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -457,7 +457,6 @@
457 457  Poll message flag & Ext
458 458  
459 459  
460 -(% border="1" %)
461 461  |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
462 462  |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
463 463  Ext:
... ... @@ -517,7 +517,7 @@
517 517  
518 518  LHT65N will uplink this payload.
519 519  
520 -[[image:image-20220523001219-13.png||height="421" width="727"]]
473 +[[image:image-20220523001219-13.png]]
521 521  
522 522  7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
523 523  
... ... @@ -536,7 +536,7 @@
536 536  Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
537 537  
538 538  
539 -== 2.7 Alarm Mode ==
492 +== Alarm Mode ==
540 540  
541 541  Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
542 542  
... ... @@ -552,7 +552,7 @@
552 552  
553 553  
554 554  
555 -== 2.8 LED Indicator ==
508 +== LED Indicator ==
556 556  
557 557  The LHT65N has a triple color LED which for easy shows different stage.
558 558  
... ... @@ -567,14 +567,17 @@
567 567  
568 568  ----
569 569  
570 -== 2.9 Installation ==
523 +== Installation ==
571 571  
572 572  [[image:image-20220516231650-1.png||height="436" width="428"]]
573 573  
574 -= 3. Sensors & Accessories =
575 575  
576 -== 3.1 E3 Temperature Probe ==
577 577  
529 +
530 += Sensors & Accessories =
531 +
532 +== E3 Temperature Probe ==
533 +
578 578  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
579 579  
580 580  
... ... @@ -587,7 +587,7 @@
587 587  * -55°C to 125°C
588 588  * Working voltage 2.35v ~~ 5v
589 589  
590 -= 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
546 += Configure LHT65N via AT Command or LoRaWAN Downlink =
591 591  
592 592  Use can configure LHT65N via AT Command or LoRaWAN Downlink.
593 593  
... ... @@ -596,6 +596,7 @@
596 596  
597 597  [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
598 598  
555 +
599 599  There are two kinds of commands to configure LHT65N, they are:
600 600  
601 601  * **General Commands**.
... ... @@ -609,17 +609,19 @@
609 609  
610 610  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
611 611  
569 +
570 +
612 612  * **Commands special design for LHT65N**
613 613  
614 614  These commands are only valid for LHT65N, as below:
615 615  
616 -== 4.1 Set Transmit Interval Time ==
617 617  
576 +== Set Transmit Interval Time ==
577 +
618 618  Feature: Change LoRaWAN End Node Transmit Interval.
619 619  
620 620  **AT Command: AT+TDC**
621 621  
622 -(% border="1" %)
623 623  |**Command Example**|**Function**|**Response**
624 624  |AT+TDC?|Show current transmit Interval|(((
625 625  30000
... ... @@ -643,13 +643,12 @@
643 643  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
644 644  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
645 645  
646 -== 4.2 Set External Sensor Mode ==
605 +== Set External Sensor Mode ==
647 647  
648 648  Feature: Change External Sensor Mode.
649 649  
650 650  **AT Command: AT+EXT**
651 651  
652 -(% border="1" %)
653 653  |**Command Example**|**Function**|**Response**
654 654  |AT+EXT?|Get current external sensor mode|(((
655 655  1
... ... @@ -671,7 +671,7 @@
671 671  * 0xA209: Same as AT+EXT=9
672 672  * 0xA20702003c,Same as AT+SETCNT=60
673 673  
674 -== 4.3 Enable/Disable uplink Temperature probe ID ==
632 +== Enable/Disable uplink Temperature probe ID ==
675 675  
676 676  Feature: If PID is enabled, device will send the temperature probe ID on:
677 677  
... ... @@ -683,7 +683,6 @@
683 683  
684 684  **AT Command:**
685 685  
686 -(% border="1" %)
687 687  |**Command Example**|**Function**|**Response**
688 688  |AT+PID=1|Enable PID uplink|OK
689 689  
... ... @@ -692,13 +692,13 @@
692 692  * 0xA800     à AT+PID=0
693 693  * 0xA801     à AT+PID=1
694 694  
695 -== 4.4 Set Password ==
696 696  
653 +== Set Password ==
654 +
697 697  Feature: Set device password, max 9 digits
698 698  
699 699  **AT Command: AT+PWORD**
700 700  
701 -(% border="1" %)
702 702  |**Command Example**|**Function**|**Response**
703 703  |AT+PWORD=?|Show password|(((
704 704  123456
... ... @@ -712,13 +712,13 @@
712 712  
713 713  No downlink command for this feature.
714 714  
715 -== 4.5 Quit AT Command ==
716 716  
673 +== Quit AT Command ==
674 +
717 717  Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
718 718  
719 719  **AT Command: AT+DISAT**
720 720  
721 -(% border="1" %)
722 722  |**Command Example**|**Function**|**Response**
723 723  |AT+DISAT|Quit AT Commands mode|OK
724 724  
... ... @@ -727,13 +727,12 @@
727 727  No downlink command for this feature.
728 728  
729 729  
730 -== 4.6 Set to sleep mode ==
687 +== Set to sleep mode ==
731 731  
732 732  Feature: Set device to sleep mode
733 733  
734 734  **AT Command: AT+SLEEP**
735 735  
736 -(% border="1" %)
737 737  | | |
738 738  |**Command Example**|**Function**|**Response**
739 739  |AT+SLEEP|Set to sleep mode|(((
... ... @@ -746,13 +746,13 @@
746 746  
747 747  * There is no downlink command to set to Sleep mode.
748 748  
749 -== 4.7 Set system time ==
750 750  
706 +== Set system time ==
707 +
751 751  Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
752 752  
753 753  **AT Command:**
754 754  
755 -(% border="1" %)
756 756  |**Command Example**|**Function**
757 757  |AT+TIMESTAMP=1611104352|(((
758 758  OK
... ... @@ -764,10 +764,12 @@
764 764  
765 765  0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
766 766  
767 -== 4.8 Set Time Sync Mode ==
768 768  
724 +== Set Time Sync Mode ==
725 +
769 769  Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
770 770  
728 +
771 771  SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
772 772  
773 773  
... ... @@ -782,13 +782,13 @@
782 782  
783 783  0x28 00 ~/~/ Same As AT+SYNCMOD=0
784 784  
785 -== 4.9 Set Time Sync Interval ==
786 786  
744 +== Set Time Sync Interval ==
745 +
787 787  Feature: Define System time sync interval. SYNCTDC default value: 10 days.
788 788  
789 789  **AT Command:**
790 790  
791 -(% border="1" %)
792 792  |**Command Example**|**Function**
793 793  |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
794 794  
... ... @@ -796,13 +796,13 @@
796 796  
797 797  0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
798 798  
799 -== 4.10 Print data entries base on page. ==
800 800  
758 +== Print data entries base on page. ==
759 +
801 801  Feature: Print the sector data from start page to stop page (max is 416 pages).
802 802  
803 803  **AT Command: AT+PDTA**
804 804  
805 -(% border="1" %)
806 806  |**Command Example**|**Response**
807 807  |(((
808 808  AT+PDTA=1,3
... ... @@ -851,13 +851,14 @@
851 851  
852 852  No downlink commands for feature
853 853  
854 -== 4.11 Print last few data entries. ==
855 855  
813 +
814 +== Print last few data entries. ==
815 +
856 856  Feature: Print the last few data entries
857 857  
858 858  **AT Command: AT+PLDTA**
859 859  
860 -(% border="1" %)
861 861  |**Command Example**|**Response**
862 862  |(((
863 863  AT+PLDTA=5
... ... @@ -887,13 +887,14 @@
887 887  
888 888  No downlink commands for feature
889 889  
890 -== 4.12 Clear Flash Record ==
891 891  
850 +
851 +== Clear Flash Record ==
852 +
892 892  Feature: Clear flash storage for data log feature.
893 893  
894 894  **AT Command: AT+CLRDTA**
895 895  
896 -(% border="1" %)
897 897  |**Command Example**|**Function**|**Response**
898 898  |AT+CLRDTA|Clear date record|(((
899 899  Clear all stored sensor data…
... ... @@ -905,31 +905,36 @@
905 905  
906 906  * Example: 0xA301 ~/~/Same as AT+CLRDTA
907 907  
908 -= 5. Battery & How to replace =
909 909  
910 -== 5.1 Battery Type ==
911 911  
870 += Battery & How to replace =
871 +
872 +== Battery Type ==
873 +
912 912  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
913 913  
914 914  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
915 915  [[image:image-20220515075034-1.png||height="208" width="644"]]
916 916  
879 +
917 917  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
918 918  
919 919  
920 -== 5.2 Replace Battery ==
883 +== Replace Battery ==
921 921  
922 922  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
923 923  
924 924  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
925 925  
926 -== 5.3 Battery Life Analyze ==
927 927  
890 +== Battery Life Analyze ==
891 +
928 928  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
929 929  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
930 930  
931 -= 6. Order Info =
932 932  
896 += Order Info =
897 +
933 933  Part Number: (% class="mark" %)**LHT65N-XX**
934 934  
935 935  **XX**: The default frequency band
... ... @@ -947,7 +947,7 @@
947 947  
948 948  * **E3**: External Temperature Probe
949 949  
950 -= 7. Packing Info =
915 += Packing Info =
951 951  
952 952  **Package Includes**:
953 953  
... ... @@ -962,10 +962,10 @@
962 962  * Package Size / pcs : 14.5 x 8 x 5 cm
963 963  * Weight / pcs : 170g
964 964  
965 -= 8. FCC Warning =
930 += FCC Warning =
966 966  
967 967  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
968 968  
969 -(1) This device may not cause harmful interference
934 +(1) This device may not cause harmful interference, and
970 970  
971 -(2) this device must accept any interference received, including interference that may cause undesired operation.
936 +(2) this device must accept any interference received, including interference that may cause undesired operation
image-20220523115324-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0